

Л.А.Малов, В.Г.Соловьев, У.М.Файнер

КВАДРУПОЛЬНЫЕ И ОКТУПОЛЬНЫЕ ОДНОФОНОННЫЕ СОСТОЯНИЯ ЯДЕР В ОБЛАСТИ 174 ≤ A ≤ 188

1968

BNIMKNO

PETMUECK

PATOPHA TE

P4 - 4073

Л.А.Малов, В.Г.Соловьев, У.М.Файнер*

КВАДРУПОЛЬНЫЕ И ОКТУПОЛЬНЫЕ ОДНОФОНОННЫЕ СОСТОЯНИЯ ЯДЕР В ОБЛАСТИ 174 ≤ A ≤ 188

Направлено в ДАН СССР

* Институт физики Латвийской ССР, г. Рига.

La tra

OSDERNIGHTER ER LINGTATION

zseda up

В /1-12/ были рассчитаны энергии, волновые функции и величины B(E2), B(E3) для квадрупольных и октупольных однофононных состояний в четно-четных деформированных ядрах. Математические методы рассмотрения однофононных состояний и экспериментальные данные просуммированы в /13/. Компонентный состав однофононных состояний приведен в /14/. Во всех вышеуказанных работах расчеты выполнены с волновыми функциями и одночастичными энергиями потенциала Нильссона. В /15/ характеристики однофононных квадрупольных состояний четночетных ядер в области 150 $\leq A \leq 174$ рассчитаны с использованием одночастичных энергий и волновых функций потенциала Саксона-Вудса, рассчитанных в /16/, а также модифицированного в /17/ потенциала Нильссона. В данной работе таким же методом, как в /15/, вычислены энергии, волновые функции и величины B(E2), B(E3) для первых двух квадрупольных с $K^{\pi} = 0^{+}$ и 2^{+} и октупольных с $K^{\pi} = 0^{-}$, 1^{-} и 2^{-} состояний четно-четных ядер в области 174 $\leq A \leq 188$.

В настоящих расчетах использовались формулы и соответствующие программы на ЭВМ такие же, как в $^{/15/}$. В качестве волновых функций и одночастичных энергий, как в $^{/15/}$, взяты таковые а) для модифицированного потенциала Нильссона при деформации А =0,21, б) для потенциала Саксона-Вудса при А =181 и деформации β =0,23. Расчеты (с потенциалом Саксона-Вудса) выполнены с константой квадрупольного взаимодействия $\kappa^{(2)}$ =2,0 $A^{-4/3}$ Мэв/см⁴=184 $A^{-7/3}$ Мэв/см⁴, причем

величина $\kappa^{(2)} A^{+7/3}$ взята такой же, как в /15/. Константа октупольного взаимодействия взята равной $\kappa^{(3)} = 0,04 A^{-4/3} M_{9B}/c_{M}^{6}$. В /18/ вместо $\kappa^{(2)}$ и $\kappa^{(3)}$ приведены значения 1/2 $\kappa^{(2)}$ и 1/2 $\kappa^{(3)}$. При расчетах, основанных на модифицированном потенциале Нильссона, использовались следующие константы: $\kappa^{(2)} = 5,8.A^{-4/3} \hbar \hat{\omega}_{0}$ (для $\kappa^{\pi} = 2^{+}$), $\kappa^{(2)} = 7A^{-4/3}$ $\hbar \hat{\omega}_{0}$ (для $\kappa^{\pi} = 0^{+}$), $\kappa^{(3)} = 0,59.A^{-4/3} \hbar \hat{\omega}_{0}$. Отличие $\kappa^{(2)}$ по сравнению со значением в /8/ связано с тем, что в /8/ плотность одночастичных уровней была искусственно уменьшена. Константы парных взаимодействий G_N и G_Z взяты такие же, как в /15/. При вычислении приведенных вероятностей электрических Е2- и Е3-переходов взяты следующие значения эффективных зарядов: $e_{off}^{(2)} = 0,2, e_{off}^{(3)} = 0,2$, величины B(E2) и B(E3) приведены в одночастичных единицах.

Небольшая часть полученных результатов показана в табл. 1,2 и 3. Некоторые из наших результатов приведены в ^{/19/}. Из табл. 1 видно, что расчеты правильно передают тенденцию уменьшения энергии первых $K^{\pi} = 2^+$ состояний с ростом А. Рассчитанные энергии первых $K^{\pi} = 0^+$ состояний не противоречат имеющимся экспериментальным данным. Однако это согласие в некоторой мере является условным, т.к. низкие состояния с $K^{\pi} = 0^+$ имеют различную природу.

В рассматриваемой области ядер имеются следующие экспериментальные данные по величинам B(E2) для возбуждения первых состояний с $K^{\pi}=2^+$: полученные в ^{/20/} значения 1,4 для ¹⁷⁴ Yb, 2,1 для ¹⁷⁶ Yb; полученные в ^{/21/} значения 5,5 для ¹⁸⁴ W и ¹⁸⁶ W . Наши расчеты не противоречат этим данным. Величины B(E2), рассчитанные в ^{/21/} по теории поверхностного дельта-взаимодействия, близки к нашим при значении е ⁽²⁾ в 2,5 раза большем, чем в нашей работе.

Расчеты октупольных состояний с К^{*n*} =0⁻, 1⁻ и 2⁻ показали, что несколько сильнее коллективизированы состояния с К^{*n*} =0⁻ по сравнению с состояниями с К^{*n*} =1⁻ и 2⁻. Рассчитанные в данной работе

состояния с $K^{\pi} = 1$ и 2 (т.е. соответствующие величины Y, (31). Y, (32)) являются более коллективизированными по сравнению с данными в . Состояния с К^{*п*} =0 в данной области ядер лежат достаточно высоко, и поэтому не имеется соответствующих экспериментальных данных. Вычисление энергии К[#]=0 состояний сильно зависит от величины к⁽⁸⁾ более сильно, чем для энергий К[#] =1 и 2 состояний. Для энергий состояний с К[#] =1 имеется одно экспериментальное значение /23/ в 176 Нf , равное 1,343 Мэв, что согласуется с результатами расчетов. Из табл. 2 видно, что экспериментальные данные по $K^{\pi} = 2^{-1}$ состояниям достаточно хорошо описываются теоретически. Следует отметить, что рассчитанные нами значения энергий первых К # =2 состояний лежат ниже и более сильно коллективизированы по сравнению с результатами, полученными в , где использовался упрощенный вид поверхностного дельта-взаимодействия. В работе /15/ взято e⁽⁸⁾ в 2,5 раза большее, чем в наших расчетах.

Проведенные расчеты показали, что первые квадрупольные и октупольные состояния ядер в области $174 \le A \le 188$ достаточно хорошо описываются в рамках сверхтекучей модели ядра при помощи метода приближенного вторичного квантования. Расчеты, в которых используются собственные значения энергий и волновые функции потенциала Саксона-Вудса, являются более последовательными и в них использовано меньшее число параметров по сравнению с расчетами, основанными на потенциале Нильссона.

В заключение выражаем благодарность за помощь и обсуждения А.А. Корнейчуку, С.И. Федотову и Г. Шульцу.

- 1.E.R.Marschalek, J.O. Rasmussen, Nucl. Phys., 43, 438 (1963).
- 2.D. Bes. Nucl. Phys., 49, 544 (1963).
- 3. Лю Юань, В.Г. Соловьев, А.А. Корнейчук. ЖЭТФ. 47, 252 (1964).
- 4. В.Г. Соловьев. ДАН СССР, <u>159</u>, 310 (1964).
- 5. D.R. Bés, P.Federmann, E. Maqueda, A. Zuker. Nucl. Phys., 65, 1(1965).
- 6. V.G. Soloviev. Nucl. Phys., 69, 1(1965).
- 7. П. Фогель. ЯФ, <u>1</u>, 752 (1965).
- М.К. Калпажиу, П. Фогель. Известия АН СССР, сер. физ., <u>30</u>, 2025 (1966).
- 9. V.G.Soloviev, P. Vogel. Phys. Lett., 6, 126 (1963).
- В.Г. Соловьев, П. Фогель, А.А. Корнейчук. ДАН СССР, <u>154</u>, 72 (1964).
- 11. В.Г. Соловьев, П. Фогель, А.А. Корнейчук. Известия АН СССР, сер. физ., <u>28</u>, 1599 (1964).
- 12 L.A. Malov, V.G. Soloviev, P. Vogel, Phys. Lett., 22, 441 (1966).
- 13. V.G. Soloviev. Atom. Energ. Rev., 3, 117 (1965).
- 14. К. М. Железнова, А. А. Корнейчук, В. Г. Соловьев, П. Фогель, Г. Юнг-клауссен. Препринт ОНЯИ, Д-2157, Дубна, 1965.
- А. А. Корнейчук, Л. А. Малов, В. Г. Соловьев, С. И. Федотов, Г. Шульц. Препринт ОПЯИ Е4-4075, Дубна, 1968.
- Ф. А. Гареев, С. П. Иванова, Б.Н. Калинкин. Препринт ОИЯИ, Р4-3451, Дубна, 1967; Ф. А. Гареев, С. П. Иванова, Б.Н. Калинкин, С.К. Слепнев, М.Г. Гинзбург. Препринт ОИЯИ, Р4-3607, Дубна, 1967.
- 17. C.Gustafson, I.L.Lamm, B.Nilsson, S.Nilsson. Arkiv för Fysik, <u>36</u>, 613 (1967).
- 18. Л. А. Малов, В. Г. Соловьев, У. М. Файнер. Contr. Int. Symp. Nucl. Str., Dubna, 1968.
- 19. P. Vogel. Proc. Int. Symp. on Nucl. Structure, Dubna, 1968.
- 20. D.G. Burke and B.Elbek. Mat. Fys. Medd. Dan. Vid. Selsk., 36, 6(1967).

- 21. K.McGowan, P.H.Stelson, Bull. Am, Phys. Soc., 3, 228 (1958).
- 22. A.Faessler, A.Plastino. Phys. Rev., <u>156</u>, 1072 (1967).
 A.Faessler, A.Plastino. Nucl. Phys., <u>A94</u>, 580 (1967).
 A.Faessler, A.Plastino. Nucl. Phys., <u>A116</u>, 129 (1968).
- 23. W.I. Fominikh, J. Molnar, N. Nenoff, B. Styczen, J. Zvolsky. Contr. Int. Symp. Nucl. Str., Dubna, 1968.

Рукопись поступила в издательский отдел 12 сентября 1968 года.

Таблица І

Энергии первых β -и γ - вибрационных состояний, рассчитанных по одночастичной схеме Саксона-Вудса (s-w) при β =0,23 и по модифицированной схеме Нильссона (N) при β =0,21.

Gano	Энергии (Мэв)							
лдра	$K^{\pi} = 0^{+}$			K ^π ≈ 2 ⁺				
	экспер.	S - ₩	N	экспер.	S-W ,	N		
174 Yb		I.0	I.3	I.63	I.6	I.6		
176 Yb		I,2	I.5	I.254	I.4	I.5		
178 Yb		I,2	I,4	,	I,I	I,3		
176 Hf	I,28	I,2	I,2		I,7	I,6		
178 Hf	I, I97	I,4	I,5	I, I74	I,5	I,5		
180 H f		I,3	I,4		I,2	I,3		
178 W		I,2	I,I		I,7	I,5		
180 W		Ι,4	I,5		I,5	I,4		
182 W		I,3	I,4	I,222	I,2	I,2		
¹⁸⁴ W		I,3	I,6	0,904	0,7	I,0		
186 W		I,4	I,4	0,730	0,7	I,I		
182 Os		0,8	I,I		I,4	I,3		
¹⁸⁴ 0s		0,8	I,2	0,94	I,I	I,I		
¹⁸⁶ Os		0,8	I,I	0.768	0,6	0,8		
¹⁸⁸ Os	I,086	0,8	0,8	0,633	0,6	I,0		

Таблица 2

Энергии первых октупольных состояний с к["] =0⁻, I⁻ и 2⁻, рассчитанные по одночастичной схеме Саксона-Вудса (s-w) и по модифицированной схеме Нильссона (N)

Ядра -			Энер	гии	(Мэв)		
	K	- 0 ⁻	K [#]	≂ 1 [−]	κ ^π = 2 ⁻		
	S-W	N	S-W	N	экспер.	S−₩	N
174 Yb	I,5	I,6	I,8	I,6	I,32I	I,3	I,4
176Yb	I,9	2,0	I,3	I,5		I,4	I,4
178 Yb	2,I	2,I	I,6	I,8		2,I	2,1
176 Hf	I,6	I,6	I,4	I,6	I,250	I,2	Ι,3
178 Hf	2,0	2,0	I,3	I,5	I,280	I,3	I,3
180 H f	2,3	2,I	I,4	I,8		I,7	Ι,8
178 W	I,6	I,6	I,8	I,5	I,044	0,9	Ι,2
180 ₩	2,0	2,0	I,3	I,5		I, 0	Ι,2
182W	2,3	2,I	I,6	I,8	I,29	I,2	Ι,3
184 W	2,4	2,0	I,7	2,0		I,2	Ι,Ξ
186 W	2,5	I,9	2,I	I,9		I,I	Ι,Ξ
182 Os	2,0	I,9	I,3	I,5		Ι,4	Ι,Ξ
184 Os	2,3	2,I	I,5	I,8		I,7	Ι,9
186 Os '	2,4	2,0	I,7	2,0		I,7	Ι,
188 Os	2,5	I,9	2,I	I,9	I,45	I,3	Ι,

.

Таблица З

Приведенные вероятности В(Е λ , о_g-1=λ,к) переходов (рассчитанные по двум схемам: Саксона-Вудса (s-w) и модифицированной схеме Нильссона) из основного состояния в квадрупольные и в октупольные с к^m =0,1 и 2 с ° cff =0,2

a	B(I		B(E3)							
ядра -	$K^{\overline{n}} = 0^+$	к ⁷⁷ =	$K^{\pi} = 2^{+}$		κ ^π = 0 ⁻		κ ^π =1 ⁻		к [#] = 2	
S−₩	N	S−₩	N	S-W	N	. S-W	N	S-W	N	
74 Yb 2.9	0.6	2,7	I.2	5.8	0.9	I.3	0.4	2.6	0.6	
° чь 2,2	0, I	2,4	I,9	3,5	I.7	0, I	0,3	I,6	0,5	
78 Yb I.8	0, I	2,6	2,0	I.5	3,2	0,3	0,5	I,9	0,6	
176 Hf 2,4	0,4	2,2	I,0	5,3	I,0	0,3	0,5	3,6	I,0	
178 Hf I,8	0, I	2,0	I,8	3,3	I,9	0, I	0,4	2,4	0,8	
180 Hf I,5	0,03	2,2	2,0	3,7	3,8	0,I	0,7	I,9	I,6	
178 W 2,7	0,6	2,4	2,2	5,I	I,2	Ι,4	0,5	3,9	2,0	
180 W 2,0	0, I	2,2	2,7	3,I	2,2	0, I	0,4	2,8	I,8	
182 W I,6	0,03	2,3	3,0	3,5	4,2	0,4	0,4	I,7	I,7	
184 W I,7	0, I	3,0	3,2	2,3	4,6	0,3	3,0	I,5	I,8	
186 W I,4	0,5	2,I	3,0	I,5	5,2	0,3	5,8	I,5	2,0	
182 Os 5,2	0,3	3,3	4,9	3,0	I,9	0,I	0,4	I,5	0,6	
184 Os 4,6	0,4	3,4	5,4	3,4	3,8	0,4	0,7	0,7	2,I	
18 0s 4,5	I,7	4,6	6,2	2,2	4,3	0,3	3,2	0,5	2,I	
188 Os 3,7	3,4	3,3	6,0	Ι,4	4,9	0,3	6,4	0,6	I,0	