

А.А.Кулиев, Н.И.Пятов

Abopatopus teopermuerkon ommik

МАГНИТНЫЕ ДИПОЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ В ДЕФОРМИРОВАННЫХ ЯДРАХ Свойства состояний с K = 1/2

P4 - 4069

А.А.Кулиев, Н.И.Пятов

for E/12 up.

МАГНИТНЫЕ ДИПОЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ В ДЕФОРМИРОВАННЫХ ЯДРАХ Свойства состояний с K = 1/2

Направлено в НФ

1. Теория

В предыдущей работе $^{/1/}$ нами была развита модель учета эффектов, связанных с осцилляцией магнитного дипольного момента ядра. Именно, предполагалось, что в четно-четных деформированных ядрах 1⁺ состояния можно связать с осцилляциями спиновой части магнитного дипольного момента ядра. Спиновые поляризационные эффекты в нечетных деформированных ядрах рассматривались как обусловленные "рассеянием" нечетной частицы на группах 1⁺ - возбуждений кора. Влияние этих эффектов на магнитный момент ядра можно учесть введением эффективного g_a фактора, вычисляемого в теории. Численные расчеты были проведены для состояний с K > 1/2 . Нами было показано, что перенормировка свободного g_a фактора в этих состояниях в основном происходит из-за "рассеяния" на 1⁺ возбуждениях кора с проекцией момента K = 0.

Для состояний с К = 1/2 необходимо усложнить волновую функцию:

$$\phi_{\mathbf{K}}(r) = \{ \mathbb{N}_{\mathbf{K}}(r) a_{\mathbf{K}}^{+}(r) + \frac{1}{\sqrt{2}} \sum_{r'} \sum_{a \, a' \neq \, \mathbf{K}} \mathbb{R}_{aa}^{\mathbf{K}}(r, r') \times \\ \times a_{\mathbf{K}}^{+}(r) C_{aa'}^{+}(r') +$$

$$+ \frac{1}{\sqrt{2}} \sum_{r'} \sum_{\nu\nu' \neq \, \mathbf{K}} \mathbb{R}_{\nu\nu'}(r, r') a_{\mathbf{K}}^{+}(r) C_{\nu\nu'}^{+}(r') \} \Psi_{\mathbf{0}},$$

$$(1)$$

где *r* = { в, р } ; К и К -сопряженные по времени одночастичные состояния. Амплитуды $\mathbf{R}_{\nu\nu}^{\mathbf{K}}$, учитывают трехквазичастичные примеси, в которых пара квазичастиц имеет всегда суммарную проекцию момента 1⁺. Остальные обозначения те же, что и в работе /1/.

Секулярное уравнение теперь включает в себя эффекты сдвига одночастичных уровней из-за "рассеяния" на 1⁺0 и 1⁺1 - возбуждениях кора:

$$\omega_{\mathbf{K}}(\mathbf{r}) = -\mathcal{P}(\kappa, \omega_{\mathbf{K}}) - \bar{\mathcal{P}}(\kappa, \omega_{\mathbf{K}}), \qquad (2)$$

где

$$\tilde{\mathcal{P}}(\kappa, \omega_{\mathbf{K}}) = \kappa \left[\sigma_{\mathbf{K}\mathbf{K}}^{(+)} \right]^{2} \left\{ 1 - \frac{1 + \kappa (1 - q^{2}) \tilde{\mathbf{F}}_{\mathbf{K}}(r' \neq r)}{\tilde{\mathcal{D}}(\omega_{\mathbf{K}})} \right\}.$$
(3)

Здесь $\sigma_{\mathbf{k}\,\mathbf{k}}^{(+)}$ -одночастичный матричный элемент оператора σ_+ , а функции $\mathbf{\tilde{F}}$ и $\tilde{\mathbb{D}}$ определены в виде:

$$\widetilde{F}_{K}(r, r') = \sum_{ss' \neq K} \frac{|\sigma_{ss'}^{(+)} L_{ss'}|_{r'}^{2}}{\epsilon_{ss}(r') - \omega_{K}(r)}, \qquad (4)$$

$$\widehat{\mathbb{D}}(\omega_{\mathbf{K}}) = \begin{vmatrix} 1 + \kappa & \widetilde{\mathbf{F}}_{\mathbf{K}}(r'=r) & \kappa q \widetilde{\mathbf{F}}_{\mathbf{K}}(r'\neq r) \\ \kappa q & \widetilde{\mathbf{F}}_{\mathbf{K}}(r'=r) & 1 + \kappa & \widetilde{\mathbf{F}}_{\mathbf{K}}(r'\neq r) \end{vmatrix}.$$
(5)

В частности, уравнение $\hat{D}(\omega_{\mathbf{k}}) = 0$ определяет энергии 1^+1 состояний в четно-четных ядрах (в приближении Тамма-Данкова). Ампли-

туды N $_{K}$, R $_{ss}^{K}$, $_{R}$ $_{\nu\nu}^{K}$, определяются выражениями (3.11) работы /1/

Очевидно, что в состоянии с K = 1/2 перенормируются одновременно одночастичные матричные элементы операторов σ_x и σ_+ . Перенормировка < σ_+ > обусловлена "рассеянием" нечетной частицы на 1⁺1 возбуждениях кора и может быть записана в виде

$$\phi_{\mathbf{K}}^{+}(\mathbf{r})\sigma_{+}\phi_{\mathbf{K}}^{-}(\mathbf{r}) = \sigma_{\mathbf{K}\mathbf{K}}^{(+)} \{1-2N_{\mathbf{K}}^{*}(\mathbf{r})\times \times \{1-\frac{1+\kappa(1-q)\tilde{\mathbf{F}}_{\mathbf{K}}(\mathbf{r}'\neq\mathbf{r})}{9}\} = \sigma_{\mathbf{K}\mathbf{K}}^{(+)}\Phi(\kappa,\omega_{\mathbf{K}}).$$
(6)

Для < справедливо прежнее выражение (4.3) /1/.

Перенормировка < «, » может привести к изменению одночастичного значения параметра развязывания /2/

$$a = (-1)^{\ell} \sum_{k=\ell,0}^{2} \Phi(\kappa, \omega_{k}) + \ell^{\ell} \ell^{\ell} (\ell \ell + 1) a \ell^{\ell} \ell^{\ell}$$

В выражении (7) не учитывается перенормировка одночастичного матричного элемента < ℓ_+ >, поскольку вклады различных трехквазичастичных состояний в перенормировку этого матричного элемента некогерентны.

Фактор $\Phi(\kappa, \omega_{\kappa}) \leq 1$ для нижайшего по энергии решения уравнения (2) и имеет наименьшее значение при q = +1.

Из выражения (7) ясно, что существенно могут измениться величины а для состояний с асимптотическим квантовым числом $\Lambda = 0$. В частности, может меняться даже знак параметра развязывания. В общем случае матричные элементы $\langle \sigma_{x} \rangle$ и $\langle \sigma_{+} \rangle$ перенормируются

по-разному. Как указывалось Бохнацки и Огаза^{/3/}, это приводит к возникновению для состояний с K = 1/2 двух различных эффективных g⁻ факторов, определяемых из магнитных параметров g_x и ^bo⁻

$$g_{\mathbf{K}} = \frac{1}{2\mathbf{K}} \left(g_{\mathbf{a}}^{\mathbf{x}} - g_{\boldsymbol{\ell}}^{\mathbf{r}} \right) \sigma_{\mathbf{K}\mathbf{K}}^{(\mathbf{a})} + g_{\boldsymbol{\ell}}^{\mathbf{r}} , \qquad (8)$$

$$(g_{\mathbf{K}} - g_{\mathbf{R}})b_{0} = -a(g_{\ell}^{r} - g_{\mathbf{R}}^{0}) - - -\frac{1}{\sqrt{2}}(g_{\mathbf{s}}^{+} - g_{\mathbf{R}}^{r})\sigma_{\mathbf{K}\mathbf{K}}^{(+)}, \qquad (9)$$

где g в определяется для соседнего четно-четного ядра. Теоретически g вычисляется по следующей формуле:

$$g_{\pi}^{+} - g_{\ell}^{r} = (g_{\pi}^{r} - g_{\ell}^{r}) \left\{ 1 - 2N_{K}^{2}(r) - \frac{\kappa \overline{F}_{K}(r'=r)}{\widehat{\mathfrak{D}}(\omega_{K})} \times \left[1 + \kappa (1 - q^{2}) \overline{F}_{K}(r'\neq r) \right] \right\} - (10)$$
$$- (g_{\pi}^{r'} - g_{\ell}^{r'}) 2N_{K}^{2}(r) - \frac{\kappa q \overline{F}_{K}(r'\neq r)}{\widehat{\mathfrak{D}}(\omega_{T})} \cdot (10)$$

В формулах (8)-(10) в в в с определены для свободных нуклонов.

При q >0 поляризационные эффекты от нейтронной и протонной систем взаимно сокращаются. Наоборот, при q <0 эффект спиновой поляризации усиливается. Отметим, что влияние (пр) -взаимодействия на параметр развязывания а совершенно противоположное.

II . Расчеты и обсуждение результатов

В расчетах параметра развязывания а и g _ -факторов для состояний с K = 1/2 использовалась обычная схема Нильсонна /10/, включающая по 40 нейтронных и протонных уровней. В расчетах учтены все возможные одночастичные переходы.

Наибольший интерес представляет параметр развязывания состояния 1/2⁻ [510], для которого модель Нильссона предсказывает а = -0.2 в области редкоземельных ядер ^{/5/}. Многочисленные экспериментальные данные говорят о том, что параметр развязывания этого состояния положителен. Дальнейшие теоретические исследования показали, что величина а чувствительна к параметрам одночастичной схемы. В частности, параметр развязывания может менять энак при уменьшении параметра ^{/6/}. Фэсслер и Шелайн получили правильную величину а для ¹⁸⁸ , используя потенциал Саксона-Вудса^{/7/}. Однако в их решении не учтено смешивание оболочек с различными главными квантовыми числами.

При более точном решении задачи с потенциалом Саксона-Вудса (при учете смешивания оболочек и включении квазистационарных состояний) параметр развязывания состояния 1/2⁻ [510] остается отрицательным для ядер редкоземельной области ^{/8/}.

Проведенные нами численные расчеты для ¹⁸⁸ W приведены на рис.1. Очевидна сильная зависимость величины а от параметра (пр) взаимодействия, причем при q = -1 эффекты от нейтронной и протонной систем практически взаимно сокращаются. Разумная величина а для ¹⁸⁸ m получается при $\kappa \approx 0.04 - 0.05 \pm \omega_0$ и q $\approx 0.-1/4$. Такие значения κ и q получены ранее из анализа эффективных g_{\pm}^{\pm} факторов для состояний с K > 1/2 /1/.

Подробные расчеты параметра а для состояния 1/2 [510] в различных ядрах приведены в табл. 1. Практически во всех ядрах получена положительная величина параметра развязывания (в модели Нильссона /5/

а =-0,17 при $\eta = 4$ и а =-0,34 при $\eta = 6$). В большинстве ядер состояние 1/2⁻ [510] является высоковозбужденным и поэтому может содержать значительные примеси от взаимодействия квазичастиц с квадрупольными и октупольными колебаниями остова (см., например, обзор ⁽⁹⁾). Учет этих примесей может существенно уменьшить параметр развязывания ⁽¹⁰⁾, но не может изменить его знака. Влияние этого эффекта на величину а в основном состоянии однако незначительно. Именно поэтому важно хорошее описание а в ¹⁸⁸ W и ¹⁸¹ Hf. Остается пока без объяснения столь большая величина в ¹⁸¹ W.

Расчеты эффективных факторов g^z и g⁺ выполнены нами иля для $\frac{153}{W}$ (состояние 1/2⁻ [510]), $\frac{169}{Tm}$ (состояние 1/2⁺[411]) ч ^{11 1}Yь (состояние 1/2 [521]). Результаты расчетов приведены на альные значения нараметров би. В р. в b. из работ /17,19/ несколько различаются, но величины g^z практически совпадают при использовании различных варианостольны Нильссона. Экспериментальные результаты для¹⁶⁹ Tm и ¹⁷¹ Yb ули саботах /20,21/. Анализ этих данных показал, что в ¹⁶⁹ Тт оначения g^z и g⁺ мало меняются с изменением параметров потелциена Нильссона. Ситуация в 171 Уь противоположна. При использелании функций старой модели Нильссона ^{/2/} получается, что g^z < g⁺ м. рис. 4). В работе /19/ использовалась другая схема Нильссона и о слено, что g^z > g⁺. На рис.4 показаны результаты расчетов цая использовании функций модели Нильссона ^{/2/}. Численные расчеты та на во всех ядрах, одо в отношение сильно зависит в теории от величин одночастичных - сричных элементов < o > , < o > и параметра (пр)-взаимо-

действия. В ¹⁸⁸ и ¹⁶⁹ Тт хорошо описываются g⁺_s , в ¹⁷¹ Yb - ве-

Как и ожидалось, спиновая поляризация практически не влияет на величину параметров развязывания состояний 1/2⁺ [411] и 1/2⁻ [521].

Еще раз подчеркнем, что в нашем подходе перенормировка < , > (величина д) связана с "рассеянием" нечетной частицы на 1 0 (I[#]К) возбуждениях остова, а перенормировка < o₊ > (величина параметра развязывания а и фактора g) связана с "рассеянием" на 1⁺1 возбуждениях остова. Степень перенормировки зависит, очевидно, от энергии и плотности этих возбуждений. Простая модель с учетом спаривания предсказывает появление 1 возбуждений в редкоземельных ядрах обычно при энергиях порядка 2 Мэв /22/. На рис.5 воспроизведен спектр двухквазичастичных 1 возбуждений в 170 уь . Особенно велика плотность 1⁺1 возбуждений: в среднем в спектре выше 2 Мэв можно найти такое состояние через каждые 100 кэв. Плотность 1⁺0 возбуждений примерно в три раза меньше. Очевидно, что в в -распаде можно обнаружить сравнительно небольшое количество этих состояний (небольшая разность масс материнского и дочернего ядер и сильные запреты по квантовым числам). В настоящее время наибольшее количество 1 состояний обнаружено в ¹⁷⁰ Yb при распаде ¹⁷⁰ Lu /24,25/ Представляет большой интерес возбуждение 1⁺ уровней в реакциях (например, при рассеянии электронов).

Теоретически величина факторов g_s^* и g_s^+ Зависит как от плотности 1⁺0 и 1⁺1 возбуждений остова, так и от величин одночастичных матричных элементов. Правила отбора для операторов σ_z и σ_+ одинаковы:

$$\Delta N = \Delta n = \Delta \Lambda = 0.$$

Матричные элементы $\langle \sigma_{+} \rangle$ для состояний с асимитотическим $\Lambda = 1$ существенно меньше, чем для состояний с $\Lambda = 0$. Такого резкого различчя для матричных элементов $\langle \sigma_{z} \rangle$ нет. Поэтому в общем случае можно ожидать (с учетом большей плотности 1⁺¹ возбуждений), что $g_{a}^{z} > g_{a}^{+}$ для состояний с $\Lambda = 0$. Наконев, отметим, что энергетический сдвиг ω_{k} (см. уравнение (2)) для состояний с k = 1/2 примерно в три раза больше, чем для состояний с K > 1/2 и может достигать величины 100-150 кэв. Примесь трехквазичастичных состояний также возрацтает, достигая S-4% (менее 1% для состоянии с K > 1/2).

III . Заключение

Спиновые поляризациснные эффекты в нетотных деформированных ядрах рассмотрены нами в связи с есцилляциями спиновой части магнитеного дипольного моментс лдра. В четво-четных ядрах эти осцилляния приволят к возбуждениях с $I^{\pi} : I^{\pi} \in K = v - \pi u$). Перенормировка сесоотных g_{π} факторов связала с шеоссосог "внессеяния" нечетной частицы на этих созбуждениях сотова, розден можно различить эффекты! "рассеяния" на возбуждениях с K = 0 и K = 1. Показана также возможность сыльного слияния спиновой поляризации на величину параметра развязывания в состояниях с асимитотических: $\Lambda = 0$. Наконец, теория предсказывает правило $g_{\pi}^{+} < g_{\pi}^{2}$ для сестояний с $\Lambda = 0$.

Точность числонных результатов ограничена использованием метода Тамма-Данкова и простотой выбора остаточного ззаимодействия. Ряда количественных изменений можно ожидать при учете взаимодействия типа $\{\vec{\sigma}, \vec{Y}_{2}\}_{1,\mu} \{\vec{\sigma}, \vec{Y}_{2}\}_{1-\mu}$. Еслигчина параметра развязывания может слегка меняться при учете перенормировки матричного элемента $<\ell_{+}>$. Представляет большой интерес также применение модели на базисе потенциала Саксона Вудса.

В заключение авторы выражают благодарность З. Бохнацки, В.Г. Соловьеву, Р. Шелайну, и П. Хансену за полезное обсуждение работы. Авторы благодарны С. Габракову за помощь в численных расчетах.

Литература

- 1. А.А. Кулиев, Н.И. Пятов. Препринт ОИЯИ, Р4-3934, Дубна, 1968.
- 2. S.G.Nilsson, Kgl. Dan. Vid. Selsk., Mat.-Fys. Medd., <u>29</u>, No.16 (1955).
- 3. Z. Bochnacki and S. Ogaza. Nucl. Phys., 83, 619 (1966).
- К. М. Железнова, А. А. Корнейчук, В. Г. Соловьев, П. Фогель, Г. Юнгклауссен. Препринт ОИЯИ, Д-2157, Дубна, 1965.
- 5. B.R. Mottelson and S.G. Nilson . Mat. Fys. Skr. Dan. Vid. Selsk., 1, No. 8 (1959).
- 6. R.T.Brockmeier, S.Wahlborn, E.J. Seppi and F.Boehm. Nucl. Phys., 63, 102 (1965).
- 7. A. Faessler and R.K. Sheline. Phys. Rev., 148, 1003 (1966).
- Ф. А. Гареев, С. П. Иванова, Б. Н. Калинкин, С. К. Слепнев, М. Г. Гинзбург. Препринт ОИЯИ, Р4-3607, Дубна, 1967; В. А. Чепурнов. Нуклонные одночастичные состояния в деформированном конечном потенциале с размытым краем. Диссертация, Москва, 1967.
- 9. C.W. Reich and M.E. Bunker. Proc. Int. Symp. Nucl. Str., Dubna, U.S.S.R., July 4-11, 1968.
- В. Г. Соловьев, П. Фогель, Г. Юнгклауссен. Изв. АН СССР, сер. физ., 31, 518 (1967).
- 11. С.В. Рич и М.Е. Банкер. Изв. АН СССР, сер. физ., 31, 42 (1967).
- 12. R.A. Harlan and R.K. Sheline. Phys. Rev., <u>168</u>, 1373 (1968).

- 13. D.G.Burke, B. Zeidman, B. Elbek, B. Herskind and M. Olesen. Mat. Fys. Medd. Dan. Vid. Selsk., <u>35</u>, No. 2 (1966).
- 14.M.N.Vergnes and R.K.Sheline. Phys. Rev., <u>132</u>, 1736 (1963).
- 15. F.A. Rickey, J.R., and R.K. Sheline. Phys. Rev., <u>170</u>, 1157 (1968).
- 16. A.K. Kerman. Mat. Fys. Medd., Dan. Vid. Selsk., <u>30,</u> No.15 (1956).
- 17. Б.С. Джелепов, Г.Ф. Драницына. Изв. АН СССР, сер. физ., <u>32</u>, 66 (1968).
- 18. Nuclear Data, B1, 1-37 (1966).
- 19. D. Agresti, E. Kankeleit and B. Persson. Phys. Rev., <u>155</u>, 1342 (1967).
- 20. F. Boehm, in Nuclear Structure, ed. by L. Sips, Zagreb, 1966. p. 171.
- Б.С. Джеленов, Г. Ф. Драницина. Изв. АН СССР, сер. физ., <u>31</u>, 190 (1967); P. Sparrman, T. Sundström, J. Lindskog. Ark. Fys., <u>31</u>, 409 (1966).
- 22. C.J. Gallagher and V.G. Soloviev. Mat. Fys. Skr. Dan. Vid. Selsk., 2. No. 2 (1962).
- 23. Н.И. Пятов, В.Г. Соловьев. Изв. АН СССР, сер. физ., <u>28</u>,11, 1617 (1964).
- 23. O. Prior, F. Boehm, S.G. Nilsson. Nucl. Phys., A<u>110,</u> 257 (1968).
- 24. Н.А. Бонч-Осмоловская, Я. Врзал, Е.П. Григорьев и др. Препринт ОИЯИ, Р6-3452, Дубна, 1967.
- 25. В.А. Балалаев, Б.С. Джелепов, А.И. Медведев и др. Изв. АН СССР, сер. физ., 32, 730 (1968).
 - 26. Н.Д. Крамер, П.Т. Прокофьев. Тезисы 17-го Совещания по ядерной спектроскопии, "Наука", Москва 1967, стр. 81.

Рукопись поступила в издательский отдел 12сентября 1968 года.

Рис.2. Эффективные g, факторы в зависимости от к и q. Экспериментальные значения /17,19/лежат в заштрихованных областях.

Таблица

Значения параметра развязывания состояния 1/2 /510/, вычисленные при различных значениях параметра деформации η .

Ядра	η	2=0,05 hwo		Эксперимент		Литература
		9=0	9=-1/4	энергия состояния	a	
				(kev)		
165 Dy	5	0,22 0,14	0,12	570	0,05	II)
167 Er	5 6 ·	0,22 0,14	0,12 0,04	767 763	0,29 0,13 0,12	II I2 9
I69 Er	5	0,17	0,07	~555	0,07	H}
	6	0,09	0,02	562	0,07	9)
171 Er	5 6	0,14 0,06	0,04 0,05	701 701	0,13 0,11 0,13	II 12 9
169 УЬ	5 6	0,22 0,14	0,I3 0,05	813 1317 805	0,08 0,01 (0,12) 0,08	II) 9) 9) 13)
171 УЪ	5	0,17 0,09	0,08 -0,0I	945 945	0,19 0,19 0,032	II) 9 13
173 УЬ	5	0,I4 0,06	0,05 0,04	10 <u>31</u> 1031	0,20 0,20 0,20	II) 9 13
175 ₉₆	56	0,23 0,15	0,14 0,06	511	0,18 0,20	II I3
177 96	56	0,24 0,16	0,15 0,07	333 332	0,24 0,22 0,22	II I4 I3
177 Hf	4 5	0,29	0,2I 0,14	567 739	0,09 0,18	15) 10}
179 Hf	4 5	0,30 0,24	0,23 0,16	373 376	0,18 0,165 0,21	II) I4 I5)
18I Hf	45	0,26	0,18 0,11	Основное состояние	0,12 0,18	15) 26)
181 W	4 5	0,30 0,24	0,22 0,16	515	0,48 0,22	II 5}
183 _W	4 5	0,26	0,18 0,11	Основное состояные	0,19 0,17 0,21	
10 ⁵ 0s	4	0,20	U,III	COCTORENCE	0,05	18)