4481

Экз. чит. зела

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Sidesterio.

Дубна.

P4 · 4481

А.В.Матвеенко, Л.И.Пономарев

МЕДЛЕННЫЕ СТОЛКНОВЕНИЯ В СИСТЕМЕ ТРЕХ ТЕЛ, ВЗАИМОДЕЙСТВУЮЩИХ ПО ЗАКОНУ КУЛОНА

II. Симметричная перезарядка

1969

AABODATOPMA TEOPETHUEKKOM OMSMKH

P4 • 4481

А.В.Матвеенко, Л.И.Пономарев

МЕДЛЕННЫЕ СТОЛКНОВЕНИЯ В СИСТЕМЕ ТРЕХ ТЕЛ, ВЗАИМОДЕЙСТВУЮЩИХ ПО ЗАКОНУ КУЛОНА

II. Симметричная перезарядка

Направлено в ЖЭТФ

Введение

Задача о рассеянии протона на атоме водорода

 $p + H(1s) \rightarrow H(1s) + p$

является простейшим примером рассеяния в системе 3-х тел, взаимодействующих по закону Кулона. Реакция (1) представляет самостоятельный интерес, но помимо этого на ее примере можно проследить особенности более общих задач подобного типа /1/

(1).

При вычислении сечений для процесса (1) наиболее последовательным является метод парциальных волн^{2,3,4/}, который особенно хорош при малых энергиях столкновений, когда число волн, дающих вклад в сечение, сравнительно невелико. В рамках этого приближения парциальные амплитуды и фазы вычисляют обычно по формулам квазиклассики^{5,6/}, либо же, если фазы малы, используют борновское приближение⁷.

В более ранних работах использовали также метод прицельного параметра /2,8/. При естественных оговорках оба метода дают разумное приближение, не определяя, однако, его границ.

При медленных столкновениях наиболее последовательной реализацией метода парциальных волн является метод возмущенных стационарных состояний (B.C.C.)^{2,3/}, корректное применение которого для процессов типа (1) стало возможным после точного решения задачи двух центров^{9,10,16/}. В данной работе в рамках метода В.С.С. без какихлибо дальнейших приближений вычислены фазы и сечения для реакции (1). При вычислениях использован метод фазовых функций, разработанный сравнительно недавно. Этот метод интенсивно развивается, ему посвящены уже две монографии^{11,12/}, однако, в практических расчётах он применяется пока сравнительно редко.

Метод возмущенных стационарных состояний

В задаче трех тел, взаимодействующих по закону Кулона, переменные в уравнении Шредингера полностью разделяются в координатах Якоби^{/1,14/}, что позволяет выделить движение центра инерции системы как целого, относительное движение ядер M_1 и M_2 (вектор \vec{R}) и движение третьей частицы M_3 (электрона) относительно центра тяжести ядер M_1 и M_2 (вектор \vec{r}). После отделения движения центра инерции в методе В.С.С. волновая функция

$$\Psi(\vec{R},\vec{r}) = \sum_{\{n\}} \chi_{n}(\vec{R}) \phi_{n}(R;\vec{r})$$
(2)

разлагается по полной системе $\{n\}$ собственных функций $\phi_n(R;\vec{r})$ задачи двух центров, т.е. задачи о движении частицы M_3 в поле двух неподвижных ядер M_1 и M_2 , удаленных на расстояние R. В случае симметричной перезарядки при малых энергиях столкновения

резонансный характер процесса позволяет ограничиться двухуровневым приближением, т.е. в сумме (2) оставить только два нижних состояния системы $H_2^+ 1 \text{ s } \sigma$ (gerade) и $2p \sigma$ (ungerade) /15/.

В этих предположениях сечение процесса (1) вычисляется по /3,4/ формуле :

$$\sigma_{ex}(k) = \sum_{\ell=0}^{\infty} \sigma_{\ell}(k) = \frac{\pi}{k^2} \sum_{\ell} (2\ell+1) \sin^2 \left(\delta_{g}^{\ell} - \delta_{u}^{\ell}\right), \quad (3)$$

где σ_ℓ(k) – парциальные сечения резонансной перезарядки, а δ_g и δ^ℓ_u – парциальные фазы рассеяния, которые определяются из уравнений

$$-\frac{d^{2}}{dR^{2}}\chi_{q,u}^{\ell}(R) + [k^{2} - V_{q,u}^{\ell}(R)]\chi_{q,u}^{\ell}(R) = 0.$$
(4)

and a second second

Здесь $k^2 = 2ME$

$$V_{g,u}^{\ell}(R) = 2M[W_{g,u}(R) - W_{g,u}(\infty)] + [K_{g,u}(R) - K_{g,u}(\infty)] + \frac{\ell(\ell+1)}{R^{2}}$$

(5a)

and the state of

$$\frac{1}{M} = \frac{1}{M_1} + \frac{1}{M_2} \qquad \frac{1}{m} = \frac{1}{M_3} + \frac{1}{M_1 + M_2}$$

 $W_{q}(R)$ и $W_{u}(R)$ - термы задачи двух центров в системе единиц $\hbar = e = m = 1$.

$$K_{g, u}(R) = \int d\vec{r} \phi_{g, u}(R; \vec{r}) (-\Delta_{\vec{R}})[\phi_{g, u}(R; \vec{r})]$$

диагональные матричные элементы оператора ядерного движения по волновым функциям задачи двух центров

Асимптотика потенциалов V(R) при $R \to 0$

$$V_{q}^{\ell}(R) = \frac{2M}{R} + \frac{\ell(\ell+1)}{R^{2}},$$
 (56)

$$V_{u}^{\ell}(R) = \frac{2M}{R} + \frac{2 + \ell(\ell + 1)}{R^{2}},$$
 (5b)

при К→

$$V(R) = \frac{\ell(\ell+1)}{R^2} - \frac{9M}{2R^4}$$

Метод расчёта

При вычислении парциальных фазовых сдвигов $\delta_{g,u}^{\ell}$ использован метод фазовых функций /12,13/, который позволяет линейное уравнение второго порядка (4) для волновой функции $\chi(R)$ свести к нелинейному уравнению первого порядка для фазовой функции $\delta(R)$

$$\frac{d}{dR} \delta_{q,u}^{\ell}(R) = -\frac{1}{k} V_{q,u}^{\ell}(R) \sin^{2}[kR + \delta_{q,u}^{\ell}(R)]$$
(6)

с начальными условиями при R → D , которые получаются из уравнения (6) с учетом асимптотики потенциалов (55)

$$\delta_{q}^{\ell}(\mathbf{R}) = \mathbf{k} \mathbf{R}(\mathbf{a} + \mathbf{b} \mathbf{R}),$$

$$a = -\frac{(2 S+1) + \sqrt{4S-1}}{2S}$$

$$= - \frac{M(1 + a^{2})}{1 + (1 + a) S}$$

 $S = \ell (\ell + 1)$

Для $\delta_{u}^{\ell}(R)$ в разложении (7) нужно сделать замену

b

$$S = \ell(\ell+1) \rightarrow S = 2 + \ell(\ell+1).$$

Искомые фазы рассеяния $\delta_{q,u}^{\ell}$ определяются соотношением

$$\delta_{q,u}^{\ell} = \delta_{q,u}^{\ell} (\infty) + \frac{\pi \ell}{2} . \qquad (8)$$

(7)

Уравнения (6) интегрировались в интервале энергий $E = 10^{-5}$ +5 эв, особенности вычислений обсуждаются в Приложении.

Обсуждение результатов

1. На рис. 1 и 2 представлены фазы рассеяния δ_{q}^{ℓ} и δ_{u}^{ℓ} при различных энергиях столкновений. Это гладкие функции, подобные тем, которые обсуждаются в работах ^{/3,17/}. При малых энергиях столкновений ($E \leq 0,1$ эв) фаза $\delta_{q}^{\ell} = \delta_{q}(\ell)$ становится разрывной функцией орбитального момента ℓ : от своего первоначального значения $\delta_{q}^{0} \approx 18 \pi$ с ростом ℓ она уменьшается до нуля скачками, равными k π , причем k = 0, 1.

Причину такого поведения $\delta_{q}(\ell)$ легко понять, если воспользоваться асимптотическими разложениями фаз рассеяния δ_{ℓ} для потенциала $V(R) = \frac{\ell(\ell+1)}{R^2} - \frac{a}{R^4}$ /3,7/ (a - длина рассеяния) при $\ell=0$

$$k \operatorname{ctg} \delta_{0} = -\frac{1}{a} + \frac{\pi a}{3a^{2}}k + \frac{2a}{3a}k^{2}\ln \frac{ak^{2}}{16},$$
 (9a)

при ℓ≠0

$$k^{2} \operatorname{ctg} \delta_{\ell} = \frac{(2\ell+3)(2\ell+1)(2\ell-1)}{\pi a}.$$
 (96)

х/При $\ell = 0$ и k = 0 по теореме Левинсона $\lambda_{g} = n\pi$, где п – число связанных состояний, электрона в потенциале V_{g} . Для симметричного терма системы H_{g} n = 18.

Из (9б) следует, что при $k \rightarrow 0$ фаза $\delta_{q}(\ell)$ может принимать только значения, кратные π . С другой стороны, при $\ell \rightarrow \infty$ по общему правилу $\delta_{q}(\ell) \rightarrow 0$. Оба эти требования можно совместить лишь в том случае, если, начиная с некоторого $\ell = L$ (которое определяется областью применимости формулы (9б)), фаза $\delta_{q}(\ell)$ будет уменьшаться скачками, кратными π ,.

Еще резче эта тенденция заметна на графике $\Delta_{\ell} = \delta_{g}(\ell) - \delta_{u}(\ell)$, поскольку в нулевом приближении фазовые сдвиги Δ_{ℓ} соответствуют рассеянию на экспоненциально убывающем потенциале. Результаты вычислений при $E = 10^{-3}$ эв приведены в Таблице 1.

2. Графики $\delta_u(\ell)$ при различных k обнаруживают характерные особенности другого типа, которые определяются видом потенциала $V_u(R)$. Антисимметричный терм $V_u(R)$ почти везде носит отталкивательный характер – за исключением слабого минимума при $R_0 = 12,55$ глубиной $D = 6,079 \ 10^{-5}$ а.е. = 1,6 10^{-3} эв. В соответствии с этим фазы $\delta_u(\ell)$ при малых ℓ отрицательны^{X/}, но в области больших ℓ имеют слабый положительный максимум. При уменьшении k этот максимум повышается и сдвигается в область малых ℓ . При $E = 10^{-5}$ эв $\delta_u^0 = 3,748$. Согласно теореме Левинсона, это означает, что в антисимметричном состоянии $2p\sigma$, молекулярного тона водорода H_2^+ существует слабосвязанное состояние при больших расстояниях между ядрами. Этот факт может быть интересен хими-кам и раньше, по-видимому, не отмечался. В приближении потенциала Морса энергия связи J этого уровня равна

х/Связь между знаком фазы δ и знаком потенциала V хорошо видна из у́равнения (6).

xx'Этот уровень метастабилен, поскольку переход с него на высоковозбужденные колебательные уровни системы H_2^+ в состоянии $1 s\sigma$ сильно затруднен из-за малого перекрывания волновых функций ядерного движения. Представляется интересным выяснить роль этого уровня в биологических молекулах, для структуры которых характерен дальний порядок. 11

Таблица I

l	$\left[\begin{array}{c} \delta_{g}^{e} \end{array} \right]$	Sul	бв	Δ_{e}	50
0.	187 + 1,132	-0,721	.,	19 🖵 - 1,288	42,9
1	1917 - 0,841	0,519	-	19 T - 1,360	134 .
2	19 īī — 0,088	1,413		19 T - 1,501	232
3	19 1 + 0,222	ĩ - 1,228	— ;	' 18 ∏ + 1,450.	321
4	197 + 0,011	7-1, 276	-	18 1 + 1,286	· 389
5	187 + 1,404	1,077	·	18 🚺 + 0,327	52,6
6	18 7 + 0,5 15	0,513		18 T + 0,002	0,002
7	17 🗊 + 0,301	0,297	-	17 17 + 0,004	0,009
8	1717 + 0,194	0,194	 '	$17 \overline{k} + 10^{-5}$	~ 10 ⁻⁶
9	1717 + 0,135	0,135	—	$17\pi + 10^{-6}$	~ 10 ⁻⁸
10	161 + 0,099	0,099	0,095	$16 \pi + 10^{-6}$	$\sim 10^{-8}$
11	16 4 + 0,074	0,074	0,072	$16\pi + 10^{-6}$	~ 10 ⁻⁸
/12	151+ 0,058	0,058	0,056	$157 + 10^{-7}$	~ 10 ⁻¹¹

Результаты вычислений при энергии столкновений $E = 10^{-3}$. Борновская фаза δ_{B} вычислена по формуле (96). Парциальные сечения δ_{ℓ} даны в естественных единицах площади $\left(\frac{\hbar}{me^{2}}\right)^{2} = 0.28 \cdot 10^{-16}$ см².

.....

$$J \approx 1.5 \ 10^{-5} \ a.e. = 4.10^{-4} \ _{3B}.$$
 (10)

3. На рис. 4-8 представлены графики парциальных сечений $\sigma_{\ell}(k)$ при различных значениях k. Из них следует, что в общем случае существуют две области ℓ , в которых $\sigma_{\ell}(k)$ зависит от ℓ существенно различным образом. При $\ell < \ell_0$ это ступенчатая функция, имеющая 18 максимумов, при $\ell > \ell_0$ – гладкая функция, имеющая 18 максимумов, при $\ell > \ell_0$ – гладкая функция, имеющая при дальнейшем уменьшении k уменьшается также число максимумов ступенчатой функции. В пределе $k \rightarrow 0$ сохранится единственное парциальное сечение $\sigma_0(k)$, и мы придем к чистому

s -рассеянию.

Наоборот, с ростом k увеличивается вклад парциальных сечений $\sigma_{\ell}(\mathbf{k})$ от области $\ell > \ell_{0}$. Одновременно с этим в области $\ell < \ell_{0}$ скачки функции $\sigma_{\ell}(\mathbf{k})$ упорядочиваются и начинают больше походить на периодическую функцию, чем на гистограмму (рис. 8).

Приведенные графики позволяют наглядно проследить особенности перехода от малых энергий столкновения к большим. Из них, в частности, следует, что при. E >5 эв полное сечение $\sigma(k)$ можно оценить следующим образом:

$$\sigma(\mathbf{k}) \approx \frac{\pi \left(\ell_0 + 1\right)^2}{2\mathbf{k}^2} + \int_{\ell_0}^{\infty} \sigma_{\ell} d\ell, \qquad (11)$$

т.е. усредняя по области $0 \le l \le l_0$ и интегрируя по области $l > l_0$. В прежних работах так и поступали 5,6/, причем σ_l вычисляли методом В.К.Б.

Рис. 5. То же, что и на рис.4.

1-1943A 19

Рис. 6. То же, что и на рис. 4.

Рис. 7. То же, что и на рис. 4.

 $\mathbf{\mathfrak{G}}_{\ell}$ Е=5 ж k=18,37 Рис. 8. То же, что и на рис. 4.

При E = 1 эв оба слагаемых в формуле (11) дают примерно одинаковый вклад в сечение $\sigma(k)$, однако, при E > 1 эв вклад от области $\ell > \ell$, начинает преобладать.

4. На рис. 9 представлена зависимость полного сечения σ (k) от энергии относительного движения E . Расхождение между нашими результатами и типичными эначениями Далгарно и Ядава⁶ разумны, если принять во внимание приближения, принятые в их работе (усреднение при малых ℓ , квазиклассическое вычисление фаз, отбрасывание матричных элементов K_{g} и K_{u}).

Причина отличия теоретических расчётов от экспериментальных /18/ данных обсуждается в работах .

Обратим внимание, что при энергии E = 0,1 эв характер зависимости $\sigma_{ex}(k)$ от энергии столкновения меняется. Этот эффект вызван изменением характера функции Δ_{ℓ} : при E < 0,1 эв она становится ступенчатой и одновременно с этим исчезает вторая область $\ell > \ell_0$ в парциальных сечениях $\sigma_{\ell}(k)$ (см. рис. 3 и 4-8). Однако даже при энергии $E = 10^{-5}$ эв ($T \approx 0,1^0$ K) область

Однако даже при энергии В 10 зв (120,120) чистого s - рассеяния еще не достигается, поскольку при этой энергии вклад в сечение дают четыре фазы ($\ell = 0,1,2,3$). При E > 0,1 эв удовлетворительно выполняется формула

 $\sigma_{ex}(k) \approx A + B \lg E, \qquad (12)$

которая уже обсуждалась в литературе $^{/8,19/}$. Отметим, что при k \rightarrow 0 формула (12) несправедлива, поскольку из соотношения (9а) следует, что при этом $\sigma(k) \rightarrow \text{const}$.

5. Сечение перезарядки $\sigma_{ex}(k)$, сечение упругого рассеяния $\sigma_{dx}(k)$ и полное сечение $\sigma(k)^{/4,5/}$

$$\sigma(\mathbf{k}) = \sigma_{ex}(\mathbf{k}) + \sigma_{dir}(\mathbf{k}) =$$
(13)

$$= \frac{2\pi}{k^2} \sum_{\ell} (2\ell+1) (\sin^2 \delta_{q}^{\ell} + \sin^2 \delta_{u}^{\ell})$$

полностью определяют процесс рассеяния (1) без учёта статистики протонов.

При малых энергиях столкновений необходимо учитывать спиновые состояния протонов. В соответствии с этим появляются два полных сечения $\sigma_{s,s}(k)$ и $\sigma_{s,\alpha}(k)$ для синглетного и триплетного состояний двух протонов /3,5/

$$\sigma_{B,S}(k) = \frac{4\pi}{k^2} \{ \sum_{u \in T_*} (2\ell+1) \sin^2 \delta_g^\ell + \sum_{H \in U_*} (2\ell+1) \sin^2 \delta_u^\ell \}$$
(15a)

$$\sigma_{s,\alpha}(\mathbf{k}) = \frac{4\pi}{\mathbf{k}^2} \{ \sum_{\text{Heq}} (2\ell+1) \sin^2 \delta_q^\ell + \sum_{\text{qer.}} (2\ell+1) \sin^2 \delta_u^\ell \}.$$
(156)

В опытах измеряют лишь полное сечение.

$$\sigma_{s}(\mathbf{k}) = \frac{1}{4} \sigma_{s,s}(\mathbf{k}) + \frac{3}{4} \sigma_{s,a}(\mathbf{k}), \qquad (16)$$

усредненное по начальным и просуммированное по конечным спиновым состояниям обоих протонов. В практических применениях встречается также транспортное сечение /3/

$$\sigma_{t} = 2\pi \int_{0}^{t} \sigma(\theta) (1 - \cos \theta) \sin \theta \, d\theta , \qquad (17)$$

которое после разложения по парциальным волнам и симметризации принимает вид

$$\sigma_{t}(\mathbf{k}) = \frac{4\pi}{\mathbf{k}^{2}} \left\{ \left(\frac{3}{4} \sum_{\text{YeT}, +} \frac{1}{4} \sum_{\text{HeY}, -} \left(\ell + 1 \right) \sin^{2} \left(\delta_{u}^{\ell} - \delta_{q}^{\ell + 1} \right) + \right. \right.$$
(18)

$$+ \left(\frac{3}{4}\sum_{\text{Hey.}} + \frac{1}{4}\sum_{\text{YeT.}}\right) \left(\ell+1\right) \sin^{2}\left(\delta_{q}^{\ell} - \delta_{u}^{\ell+1}\right)$$

На рис. 9 приведены некоторые из этих сечений как функции энергии столкновения, а в таблице 2 – их численные значения. Из них видно, что при $E \ge 1$ эв учет статистики протонов не изменяет полного сечения.

Заключение

В задачах подобного типа существуют два источника погрешностей: при выборе начального приближения и при вычислении сечений в рамках принятого приближения. В данной работе удалось избежать погреш-

6 wit	30	17	6,7	2 , 0	í,2	66,0	0,89	0,74	•
65,0	21	24	17	5,9	2,1	2,3	I,6	I,2	
6 _{5,5}	742		I2	4,9	2,5	I,9	I,6	I,2	
65	26	29	16	5,7	2,2	2,2	. I,6	I,2	
6	33	34	14	5,4	2,3	2 , I	1 , 6	I,2	
Gua	II	22	II	4 , 5	I,7	1 , 6	I,2	0,87	
6*	20,3	11,4	3,27	0,933	0,622	0,518	0,454	0,372	
6 ^c *	l	· • •	l	l	0,60	J	0,47	, 1	
Г Х	10 - 5	10-4	10 ⁻³	I0-2	1 ' 0	0,22	н Н Н	2	

Таблица 2 .

- значения из работи /6/

Сечения приведены в единицах I0^{-I4} см² 63

ностей второго типа, поскольку в рамках метода В.С.С. сечения и фазы для процесса (1) вычислены с заданной точностью без каких-либо дополнительных приближений. Поэтому полученные результаты можно использовать для оценки погрешностей других, приближенных методов вычисления фаз и сечений процесса симметричной перезарядки.

Выполненное исследование представляет в основном методический интерес, поскольку при малых энергиях столкновений водород, как правило, находится не в атомарном, а в молекулярном состоянии. Однако эта классическая задача теории рассеяния позволяет почувствовать общие особенности процессов рассеяния в системе трех частиц, взаимодействующих по закону Кулона.

Особо следует отметить доказательство существования связанного состояния системы H_2^+ при больших межъядерных расстояниях.

Пользуясь случаем, приносим благодарность В.В.Бабикову за многочисленные консультации по методу фазовых функций, С.С. Герштейну за интерес к работе и обсуждения и Т.М. Пику, любезно предоставившему нам таблицы термов.

Приложение 1

При практическом вычислении фаз из уравнения (6) возникают специфические трудности, которые здесь необходимо подчеркнуть.

Прежде всего следует отметить, что уравнение для фазовых функций более естественно записать в следующем виде /12,13/

$$\frac{\mathrm{d}}{\mathrm{dR}} \eta_{q,u}^{\ell} = -\frac{1}{k} U_{q,u}(R) \left[j_{\ell}(kR) \cos \eta_{q,u}^{\ell}(R) - n_{\ell}(kR) \sin \eta_{q,u}(R) \right]^{2} (\Pi, 1)$$

где

$$U_{q,u}(R) = V_{q,u}^{\ell}(R) - \frac{\ell(\ell+1)}{R^2},$$

(П.2)

$$\delta_{q,u}^{\ell} = \eta_{q,u}^{\ell} (\infty),$$

 $j_{\ell}(kR)$ и $n_{\ell}(kR)$ – функции Бесселя, определенные в /12,13/, а фазы $\eta_{g,u}^{\ell}(R)$ при $R \rightarrow 0$ задаются разложениями

$$\eta_{q}^{\ell}(R) = -\frac{(kR)^{2\ell+1}}{[(2\ell+1)!!]^{2}} \cdot \frac{2M}{(2\ell+2)} [1 - \frac{4M}{(2\ell+1)(2\ell+3)}R],$$

$$\eta_{u}^{\ell}(\mathbf{R}) = -\frac{(\mathbf{k}\mathbf{R})^{2^{\ell+1}}}{[(2\ell+1)!!]^{2}}(\mathbf{a}+\mathbf{b}\mathbf{R}), \qquad (\Pi.3)$$

$$a = \frac{-\gamma + \sqrt{\gamma^{2} - 16}}{4}, \quad b = -\frac{2M(1 + a)^{2}}{(1 + a) + (2\ell + 2)(2\ell + 1)}$$

$$\gamma = 4 + (2\ell + 1)^2$$

Известно, что фазовые функции $\eta \frac{\ell}{g.u}$ (R) при наличии связанных состояний при $k \rightarrow 0$ имеют ступенчатый характер^{/12,13/}. Это соз-

дает значительные трудности при интегрировании уравнений (П.1) и вынуждает вместо них интегрировать уравнения (6). При этом граница интегрирования R₁₀ существенно отодвигается в область больших R. Окончательно фазы $\delta_{q,u}^{\ell}$ вычислялись по формуле

$$\delta_{q,u}^{\ell} = \delta_{q,u}^{\ell} (R_0) + \frac{\pi \ell}{2} + h^{\ell} (R_0), \qquad (\Pi.4)$$

где поправка

$$h^{\ell}(R_{0}) = -\frac{1}{2k} \int_{R_{0}}^{\infty} V(R) dR - \frac{1}{(2k)^{2}} V(R_{0}) \sin 2(kR_{0} + \delta_{0}) -$$

$$-\frac{1}{(2k)^{3}} V'(R_{0}) \cos 2(kR_{0} + \delta_{0})$$
(II.5)

(П.6)

$$V(R) = -\frac{\ell(\ell+1)}{R^2} - \frac{9M}{2R^4}, \quad \delta_0 = \delta(R_0)$$

учитывает добавку к фазам $\delta_{g,u}^{\ell}$ от области $R_0 \leq R < \infty$, а R_0 определяется из условия сходимости разложения (П.5) (k $R_0 > 1$) при дополнительном условии

$$\delta'$$
 (R₀) < 10⁻².

Эти условия обеспечивают заданную точность $\epsilon \leq 10^{-2}$ при вычислении отдельных фаз $\delta_{g,u}^{\ell}$ и точность $\epsilon \leq 10^{-3}$ при вычислении Δ_{ℓ} . При интегрировании в области R ≤ 20 использованы таблицы Пика^{/11/} для термов $W_{g}(R)_{H} W_{u}(R)$ и таблицы Хантера и др. /16/ для матричных элементов $K_{g}(R)$ и $K_{u}(R)$. В области R >20 использована асимптотика термов

$$W_{g,u}(R) = E_{o}(R) + \frac{1}{2} \Delta E(R)$$
 (I.7)

 $E_{0}(R) = -\frac{9}{4R^{4}} - \frac{15}{2R^{6}} - \frac{213}{4R^{7}} - \frac{7755}{64R^{8}} - \frac{1773}{2R^{9}} - \frac{86049}{16R^{10}}(\Pi.8)$

$$\Delta E(R) = \frac{4}{e} R e^{-R} \left[1 + \frac{1}{2R} - \frac{25}{8R^2} - \frac{131}{48R^3} - \frac{3923}{384R^4} - \frac{1}{8R^3} - \frac{1}{384R^4} \right]$$

145399 5219	509102915	37749539911
3840 R ⁵ 4608	80 R ⁶ 6451 20 R ⁷	10321920 R [®]

С ростом энергии столкновений Е при вычислении $\sigma(k)$ приходится суммировать большое число парциальных сечений $\sigma_{\ell}(k)$ (см. рис. 4-8). Практически в формуле (3) суммируется лишь конечное число парциальных сечений

$$\sigma(\mathbf{k}) = \sum_{\ell=0}^{L} \sigma_{\ell}(\mathbf{k}) + \Delta \sigma(\mathbf{k}), \qquad (\Pi.10)$$

.9)

$$\delta_{\mathbf{g}}^{\mathbf{L}} = \delta_{\mathbf{u}}^{\mathbf{L}} = \delta_{\mathbf{B}}^{\mathbf{L}}$$

а борновская фаза $\delta_{\mathbf{B}}^{\mathbf{L}}$ задается формулой (9б) (см. таблицу 1). В области $\mathbf{L} \leq \ell < \infty$ асимптотическая формула (9б) для фаз рассеяния $\delta_{g,u}^{\ell}$ уже хорошо выполняется, и вклад $\Delta \sigma(\mathbf{k})$ в полное сечение $\sigma(\mathbf{k})$ можно оценить аналитически

$$\Delta \sigma (\mathbf{k}) = \int_{L}^{\infty} \sigma_{\ell} (\mathbf{k}) d\ell \approx \frac{\pi^{3} \alpha^{2} \mathbf{k}^{2}}{32L^{4}}, \qquad (\Pi.12)$$

$$a = \frac{9 \text{ M}}{2}$$

Этот вклад пренебрежимо мал (≈ 10⁻³ от полного сечения σ(k)). При энергиях столкновений E > 10⁻⁴ эв значение L можно оценить по формулам

$$2\ell \sim 30 \mu^{2/3}$$
 (II.13)

(П.11)

 $L \approx 2 \ell \approx 30 k^{2/3}$.

Приведенные оценки определяют точность полученных результатов в рамках метода В.С.С. в двухуровневом приближении. Это приближе-. ние разумно при малых энергиях столкновений, пока расстояния между уровнями системы H_2^+ велики по сравнению с энергией налетающего протона. Однако точные границы метода пока неясны, хотя некоторые оценки для них имеются /6/

Приложение II

В некоторых случаях при вычислении фаз δ_{ℓ} из уравнений (4) области применимости квазиклассического и борновского приближений перекрываются. Это можно показать непосредственно, сравнивая два выражения

$$\int_{KB}^{\ell} = \int_{r_0}^{\infty} \left[k^2 - \frac{(\ell + 1/2)^2}{r^2} U(r) \right]^{\frac{1}{2}} dr - \int_{r_0}^{\infty} \left[k - \frac{(\ell + 1/2)^2}{r^2} \right]^{\frac{1}{2}} dr \quad (\Pi.14)$$

$$\delta_{\rm B}^{\ell} = -\frac{\pi}{2k} \int_{0}^{\infty} U(\mathbf{r}) [\mathbf{j}_{\ell}(\mathbf{kr})]^2 d\mathbf{r} \qquad (\Pi_{\bullet}\mathbf{15})$$

(здесь $r_0 = (\ell + 1/2)/k$, $j_\ell (kr) = J_{\ell + \frac{1}{2}} (kr)$ – сферическая функция Бесселя полуцелого порядка). При больших ℓ и малых k точка поворота $r_0 >> 1$, а в этой области для быстроубывающих потенциалов выполняется условие применимости борновского приближения

 $U(r) << k^2$. Используя это условие, а также квазиклассическую асимптотику функций $j_{\ell}(kr)$ при больших ℓ , найденную в рабо-те

$$J_{\ell+\frac{1}{2}}(kr) = \sqrt{\frac{2k}{\pi r}} \left[k^2 - \frac{(\ell+1/2)^2}{r^2}\right]^{-1/4} \cos\left(\int_{r_0}^r \sqrt{k^2 - \frac{(\ell+1/2)^2}{r^2}} dr - \frac{\pi}{4}\right), \quad (\Pi.16)$$

в обоих случаях приходим к одной и той же формуле

$$\delta_{\ell} \approx \frac{1}{2} \int_{r_0}^{\infty} U(r) \left[k - \frac{(\ell + 1/2)^2}{r^2} \right]^{-1/2} dr . \qquad (\Pi_{\bullet} 17)$$

В нашем конкретном случае $U(r) = -\frac{a}{r^4}$. Вычисляя интеграл, получим соотношение

$$\delta_{\ell} = \frac{\pi \alpha k^{2}}{8(\ell + 1/2)^{3}}, \qquad (\Pi.18)$$

которое практически не отличается от выражения (9б).

Литература

- 1. Л.И.Пономарев, ЖЭТФ <u>52</u>, 1550 (1967). А.В.Матвеенко, Л.И.Пономарев. Препринт ОИЯИ, Дубна, 1969.
- 2. Атомные и молекулярные процессы. Под ред. Д.Бейтса. 1964 г., изд. "Мир". Б.М.Смирнов. Атомные столкновения и элементарные процессы в плазме", Атомиздат, 1968.
- 3. N.F.Mott, and H.S.Massey. 1965, The theory of atomic collisions, third edition (Oxford, Clarendon Press).
- 4. D.R.Bates, H.S.Massey and A.L.Stewart. Proc.Roy.Soc., A, <u>216</u>, 437 (1953).
- 5. L.A. Parcell and R.M.May. Proc. Phys. Soc., <u>91</u>, 54 (1967). F.J. Smith. Proc. Phys. Soc., <u>92</u>, 866 (1967).
- 6. A. Dalgarno and H. N. Yadav. Proc. Phys. Soc., A, <u>66</u>, 173 (1953), A. Dalgarno. Phil. Trans. Roy. Soc., <u>250</u>, 426 (1958).

- B.R.Levy and J.B.Keller, J.Math.Phys., <u>4</u>, 54 (1963).
 T.O'Malley, L.Rosenberg and L.Spruch. Phys.Rev., <u>125</u>, 1300 (1962).
- 8. О.Б.Фирсов. ЖЭТФ <u>32</u>, 1964 (1957), <u>33</u>, 696 (1957), Ю.Н.Демков, Учёные записки ЛГУ, §146, сер. физ., вып. 6, 74 (1952).
- D.R.Bates, K.Ledsham, A.L.Stewart. Phyl.Trans.Roy.Soc., A246, 215 (1953); D.R.Bates, T.R.Carson. Proc.Roy.Soc., A234, 207 (1954).
- Л.И.Пономарев, Т.П.Пузынина. ЖЭТФ <u>52</u>, 1273 (1967), ЖВМ и МФ <u>8</u>, 1256 (1968). Препринты ОИЯИ Р4-3175, Р4-3405, Дубна, 1967.
- 11.T.M. Peek, J.Chem.Phys., <u>43</u>, 3004 (1965). Sandia Corporation Report No. Sc-RR-65-67, 1965.
- В.В.Бабиков. Метод фазовых функций в квантовой механике, Москва, 1968, изд. "Наука".
- 13.F.Calogero. Variable Phase Approach to Potential Scattering, 1967, Academic Press, N.Y. and London.
- 14. Cohen S., Judd D.L., Riddel R.J., Phys.Rev., <u>119</u>, 384 (1960).
- 15. Quantum Theory , Ed. by D.R.Bates, v.1, N.Y.-London Acad. Press, 1961.
- 16.G.Hunter, B.F.Gray and H.O.Prichard. J.Chem.Phys., <u>45</u>, 3806 (1966).
- 17.K.W.Ford and J.A.Wheeler. Ann.Phys., N.Y. 7, 259 (1959). 18.W.L.Fite, A.C.H.Smith and R.F.Stebbings. Proc. Roy.Soc., A,

268, 527 (1962); W.L.Fite, R.F.Stebbings, D.G.Hummer and R.T.Brackmann. Phys. Rev., 11'9, 663 (1960).

В.А.Беляев, В.Г.Брежнев, Е.М.Ерастов. ЖЭТФ <u>52</u>, 1171 (1967). 19.Р. Banks. Planet Space Sci., <u>14</u>, 1105 (1966). 20.F.J.Smith. Molecular Physics, <u>13</u> 121 (1967).

- 21. R.J.Damburg and R.Kh.Propin. Proc.Phys.Soc.Ser., 2, v.1, 681 (1968); C.A.Coulson. Proc.Roy.Soc.Edin. A, <u>A61</u>, 20 (1941).
- 22. Л.И.Пономарев. "Лекции по квазиклассике". Препринт ИТФ-67-53, Киев, 1968.

Рукопись поступила в издательский отдел 13 мая 1969 года.