

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

and the second

Дубна.

P4 - 4248

1111-60

ААБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКІ

В.В.Бабиков

ОБ ОДНОМ КЛАССЕ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА

P4 - 4248

В.В.Бабиков

ОБ ОДНОМ КЛАССЕ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА

Направлено в "Журнал вычислительной математики и математической физики"

Введение

Рассматриваемый класс уравнений включает два уравнения в частных производных второго порядка. Первое имеет вид

$$\Delta y + y = y^{\alpha} + \beta \frac{(\nabla y)^2}{y} \quad . \tag{1}$$

Второе уравнение отличается от (1) знаком при членах у , у^а :

$$\Delta y - y = -y^{\alpha} + \beta \frac{(\nabla y)^{2}}{y} \qquad (2)$$

Предполагается, что

$$a > 0, -\infty < \beta < \infty$$
 (3)

Краевая задача формулируется в сферической системе координат следующим образом: найти непрерывные и дифференцируемые положительные решения уравнений (1), (2), удовлетворяющие условиям

$$\mathbf{y}(\mathbf{0},\boldsymbol{\theta},\boldsymbol{\phi}) = \mathbf{y}_{\mathbf{0}} < \boldsymbol{\infty} , \qquad (4)$$

$$\nabla \mathbf{y} \left(\mathbf{r} = \mathbf{0}, \, \theta, \, \phi \right) = \mathbf{0} \tag{5}$$

$$y(\infty, \theta, \phi) = 0, \qquad (6)$$

у₀ - неизвестный положительный параметр.

Подобная задача возникает, например, в статистической теории ядра при обобщении уравнения Томаса-Ферми на случай конечной массы мезона и учёта эффекта поверхности^{/1,2/}. В ^{/1/} было показано, что, если $a = \beta = 3/2$, краевая задача для уравнения (1) имеет при $0 < y_0 < 1$ континуум сферически-симметричных решений, соответствующих самосогласованному потенциалу сферических ядер. В ^{/2/} при этих же условиях найдено общее решение уравнения (1), позволяющее описать потенциал деформированных ядер. Ряд исследований ^{/3-6/} был посвящен краевым задачам для уравнения (2), возникающим в нелинейной теории поля. В частности, было найдено, что, если $\beta = 0$, рассматриваемая краевая задача имеет для a = 3, 2, 3/2 сферически-симметричные решения соответственно при $y_0 = 433^{/3/}$, $y_0 = 419^{/4/}$, $y_0 = 4274^{/6/}$.

В настоящей работе показывается, что при произвольных значениях параметров a и β можно найти общие критерии существования решений рассматриваемой краевой задачи как для уравнения (1), так и для уравнения (2). В основном обсуждаются сферически-симметричные решения, хотя некоторые результаты относятся также к общему решению, не обладающему сферической симметрией. Найдены случаи, когда решение краевой задачи может быть получено в явном виде.

Величина параметра β является определяющей при рассмотрении. Поэтому дальнейшее изложение и соответствующие теоремы о существовании решений краевой задачи удобно представить раздельно для каждой из областей изменения β.

В §1 рассматривается случай $1 < \beta < \infty$. Краевая задача при $\beta = 1$ исследуется в §2. В§3 содержатся результаты, относящиеся к случаю $-\infty < \beta < 1$. Различные области изменения параметра *а* вынесены для каждого из параграфов в соответствующие пункты. Полученные результаты кратко обсуждаются в заключительном разделе работы.

§1. $1 < \beta < \infty$

Теорема 1. Если $\beta > 1$, краевая задача (4)-(6) для уравнения (1) имеет решения только при a > 1. При этом существует определя-

4

емый условием $0 < y_0 < 1$ континуум решений с асимптотиками $O(r^{1/(\beta-1)}e^{-r/\sqrt{\beta-1}})$.Если $\alpha = \beta$, общее решение уравнения (1) представимо в замкнутом виде.

Теорема 2. Если $\beta > 1$, кразвая задача (4)-(6) для уравнения (2) имеет решения только при $0 < \alpha < 1$. При этом существует определяемый условием $0 < y_0 < 1$ континуум сферически-симметричных решений, обращающихся в нуль вместе с двумя первыми производными в точках r_0 , где r_0 монотонно зависят от y_0 ($0 < r_0 < \infty$), и равных нулю на отрезках $r > r_0$.

В связи с формулировкой теоремы 2 заметим, что функции у = 0 и у = 1 во всем интервале г > 0, не будучи решениями краевой задачи, являются решениями уравнений (1) и (2).

Для доказательства теорем 1 и 2 сведем рассматриваемую краевую задачу к другой, ей эквивалентной, положив:

$$y(\mathbf{r}, \theta, \phi) \equiv z^{\mathbf{p}}(\mathbf{r}, \theta, \phi) , \qquad (1.1)$$

где

$$p = \frac{1}{\beta - 1} > 0$$
 . (1.2)

Уравнения (1) и (2) преобразуются соответственно в уравнения:

5

$$p\Delta z = z - z^{\gamma} , \qquad (1.3)$$

$$p \Delta z = z^{\gamma} - z , \qquad (1.4)$$

где

$$\gamma = \frac{\beta - a}{\beta - 1} \quad . \tag{1.5}$$

Заметим, что при получении уравнений (1.3), (1.4) было использовано условие $z \neq \infty$ и что $z \equiv \infty$ соответствует решению y = 0уравнений (1), (2).

Краевая задача для уравнений (1.3), (1.4) формулируется очевидным образом. : найти положительные решения уравнений (1.3), (1.4), удовлетворяющие условиям:

 $z(0,\theta,\phi) = z_0 < \infty , \qquad (1.6)$

 $\nabla z (r = 0, \theta, \phi) = 0$, (1.7)

 $z(\infty, \theta, \phi) = 0, \qquad (1.8)$

z₀ - неизвестный положительный параметр.

Проблему доказательства существования решений данной краевой задачи будем решать раздельно для каждой из трех областей изменения параметра $\gamma: \neg \infty < \gamma < 1$, $\gamma \approx 1$, $1 < \gamma < \beta / (\beta - 1)$, \neg что соответствует трем областям изменения параметра a:a > 1, a = 1, 0 < a < 1.

1. --- < y < 1, т.е. a > 1. Рассмотрим сферически- симметричные решения z(r) уравнения (1.3). Правая часть уравнения положительна при всех z(r) > 1. Поэтому, если $z_0 > 1$, его решение монотонно возрастает с увеличением r. Вследствие этой монотонности нетрудно определить верхнюю и нижнюю границы для величины z(r). Действительно, при любом r

$$z (1 - \frac{1}{z^{1-\gamma}}) \le p\Delta z \le z$$
, (1.9)

откуда с учётом (1.6), (1.7) следует

$$z_{0} = \frac{Sh(r\sqrt{(1-z_{0}^{\gamma-1})/p})}{r\sqrt{(1-z_{0}^{\gamma-1})/p}} \le z(r) \le z_{0} = \frac{Sh(r/\sqrt{p})}{r/\sqrt{p}}, \quad (1.10)$$

Таким образом, при всех z₀ > 1 существуют сферически-симметричные решения уравнения (1.3), удовлетворяющие краевым условиям (1.6)-(1.8). Асимптотическое поведение этих решений определяется линейным уравнением $\mathbf{p} \Delta \mathbf{z} = \mathbf{z} \tag{1.11}$

и имеет вид

$$z(r) \approx \text{const} \frac{1}{r} e^{r/\sqrt{p}}$$
, (1.12)

Соответственно, если 0 < y₀ < 1, краевая задача (4)-(6) для уравнения (1) имеет сферически-симметричные решения, обладающие при г→∞ асимптотиками:

$$y(r) \approx \text{const} r^{p} e^{-\sqrt{p}r}$$
 (1.13)

По-видимому, можно рассмотреть аналогичным образом проблему существования общего решения краевой задачи для уравнения (1.3). Мы приведем здесь лишь один пример, допускающий общее решение в явном виде.

Пусть $\gamma = 0$, т.е. $a = \beta$. Тогда уравнение (1.3) липейно и искомое общее решение имеет вид

$$z(r,\theta,\phi) = 1 + (z_0 - 1) \frac{Sh(r/\sqrt{p})}{r/\sqrt{p}} \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} \ell_m i_{\ell} (r/\sqrt{p}) Y_{\ell_m}(\theta,\phi).$$
(1.14)

Здесь $Y_{\ell_m}(\theta, \phi)$ - известные сферические функции, $i_{\ell}(x)$ - сферические функции Бесселя мнимого аргумента с асимптотикой $i_{\ell}(x) = e^{x} / x$ при $x \to \infty$. Численные коэффициенты c_{ℓ_m} в формуле (1.14) являются произвольными параметрами деформации, определяющими величину отклонения функции $z(r, \theta, \phi)$ от сферической симметрии. Единственные ограничения на параметры c_{ℓ_m} следуют из условий вещественности и положительности $z(r, \theta, \phi)$:

$$c_{\ell,-m} = c_{\ell m}^{*} , \qquad (1.15)$$

$$\sum_{\ell=1}^{\infty} \sum_{\ell=\ell}^{\ell} |c_{\ell m}| \sqrt{(2\ell+1)/4\pi} < z_{0} - 1 .$$

Если потребовать, чтобы "центр тяжести" распределения был расположен в начале координат, то следует положить, как известно, с_{1 m} = 0.

На рис. 1 схематически показано поведение сферически-симметричных решений краевой задачи для уравнения (1):

$$y(r) = \begin{bmatrix} 1 + (y_0^{1-\beta} - 1) & \frac{Sh(r\sqrt{\beta - 1})}{r\sqrt{\beta - 1}} \end{bmatrix}^{-\frac{\beta}{\beta - 1}}, \quad (1.16)$$

соответствующих значениям параметров $a = \beta > 1$.

Если $0 < z_0 < 1$, т.е. $1 < y_0 < \infty$ краевая задача для уравнения (1.3) и соответственно для уравнения (1) не имеет решения. Действительно, правая часть уравнения (1.3) отрицательна при z < 1. Поэтому, если $0 < z_0 < 1$, его решения монотонно убывают с ростом г до значения $z(r_0) = 0$ и переходят в область отрицательных значений z(r) < 0.

Для уравнения (1.4) при любых $z_0 > 0$ краевая задача (1,6)-(1.8) решения не имеет. Правая часть уравнения отрицательна в области z > 1, положительна при z < 1, и все его решения осциплируя, асимптотически стремятся при увеличении г к значению z = 1. Соответственно не имеет решения задача (4)-(6) для уравнения (2).

2. $\gamma = 1$, т.е. $\alpha = 1$. Оба уравнения (1.3) и (1.4) вырождаются в однородное линейное уравнение:

$$\Delta z = 0 , \qquad (1.17)$$

ни одно из решений которого не удовлетворяет сразу всем краевым условиям (1.6)-(1.8). Соответственно не имеет решений краевая задача (4)-(6) для уравнений (1) и (2).

8

3. $1 < \gamma < \beta / (\beta - 1)$, т.е. 0 < a < 1. Уравнение (1.3) не имеет решения краевой задачи (1.6) - (1.8) ни при каком значении $z_0 > 0$. Все его сферически-симметричные решения, осциллируя, стремятся при $r \rightarrow \infty$ к величине z = 1, ибо правая часть уравнения (1.3) отрицательна при z > 1и положительна при z < 1.

Правая часть уравнения (1.4) положительна в области z > 1 и отрицательна при z < 1. Поэтому, если $0 < z_0 < 1$, решения монотонно убывают, так что не выполняется краевое условие (1.8). При $z_0 > 1$ решения монотонно возрастают, и при достаточно больших значениях z их поведение определяется уравнением

$$\Delta z = z^{\gamma} , \qquad (1.18)$$

Нелинейность правой части уравнения (1.18) имеет следствием обращение решейий в бесконечность не асимптотически при г→∞, а при конечных значениях г=г₀. Величина г₀ тем больше, чем меньше г₀. Легко проверить, что сферически-симметричным решением уравнения (1.18) вблизи точки г = г₀ является выражение

$$z(r) = \left[\frac{2(\gamma+1)}{(\gamma-1)^2(\beta-1)}\right] \xrightarrow{\frac{1}{\gamma-1}} (r_0 - r)^{\frac{2}{\gamma-1}}, r \to r_0 = 0 \quad . \tag{1.19}$$

Соответственно сферически-симметричное решение уравнения (2) при $0 < y_0 < 1$ монотонно убывает до значения у $(r_0) = 0$, и его поведение около точки r_0 определяется выражением

$$y(r) = \left[\frac{(1-\alpha)^2}{2(2\beta-1-\alpha)}\right]^{\frac{1}{1-\alpha}} (r_0-r)^{\frac{2}{1-\alpha}}, r \neq r_0-0.$$
(1.20)

8

При этом

$$y(r_0) = y'(r_0) = y''(r_0) = 0$$
. (1.21)

Поэтому искомым решением краевой задачи для любого $y_0 < 1$ является при $r \leq r_0$, где $r_0 = r_0 (y_0)$, решение уравнения (2) с начальными условиями (4), (5) и решение $y(r) \equiv 0$ при $r > r_0$.

Таким образом, теоремы 1 и 2 доказаны.

§2. $\beta = 1$

Теорема 3. Если $\beta = 1$, краевая задача (4)-(6) для уравнения (1) имеет решения только при a > 1. При этом существует определяемый условием $0 < y_0 < 1$ континуум сферически-симметричных решений с асимптотиками $0 (e^{-r^2/6})$.

Теорема 4. Если $\beta = 1$, сохраняют силу утверждения теоремы 2. Сделаем подстановку:

$$y(r,\theta,\phi) = \exp\left[-z(r,\theta,\phi)\right], \qquad (2.1)$$

Тогда краевая задача для уравнений (1), (2) принимает следующий вид: найти положительные решения уравнений

 $\Delta z = 1 - \exp[-(a-1)z], \qquad (2.2)$

$$\Delta z = \exp \left[-(a-1)z \right] - 1$$
, (2.3)

удовлетворяющие условиям (1.6)-(1.8), где z₀ - неизвестный вещественный параметр. Рассмотрим различные области изменения параметра а.

 1. 1<а <∞. Если z₀> 0, правая часть уравнения (2.2) положительна. Сферически-симметричное решение с начальными условиями (1.6), (1.7) монотонно возрастает, так что его асимптотика определяется уравнением

 $\Delta z = 1 \tag{2.4}$

и имеет вид

$$z(r) = \frac{1}{6}r^2$$
, $r \to \infty$

Легко видеть, что верхняя и нижняя границы для функции z(r) равны

$$z_{0} + \frac{1}{6} \left[1 - e^{-(a-1)z_{0}} \right] r^{2} \le z(r) \le z_{0} + \frac{1}{6} r^{2} .$$
(2.6)

Если z₀ < 0, правая часть уравнения (2.2) отрицательна и решение z (г) монотонно убывает, не удовлетворяя краевому условию (1.8).

Следовательно, уравнение (1) имеет при a > 1 континуум $0 < y_0 < 1$ сферически-симметричных решений краевой задачи с асимптотиками:

$$y(r) \approx \text{const} e^{-r^2/6}, r \rightarrow \infty$$
 (2.7)

По-видимому, существуют также решения, не обладающие сферической симметрией.

Уравнение (2.3) не имеет решений краевой задачи, ибо в области z > 0 его правая часть отрицательна. Соответственно не имеет решений краевая задача (4)-(6) для уравнения (2).

2. *a*=1. Как и в п.2 предыдушего параграфа, приходим к заключению, что краевая задача не имеет решений ни для уравнения (2.2), ни для уравнения (2.3).

3. 0 < a < 1. Краевая задача для уравнения (2.2) не имеет решений, ибо
 в области z > 0 правая часть (2.2) отрицательна.

В уравнении (2.3) при z >0 правая часть положительна. Поэтому, если $z_0 > 0$, решение z(r) уравнения (2.3) монотонно возрастает и обращается в бесконечность в некоторой точке r = r₀. Величина r₀ тем больше, чем меньше z₀, так как начальное значение второй производной z "(0) = exp [(1-a) z₀]-1. Нетрудно проверить, что при r \rightarrow r₀

$$z(r) = \frac{1}{1-a} \ell_n \frac{2}{(1-a)(r_0-r)^2}, r + r_0 - 0.$$
 (2.8)

Соответственно имеем:

$$y(r) = \left[\frac{1-a}{2}\right]^{\frac{1}{1-a}} (r_0-r)^{\frac{2}{1-a}}, r \neq r_0 = 0$$
, (2.9)

причём

$$y(r_0) = y'(r_0) = y''(r_0) = 0$$
,

Этот результат аналогичен результату, изложенному в п.3 предыдущего параграфа.

Теоремы 3 и 4 доказаны.

§3.
$$-\infty < \beta < 1$$

Теорема 5. Если $\beta < 1$, краевая задача (4)-(6) для уравнения (1) при a > 1 и $\beta > 0$ имеет континуум сферически-симметричных решений, обрашающихся вместе с первыми производными в нуль в точках $r_0 > \overline{r_0} = \pi / (1 - \beta)$ и тождественно равных нулю на отрезках $r > r_0$. При $2\beta - 1 < a < 1$ существует определяемый условием $y_0 > \overline{y}_0 > 1$, где $\overline{y_0}$ - некоторое граничное значение, континуум сферически - симметричных решений, обрашающихся вместе с двумя первыми производными в нуль в точках r_0 , $r_1 < r_0 < \overline{r_0}$ и тождественно равных нулю на отрезках $r > r_0$.

Теорема 6. Если $\beta < 1$. краевая задача (4)-(6) для уравнения (2) имеет при $1 < a < 5 - 4\beta$ и $\beta > 0$ определяемый условием $y_0 \ge \overline{y_0} > 1$ континуум сферически-симметричных решений, причем, если. $y_0 = \overline{y_0}$, асимптотика решения имеет вид 0 ($r^{-1/2}$ (1- $\beta)_e^{-r/\sqrt{1-\beta}}$), а при $y_0 > \overline{y_0}$ решения обращаются вместе с первыми производными в нуль при конечных значениях $r_0 < \infty$ и тождественно равны нулю на отрезках $r > r_0$. При $\beta > 0$ и $2\beta - 1 < a < 1$ существует определяемый условием $0 < y_0 < 1$ континуум сферически-симметричных решений, обращающихся вместе с двумя первыми производными в нуль при конечных зна-

и тождественно равных нулю при r > r_o .

$$y(r, \theta, \phi) = z^{P}(r, \theta, \phi) . \qquad (3.1)$$

Тогда, если

 $p = \frac{1}{1-\beta} > 0$, (3.2)

уравнения (1) и (2) переходят соответственно в уравнения

$$\Delta z = z^{\gamma} - z , \qquad (3.3)$$

$$p\Delta z = z - z^{\gamma} , \qquad (3.4)$$

где

$$\gamma = \frac{\alpha - \beta}{1 - \beta} \quad . \tag{3.5}$$

Краевая задача для уравнений (3.3), (3.4) формулируется очевидным образом: найти положительные решения уравнения (3.3), (3.4), удовлетворяющие условиям

$$z(0,\theta,\phi) = z_0 < \infty, \qquad (3.6)$$

$$\nabla z (r = 0, \theta, \phi) = 0, \qquad (3.7)$$

$$z(\infty, \theta, \phi) = 0, \qquad (3.8)$$

го – неизвестный положительный параметр .

Заметим, что $z \equiv 0$, не являясь при $y \leq 0$ решением уравнений (3.3),(3.4), соответствует согласно (3.1) решению $y \equiv 0$ уравнений (1), (2).

Рассмотрим различные области изменения параметра γ , т.е. a. 1. $1 < \gamma < \infty$, т.е. $1 < a < \infty$. В области z < 1 правая часть уравнения (3.3) отрицательна, так что все решения с $0 < z_0 < 1$ монотонно убывают и пересекают ось z = 0 в точках $r_0 < \infty$, причем $z'(r_0) \neq 0$. Нетрудно оценить для заданного значения z_0 нижнюю r_1 и верхнюю r_2 границы величины r_0 (рис. 2). Используя очевидные соотношения

 $p\Delta z \geq -z , \qquad (3.9)$

$$p \Delta z \leq -z (1 - z_0^{\gamma-1})$$
 (3.10)

и монотонный характер решений, находим при условиях (3.6), (3.7)

$$0 \frac{\sin(r/\sqrt{p})}{r/\sqrt{p}} \leq z(r) \leq z_0 \frac{\sin(r\sqrt{(1-z_0)^{-1}})/p}{r\sqrt{(1-z_0^{-1})/p}}$$
(3.11)

Отсюда следует, что

 $\pi\sqrt{p} \leq r_0 \leq \pi\sqrt{p/(1-z_0^{p-1})}$ (3.12)

Вблизи точек г сферически-симметричное решение z (r) равно.

$$z(r) \approx \text{const}(r_0 - r), \quad r \rightarrow r_0 = 0 \quad , \tag{3.13}$$

так что $z'(r_0) \neq 0$. Однако $y'(r_0) = 0$, если $\beta > 0$, ибо согласно (3.1)

$$y(r) \approx const (r_0 - r_1)^{\frac{1}{1-\beta}}, r \rightarrow r_0 - 0,$$
 (3.14)

$$y'(r) = const (r_0 - r_1)^{-\beta}, r + r_0 - 0$$
. (3.15)

Поэтому краевая задача (4)-(6) для уравнения (1) имеет континуум сферически-симметричных решений, являющихся в интервале $0 \le r \le r_0$, где $r_0 \ge r_0 = \pi/\sqrt{1-\beta}$, решениями задачи Коши с начальными условиями (4), (5) и тождественно равных нулю при $r > r_0$. При $\beta \le 0$ краевая задача решений не имеет.

Если $z_0 > 1$, все решения уравнения (3.3) монотонно возрастают, так как его правая часть положительна в области z > 1. Решений краевой задачи не существует при $z_0 > 1$.

Краевая задача (3.6)-(3.8) для сферически-симметричных решений уравнения (3.4) рассматривалась в работах/3-6/. Поэтому сошлемся на полученные в них результаты. Нетрудно показать ^{/5/}, что решений краевой задачи нет, если

$$\gamma > 5 \qquad (3.16)$$

Из (3.16) и (3.5) следует тогда, что решение краевой задачи для уравнения (2) возможно только в том случае, если

$$a < 5 - 4\beta$$
 (3.17)

При г → 0 поведение решений краевой задачи для уравнения (3.4) определяется линейным уравнением

$$p \Delta z = z , \qquad (3.18)$$

решения которого известны. Отсюда находим с учётом (3.1), что асимптотика решений краевой задачи для уравнения (2) равна

15

$$y(r) = \operatorname{const} r \qquad (3.19)$$

В работе⁶⁷ было доказано существование по крайней мере одного сферически-симметричного решения уравнения (3.4), обладающего асимптотикой $O(r^{-1}e^{-r/\sqrt{p}})$ при $1 < \gamma \leq 3$ и $z_0 = \overline{z_0} > 1$. Величины $\overline{z_0}$ для нескольких значений γ были найдены путем численных расчётов $^{/3,4,6/}$. Эти величины приведены во введении.

При $z_0 > \bar{z}_0$ решения уравнения (3.4) пересекают ось z = 0 при конечных значениях r_0 , причём $z'(r_0) \neq 0$. Однако, если $\beta > 0$, согласно (3.14), (3.15) имеем $y(r_0) = y'(r_0) = 0$. Поэтому краевая задача для уравнения (2) имеет также континуум решений при $y_0 > \bar{y}_0 = z_0^{-1/(1-\beta)}$ Если $\beta \leq 0$, единственным решением является решение при $y_0 = \bar{y}_0$ имеющее асимптотику (3.19).

2. $\gamma = 1, \tau_{*e*}$ $\alpha = 1$. Краевая задача (3.6)-(3.8) не имеет решений ни для уравнения (3.3), ни для уравнения (3.4).

3. $-\beta/(1-\beta) < y < 1$, т.е. $0 < \alpha < 1$. Краевая задача (3.6)-(3.8) для уравнения (3) не имеет решений, если $0 < z_0 < 1$, ибо все решения, осциллируя, приближаются асимптотически к прямой z = 1.

В области z > 1 правая часть уравнения (3.3) отрицательна. Поэтому все сферически-симметричные решения с $z_0 > 1$ монотонно убывают, переходя в область z < 1, где правая часть уравнения становится положительной. Если z_0 меньше некоторого критического значения $\overline{z_0}$, кривые z(r) возврашаются, не достигнув оси z = 0, в область z > 1 и в дальнейшем, осциллируя, приближаются к прямой z = 1. При $z_0 = \overline{z_0}$ интегральная кривая касается оси z = 0 в некоторой точке $\overline{r_0}$. Если z > $\overline{z_0}$, все решения пересекают ось z = 0 в точках $t_0 < \overline{r_0}$, причём z '(r_0) = 0 (рис. 3).

Нетрудно проверить, что решения уравнения (3.3) в окрестности точки r_0 имеют при $-1 < \gamma < 1$, т.е. $2\beta - 1 < \alpha < 1$, вид

$$z(r) = A(r_0) (r_0 - r_0) + \frac{A(r_0)}{r_0} (r_0 - r_0)^2 + \frac{1}{p(1+\gamma)(2+\gamma)} A^{\gamma}(r_0) (r_0 - r_0)^{2+\gamma} +$$

(3.20)

+
$$\left[\frac{(1-\gamma)^2}{2p(1+\gamma)}\right]^{\frac{1}{1-\gamma}}(r_0-r_1)^{\frac{2}{1-\gamma}}+\dots, r+r_0-0$$
.

Последний член в (3.20) определяет поведение z(r) в окрестности точки $\vec{r_0}$, когда $A(\vec{r_0}) = 0$. При $r_0 < \vec{r_0} A(r_0) > 0$. Существует такая точка r_1 , для которой $A(r_1) = \infty$, что соответствует значению $z_0 = \infty$. Поэтому для всех значений $z_0 > \vec{z}_0$ соответствующие значения r_0 лежат в интервале $r_1 < r_0 \leq \vec{r_0}$.

Покажем, что для всех y < 1 величина $r_1 = \pi \sqrt{p}$. В области $z \ge 1$, где уравнения (3.3) с начальными условиями (3.6), (3.7) монотонно убывают, справедливы, очевидно, соотношения

$$-z \leq p \Delta z \leq -z (1 - \frac{1}{z_0^{1-\gamma}}),$$
 (3.21)

откуда:

$$0 \frac{\sin \left[r \sqrt{(1 - z_0^{\gamma - 1})/p} \right]}{r \sqrt{(1 - z_0^{\gamma - 1})/p}} \ge z(r) \ge z_0 \frac{\sin (r / \sqrt{p})}{r / \sqrt{p}} .$$
(3.22)

Если $z_0 \to \infty$, z(r) имеет конечное, в том числе нулевое, значение только при $r = r_1 = \pi \sqrt{p}$. При этом $z'(r_1) = -\infty$.

Если $\gamma \to 1$, то, как легко видеть из (3.22), интегральные кривые z(r) пересекают прямую z = 1 на всем интервале $r > r_1 = \pi \sqrt{p}$. Поэтому можно ожидать, что при $\gamma \to 1$ соответствующее значение $\overline{r_0} \to \infty$. Если $\gamma \to -1$, то из (3.20) следует: z "($\overline{r_0} \to \infty$, т.е. $\overline{r_0} \to \infty$, $\tau_1 = \pi \sqrt{p}$. При $\gamma < -1$ ни одно решение z(r) уравнения (3.3) не достигнет

оси z = 0, так что краевая задача (4)-(6) для уравнения (1) не имеет решений, если $a < 2\beta - 1$.

Проиллюстрируем все вышесказанное на решаемом в явном виде примере $\gamma = 0$, т.е. $a = \beta$. Уравнение

$$p \Delta z = 1 - z \tag{3.23}$$

с начальными условиями (3.6), (3.7) имеет сферически-симметричное решение:

$$z(r) = 1 + (z_0 - 1) \frac{\sin(r/\sqrt{p})}{r/\sqrt{p}}$$
 (3.24)

Условие $z(r_0) = 0$ определяет зависимость величины r_0 от z_0 :

$$z_0 = 1 - \frac{r_0 / \sqrt{p}}{\sin (r_0 / \sqrt{p})}$$
 (3.25)

Из условий $z'(\bar{r_0}) = z(\bar{r_0}) = 0$ следует, что $\bar{r_0}$ является первым ненулевым корнем уравнения $(x_0 = \bar{r_0}/\sqrt{p})$

x = tg x.

(3.26)

Это дает

$$x_0 = r_0 / \sqrt{p} = 4,493$$
; $z_0 = 5,603$. (3.27)

Из (3.24) находим также, что условиям $z(r_1)=0$, $z'(r_1)=-\infty$ соответствуют значения $r_1 = \pi \sqrt{p}$, $z_0 = \infty$. На рис. З показан ряд интегральных кривых z(r) уравнения (3.3), соответствующих рассмотренному случаю y = 0, p = 1. Если $\beta > 0$, все решения z(r) с $z_0 > \overline{z_0}$ дают искомые решения y(r) краевой задачи (4)-(6) для уравнения (1) с

$$y_{0} > \bar{y}_{0} = \bar{z}_{0}^{-1/(1-\beta)}, \text{ так как}$$
$$y(r) = z^{\frac{1}{1-\beta}}(r) \approx A_{0}^{\frac{1}{1-\beta}}(r_{0}) (r_{0}-r_{0})^{\frac{1}{1-\beta}}, r \rightarrow r_{0}^{-0}, \qquad (3.28)$$

$$y'(r) = \frac{1}{1-\beta} A^{\frac{1}{1-\beta}} (r_0) (r_0 - r_1)^{\frac{\beta}{1-\beta}} \to 0, \quad r \to r_0 - 0.$$
 (3.29)

Если $\beta < 0$, y'(r₀) $\neq 0$ и краевая задача решения не имеет. Теорема 5 доказана.

Для уравнения (3.4) краевая задача (3.6) – (3.8) не имеет решений, если $z_0 > 1$. Действительно, правая часть уравнения положительна в области z > 1, и при $z_0 > 1$ все решения монотонно возрастают с увеличением г

При $0 < z_0 < 1$ все сферически-симметричные решения уравнения (3.4) монотонно убывают и пересекают ось z = 0 в точках $r = r_0$, причём $z'(r_0) = 0$. Поведение решений в окрестности точки r_0 определяется при $\gamma > -1$, т.е. при $\alpha > 2\beta - 1$, выражением ($r \rightarrow r_0 - 0$)

$$z(r) \approx B(r_0)(r_0-r) + \frac{1}{r_0}B(r_0)(r_0-r)^2 - \frac{1}{p(1+\gamma)(2+\gamma)}B^{\gamma}(r_0)(r_0-r)^{2+\gamma} + \cdots,$$
(3.30)

которое отличается от (3.20) знаком перед третьим членом и отсутствием члена, не зависящего от $B(r_0)$.Соответственно $B(r_0) > 0$ всегда.

Если $\gamma = -1$, поведение решекия около точки г $_0$ дается выражением

$$z(r) \approx \sqrt{2} (r_0 - r) \ell_n^{\frac{1}{2}} \frac{1}{r_0 - r} , r \rightarrow r_0 - 0 ,$$
 (3.31)

Если
$$\gamma < -1$$
,

$$z(r) = \left[-\frac{2(1+\gamma)}{(1-\gamma)^2}\right]^{\frac{1}{1-\gamma}} (r_0 - r_1)^{\frac{2}{1-\gamma}}, r \to r_0 - 0, \qquad (3.32)$$

так что при $\gamma \leq -1$ $z'(r_0) = -\infty$ для всех r_0 .

Справедливость выражений (3.30)-(3.32) легко проверяется прямой подстановкой в (3.4).

При всех значениях $\gamma < 1$ и $\beta > 1/2$ краевая задача (4)-(6) для уравнения (2) имеет сферически-симметричные решения y(r), совладаюшие на отрезках $0 \le r \le r_0$ с решением задачи Коши с начальными условиями (4), (5) при $y_0 \le 1$ и равные решению $y(r) \equiv 0$ в интервалах $r > r_0$. Действительно, даже если $\gamma \le -1$, т.е. $0 \le a \le 2\beta - 1$, когда z(r) в окрестности точки r_0 имеет вид (3.32), для функции y(r)находим с учётом (3.1), (3.5):

$$y(r) = z^{\frac{1}{1-\beta}}(r) \approx \left[\frac{2(2\beta-1-\alpha)(1-\beta)}{(1-\alpha)^2}\right]^{\frac{1}{1-\alpha}}(r_0-r)^{\frac{2}{1-\alpha}} r + r_0 = 0, \quad (3.33)$$

TAK 4TO $y'(r_0) = y''(r_0) = 0$.

Если $\beta > 0$, решения краевой задачи (4)-(6) для уравнения (2) существуют при $\gamma \ge -1$, т.е. $a \ge 2\beta - 1$, когда у (г)-0. Если $\beta \le 0$, решений краевой задачи нет. Теорема 6 доказана.

В качестве решаемого в явном виде примера рассмотрим случай γ = 0, т.е. α = β. Решение уравнения (3.4) тогда равно

$$z(r) = 1 - (1 - z_0) \frac{Sh(r/\sqrt{p})}{r/\sqrt{p}}$$
 (3.34)

Из условия z(r₀)=0 находим связь величин z₀ и r₀ :

$$z_0 = 1 - \frac{r_0 / \sqrt{p}}{Sh(r_0 / \sqrt{p})}$$
 (3.35)

Таким образом, r_0 монотонно увеличивается от нуля до бесконечности при изменении z_0 в интервале $0 \le z_0 \le 1$.

Заключение

Основным физическим результатом работы является установление того факта, что включение в уравнения (1), (2) члена $\beta (\nabla_y)^2 / y$ учитывающего поверхностные эффекты, кардинальным образом расширяет область существования решений краевой задачи в статистической теории ядра и в нелинейной теории поля.

Это связано, во-первых, с тем, что наличие данного члена в уравнении (1) приводит при $\beta > 1, a > 1$ к существованию непрерывного спектра спадающих при $r \rightarrow \infty$ экспоненциальным образом решений, невозможных при $\beta = 0$.

Во-вторых, целый ряд решений уравнений (1) и (2), для которых при заданном у₀ y(r₀) =0, y'(r₀) \neq 0 , если $\beta = 0$, удовлетворяет при $\beta > 0$ условиям у(r₀) = y'(r₀)=0, т.е. представляет непрерывные и дифференцируемые решения краевой задачи. Правые части уравнений (1) и (2) при y=0 не удовлетворяют условию Липшица, так что значения у (r₀) = y'(r₀)=0 соответствуют не только тривиальному решению у(r) = 0. Можно надеяться, что уравнения (1) и (2) найдут широкое прменение при описании самосогласованного ядерного потенциала, частицеподобных решений нелинейной теории поля и в ряде других задач.

В заключение заметим, что аналогичные доказанным выше теоремы могут быть подобным же образом получены для уравнений вида (1) и (2), в которых знаки при членах у и у^α противоположны.

21

Автор благодарен Е.П.Жидкову за полезное обсуждение результатов работы и ценные замечания.

Литература

- VI. V.V.Babikov. A peculiar Thomas-Fermi equation for nucleus, Contr. Intern. Symp. Nucl. Structure, Dubna, 1968, p. 157.
- √2. В.В.Бабиков. Уравнение для самосогласованного ядерного потенциала. Препринт ОИЯИ, Р4-4249, Дубна, 1969.
- В.Б.Гласко, Ф.Лерюст, Я.П.Терлецкий, С.Ф.Шушурин. Исследование частицеподобных решений нелинейного уравнения скалярного поля. ЖЭТФ, <u>35</u>, №2 (8), 452-457 (1958).
- 4. I.L.Synge. On a certain non-linear differential equation. Proc. Royal Irish. Acad. <u>A62</u>, No. 3, 17-41 (1961).
- 5. Z.Nehari. On a non-linear differential equation arising in nuclear physics. Proc. Royal Irish. Acad. <u>A62</u>, No. 9, 118–135 (1963).
- 6. Е.П.Жидков, В.П.Шириков. Об одной краевой задаче для обыкновенных дифференциальных уравнений второго порядка. "Журнал вычислительной математики и математической физики", <u>4</u>, № 5, 804-816 (1964).

Рукопись поступила в нздательский отдел 4 января 1969 года.

In the International According to the second s

Рис.2

23

Рис.3