ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

F- 202

P4 - 3935

Ф.А.Гареев, С.П.Иванова, М.И.Черней

вероятности е λ -переходов и разрешенный β -распад в нечетных деформированных ядрах

Ф.А.Гареев, С.П.Иванова, М.И.Черней

3

4362 0

вероятности е λ -переходов и разрешенный β -распад в нечетных деформированных ядрах

Направлено в ЯФ

В работах^{/1/} был предложен метод решения уравнения Шредингера с анизотропным потенциалом Саксона-Вудса и получены собственные значения и собственные функции для деформированных ядер редкоземельной области.

Изучение следствий, вытекающих в результате использования такого потенциала, показало^{/1,2/}, что ряд характеристик среднего поля испытывает существенные изменения по сравнению со своими нильссоновскими аналогами^{/3/}. Масштаб этих изменений таков, что нельзя не учитывать их в современных спектроскопических расчётах.

Отметим, что на необходимость более точного описания по сравнению с приближением Нильссона уровней среднего поля и, особенно, соответствующих волновых функций указывалось в ряде работ /4,5/.

По-видимому, даже нижайшие возбужденные состояния в нечётных ядрах не являются чисто одноквазичастичными^{/4/}. Наличие малых примесей других конфигураций к одноквазичастичным состояниям может существенно изменить величины матричных элементов рассматриваемых переходов. Такая примесь возникает, если учесть взаимодействие квазичастицы с фононами^{/4,6/}и с вращательным движением чётно-чётного остова^{/5,7/}.

Тем не менее в ряде задач одноквазичастичная интерпретация нижайших возбужденных состояний нечётных деформированных ядер является вполне удовлетворительной. Прежде чем отказаться от простой структуры квазичастичной волновой функции, необходимо рассмотреть интенсивности квазичастичных переходов в реалистической схеме $^{/1/}$. Волновые функции этой схемы корректней, чем нильссоновские, так как обладают правильной асимптотикой на границе ядра и содержат примеси от оболочек N ± 2. Большинство наблюдаемых квазичастичных переходов запрещено по асимптотическим квантовым числам, поэтому уточнение малых компонентов волновых функций может привести к заметному изменению величины вероятности таких переходов.

Данная работа посвящена исследованию вероятностей одноквазичастичных Е λ – и разрешенных β – переходов в нечётных деформированных ядрах редкоземельной области и анализу имеющихся экспериментальных данных.

1. Электрические Е λ – переходы

Изучению вероятностей Е λ - переходов между одноквазичастичными состояниями в деформированных ядрах посвящено много работ. Прежде чем приступить к обсуждению наших расчётов и сравнению их с результатами других авторов выпишем несколько известных соотношений.

Приведенная вероятность B(E λ) для электрических мультипольных E λ - переходов в длинноволновом приближении (при условии $\frac{\omega}{c}$ R \ll 1, где R - радиус ядра, а $\omega = \frac{E_1 - E_2}{b}$ - частота перехода) равна

$$B(E\lambda) = \frac{\lambda [(2\lambda + 1)!!]^2}{8\pi (\lambda + 1)} \frac{\pi}{\pi_{\frac{1}{2}}} \left(\frac{\hbar c}{E_1 - E_f}\right)^{2\lambda + 1} \ln 2, \qquad (1)$$

где f_{χ} - парциальное время полураспада. Для сравнения теоретических расчётов с экспериментальными данными вычислялись по формуле (1) величины В _{экс.} (E λ), причём f_{χ} и $E_1 - E_1$ были взяты из соответствующих экспериментов. Формулу (1) полезно переписать в виде:

$$B(E1) = \frac{0,43 \cdot 10^{-17}}{r_{12} (E_{1} - E_{1})^{8}} [e^{2} \times barn], \qquad (2)$$

$$B(E2) = \frac{0,56 \cdot 10^{-13}}{r_{12}(E_1 - E_1)^5} \left[e^2 \times barn^2\right], \qquad (3)$$

$$B(E3) = \frac{0,12 \cdot 10^{-5}}{r_{12}(E_1 - E_1)^7} \left[e^2 \times barn^8\right], \qquad (4)$$

где r_{j_2} - в сек, $E_i - E_i$ в Мэв.

Приведем выражение для одноквазичастичной приведенной вероятности, в котором базисные волновые функции даны в представлении $\ell j \Omega$.

$$\begin{split} & B\left(E\lambda,I_{i}+I_{f}\right)=e_{off}^{2}\left|\sum_{\substack{n \ l \ i}}^{\sum} a_{nl}^{\Omega_{i}} a_{nl}^{\Omega_{f}} a_{n'l',}^{\Omega_{f}} < R_{n'l',j'} < R_{n'l',j'}(r)\right|r^{\lambda} \mid R_{nl}(r) > \\ & \sqrt{\frac{(2\lambda+1)(2l+1)}{4\pi(2l'+1)}} < l\lambda 00 \mid l' 0 > \{ \times \\ & \sum_{\nu} < l\lambda;\Omega_{i}-\nu,\Omega_{f}-\Omega_{i}\mid l'\Omega_{f}-\nu > < l' \forall;\Omega_{f}-\nu,\nu\mid j'\Omega_{f} > < l \ \forall;\Omega_{i}-\nu,\nu\mid j\Omega_{i}> + \\ & (-1)^{I_{f}-I_{f}} < I_{i}\lambda;\Omega_{i},-\Omega_{f}-\Omega_{i}\mid l'\Omega_{f} > \\ & < l' \ \forall;-\Omega_{f}-\nu,\nu\mid j'-\Omega_{f}> < l \ \forall;\Omega_{i}-\nu,\nu\mid j\Omega_{i}> \} \Big|^{2}, \end{split}$$

где е_{еff} – эффективный электрический заряд, учитывающий относительное движение нуклона и остова ядра, равный

 $1 - \frac{Z}{A} - для протона$ e e f f $- \frac{Z}{A} - для нейтрона$

при E1 – переходах. Для других мультиполей электрических переходов полагаем е е .

Второе слагаемое в (5) отлично от нуля для случая λ ≥ Ω_f + Ω_i и редко реализуется на эксперименте. Из свойств коэффициентов Клебща-Гордона, входящих в (5), легко вывести известные правила отбора.

В таблицах даны экспериментально наблюдаемые E1 – переходы с $\Delta K = 0$ и $\Delta K = \pm 1.Экспериментальная приведенная вероятность B(E1)$ вычислялась по формуле (2), а теоретическая – по формуле (5) с одно-

квазичастичными волновыми функциями потенциала Саксона-Вудса^{/1/}. Факторы запрета, равные $F_{s.w.} = \frac{B_{s.w.}(E\lambda)}{B_{3KC}(E\lambda)}$ и $F_N = \frac{B_N(E\lambda)}{B_{3KC}(E\lambda)}$, приведены как без учёта влияния спаривания, так и с учётом парных корреляций – величины $F_{s.w.} = \frac{R_N^{s.w.}}{\gamma}$ и $F_N = \frac{R_N^N}{\gamma}$.

Учет влияния остаточных парных взаимодействий на вероятность $E\lambda$ -переходов был произведен обычным образом^(4,5). Численные значения факторов задержки R_{γ} можно разделить на две группы $0,01 \leq R_{\gamma} \leq 1$ и $R_{\gamma} \ll 0,01$. Для первой группы R_{γ} точность вычисления этих величин удовлетворительна, и при изменении деформации или типа функций сверхтекучей модели R_{γ} меняются не больше, чем в 5 раз⁽⁵⁾. Что касается малых значений R_{γ} , то они весьма неустойчивы по отношению как к величине деформации, так и к выбору волновых функций сверхтекучей модели, и точность их расчётов очень мала. Поэтому к величинам $R_{\gamma}^{s.w.}$ $F_{s.w.}$ с R_{γ} из второй группы нужно относиться весьма осторожно.

Величина В_{в.w.} (ЕХ) зависит от того, при какой деформации были взяты волновые функции. Равновесные деформации, извлекаемые из эксперимента, определяются с точностью 15%. Нами проведены расчёты F_{в.w.} при нескольких деформациях в указанном интервале неопределенности. Вычисления показали, что F_{в.w.} меняются не больше, чем в 5 раз.

а) Е1 - переходы.

E1 – переходы обычно делят на две группы: переходы с $\Delta K = 0$ и с $\Delta K = \pm 1$. Такое деление связано с тем, что теоретические значения вероятностей переходов для $\Delta K = 0$ и $\Delta K = \pm 1$ резко отличаются друг от друга.

2. Разрешенный в -распад

В модели Нильссона F_N для $\Delta K = 0$ меньше единицы, за исключением перехода 7/2⁻/523/ \rightarrow 7/2⁺/404/ в $_{69}^{T=167}$. Поэтому некоторые авторы рассматривают эти переходы без учёта парных корреляций (например, ^{/8/}), т.к. величина $F_N R_\gamma^N$ значительно меньше единицы.

В нашем случае все $F_{g.w.} > 1$ и учёт парных корреляций улучшает согласие с экспериментом (см. таблицу 1). Исключение составляет переход $5/2^+/642/ \rightarrow 5/2^-/523/$ в $_{68}$ Er¹⁶⁵. Для этого E1 -перехода R _у относится ко второй группе, а поэтому корректность этого значения R_у сомнительна.

Результаты исследований E1 -переходов с $\Delta K = \pm 1$ приведены в таблице 2. В этом случае и $F_{8,W}$ и F_N больше единицы. Для некоторых случаев $F_{8,W}$ и F_N практически совпадают, для других переходов $F_{8,W}$ и F_N различаются на порядок, причем $F_{8,W}$ меньше F_N . в) E2, E3 – переходы

Вычисление вероятностей E2 – и E 3 – переходов показало, что F_{S.W.} и F_N практически не отличаются друг от друга.

Расчёт дает возможность сделать вывод, что для переходов этого типа одноквазичастичное приближение работает очень плохо и необходимо учитывать сильную коллективизацию тех состояний, между которыми идет переход.

Резюмируя вышеизложенное, можно сказать, что в тех случаях, когда одноквазичастичное приближение справедливо, расчёт с волновыми функциями^{/1/}систематически дает лучшее согласие с экспериментом по сравнению с вычислениями в приближении потенциала Нильссона. N – запрещенные β – переходы (Δ N =2, где N – главное осцилляторное квантовое чило) в нечётных деформированных ядрах редкоземельной области были исследованы нами в $^{/9/}$,где и получен наблюдаемый масштаб интенсивности β -распада.

В данной работе проведен анализ разрешенных β -распадов с волновыми функциями^{/1/} и показано, что одночастичные значения log it таких переходов практически не зависят от модельных волновых функций, с помощью которых они рассчитаны. В среднем log(it)_{s.w.} - log(it)_N =±(0,2+0,3). Расчёт log(it)_{s.w.} проводился с теми же константами взаимодействия, что и в^{/9/}, при деформации β = 0,31. Неопределенность параметра деформации для конкретных ядер, вызванная экспериментальными ошибками, не существенна при теоретических исследованиях разрешенных β -переходов. Изменение log it при изменении β от 0,25 до 0,37 не превышает 0,1 (см. рис. 1).

Влияние остаточных парных взаимодействий на β -распад было учтено так же, как в^{/9/}. Сравнение вычисленных значений logit и log(it R⁻¹) и экспериментальных logit показывает, что наблюдается систематическое улучшение теоретических значений по сравнению с экспериментальными при учёте парных корреляций. В среднем разность log(it)_{экс} - log(it R⁻¹)_{s.w.} = 0,8 + 1. Такое отличие может быть объяснено эффектом спиновой поляризации остова ядра нечётной частицей. В работах^{/10/} показано, что этот эффект может оказывать заметное влияние на величину logft, увеличивая ее.

Авторы признательны Б.Н.Калинкину и Н.И.Пятову за обсуждение результатов.

g

Литература

1. Ф.А.Гареев, С.П.Иванова, Б.Н.Калинкин. Препринт ОИЯИ Р4-3451, Дубна 1967 г.

Ф.А.Гареев, С.П.Иванова, Б.Н.Калинкин, С.К.Слепнев, М.Г.Гинзбург. Препринт ОИЯИ Р4-3607, Дубна 1967 г.

2. В.А.Чепурнов. Препринт ИАЭ 1447, 1967.

3. S.G.Nilsson Kgl. Danske Vidensk. Selsk., Mat. Fys. Medd., <u>29</u>, no 16 (1965).

B.R.Mottelson, S.G.Nilsson Mat, Fys. Skr. Dan. Vid. Selsk, 1, no 8 (1959).

4. В.Г.Соловьев. Препринт ОИЯИ Р-1978, Дубна 1965 г.

5.a) Pyatov N.I., Acta Phys., Pol. Vol. XXV, 21 (1964).

b) Berlovich E.E. Phys. Lett., <u>13</u>, 161 (1964).

6. Faessler A., Nucl. Phys., 59, 177 (1964).

7. Kerman A.K., Dan. Mat. Fys. Medd., 30, no 15 (1956).

8. Perdrisat C.F. Rev. Modern Phys., <u>38</u>, 41 (1966).

9. Ф.А.Гареев, Б.Н.Калинкин, Н.И.Пятов, М.И.Черней. Препринт ОИЯИ Р4-3650, Дубна 1967 г.

А.Б.Мигдал. Теория конечных ферми-систем и свойства атомных ядер.
 Издательство "Наука" 1965 г.
 Z.Bochnacki, S. Ogaza. Nucl. Phys., <u>A102</u>, 529 (1967).

Lobner K.E.G. Malmskog S.G., Nucl. Phys., <u>80</u>, 505 (1966).
 Э.Е.Берлович, Изв. АН СССР; серия физическая, <u>25</u>, 1275 (1961).
 А.Кокеш, И.Звольски, Изв. АН СССР, серия физическая, <u>31</u>, 133 (1967).

Рукопись поступила в издательский отдел 18 июня 1968 года.

a3/2 ^{[521] + p3/2[541]}	a 5/2 [−] [523] → p 5/2 [−] [§82]	a3/2 ^[52]] + p5/2 ^[532]	m 3/2 [532] → p5/2 [532]	$\frac{n}{2} 5/2^{2} [523] + \frac{p}{2} 7/2^{2} [523]$ $\frac{n}{2} 7/2^{2} [514] + \frac{p}{2} 9/2^{2} [514]$	0.40 В
					0.35 &(ft) _{8.} w. от деформан
					0.30 Рис. 1. Зависимость в
s.s		4.0		3.5	 0.25

10

Ядро	ITT([NOzA]	I,TT,[NN _z N],	Е _ў кэв	С ₁₂₈ сек	B(E1)·10 ⁻⁸ [e ² вагn] Эксп	F _{s.w.}	Fs.w. R.	γ β	FN		F _N R ₈ ^N		
63 ^{Eu¹⁵³}	5/2-[532]	5/2+ [413]	97	1,6.10-10	2945 [8]	1,6	0,4	0,31	1,1.10	⁻² [8]	8,8'10-4	(5a]	
63 ^{Eu¹⁵⁵}	5/2 [532]	5/2 ⁺ [413]	104,35	\$2,6.10 ⁻¹⁰	≥1458 [11]	3,3	0,8	0,31	4,1.10	⁻² [11]	3,3.10-3	[5a]	
65 ^{Tb} ¹⁶¹	5/2 [532]	5/2 ⁺ [413]	165,3	< 6,6·10 ⁻¹⁰	> I44 [II]	33,6	21,5	0,31	0,46	[11]			
66 ^{Dy} ^{I6I}	5/2 523	5/2 ⁺ [642]	25.7	9•10 ⁻⁸	281 [11]	21,9	2,4	0,31	0,84	[11]	5·10 ⁻³	[5a]	
68 ^{Er¹⁶⁵}	5/2 ⁺ [642]	5/2 [523]	47,I	4,8·10 ⁻⁹	857 [II]	7,2	0,002	0,31	0,3	[11]			
69 Tm ¹⁶⁹	7/2- [523]	7/2 ⁺ [404]	63 . I	9,6·10 ⁻⁸	17,8 [11]	217	16	0,31	1,6	[11]			
69 ^{Tm¹⁶⁷}	7/2 [523]	7/2 ⁺ [404]	113,3	1,4.10-6	0,44 [8]	8773	631	0,31	66,7	[8]			
70 ^{Yb^{I73}}	7/2 [514]	7/2 ⁺ [633]	285,6	7,9.10-10	25,2 [11]	30,2	0,06	0,31	0,69	[8]	8.10-4	(5a)	
75 ^{Re¹⁸⁷}	5/2 [532]	5/2 ⁺ [402]	686,1	I,28.10 ⁻¹¹	104 [8]	0,35-14	0,25-10	0,12-0	,25 0,38	[8]			

ТАБЛИЦА №І. ЕІ-переходы К=О

	ТАБЛИЦА №2 ЕІ-переходы К=±І									
Ядро	I,TT,[NN _z N],	I,∏,[N∩ _z ∧	Е. кэв	Zz cek	B(E1)·10 ⁻⁸ [e ² barn] эксп	F _{s.w.}	F _{s.w.} R ^s .	w γβ	F _r	$F_{w}R_{s}^{w}$
65 ^{Tb} ¹⁵⁵	5/2-[532]	3/2+ [41]	226,9	3,4.10-10	77 [12]	0,34	0,1	0,31	0,42 [1	2]
65 ^{Tb} ¹⁵⁷	5/2 ⁻ [532]	3/2 ⁺ [411]	326,2		36 [13]	0,73	0,2	0,31	0,92 [1	3]
65 ^{Tb} ¹⁵⁹	5/2 [532]	3/2* [411]	363		48 [13]	0,55	0,15	0,31	0,70 [1	3] 0,2 [5a] ,
65 ²¹ 161	5/2 [532]	3/2+[411]	482	<3·10 ⁻¹⁰	>12,8 [11]	2	0,54	0,31	6,I []	I]
63 ^{Eu¹⁵⁵}	3/2 ⁺ [411]	5/2 [532]	141	5,3°10 ⁻⁹	29 [11]	I,4	0,02	0,31	2,3 [1	I] I,I.I0 ⁻² [5a]
64 ^{Gd} 157	5/2 ⁺ [642]	3/2 [521]	64	1,8'10 ⁻⁶	0,91[1]	36,1	0,22	0,31	920 [1	1]
66 ^{Dy} 161	3/2 [521]	5/2 ⁺ [642]	75	2,9·10 ⁻⁸	35,3[II]	I,4	0,008	0,31) IC	I] 5,9 [5a]
70 ^{Yb} 169	5/2 [512]	7/2 ⁺ [633]	191,4	4,2.10 ⁻⁹	I4,6 [II]	3	1,23	0,31	36 [1	I]
70 ^{Yb} ^{I7I}	5/2 ~[512]	7/2 ⁺ [633]	27,0	8,I·10 ⁻⁶	2,7[II]	16,2	I,4	0,31	180 []	ːɪ]
70 ^{Yb} 173	7/2 ⁺ [633]	5/2-[512]	351	2,3°10 ⁻⁸	0,43 [11]	72,6	29	0,31	880 [J	II] 500 [5a]
72 ^{Hf¹⁷⁵}	7/2 ⁺ [633]	5/2 ~ [512]	207,4	(2,1-2,6)1	:0 ⁻⁹ 23-18,6[1	I] I,4-	1,70,23-0	,3 0,33	16-20 [1]]
71 ^{Lu¹⁷⁵}	9/2 [514]	7/2 ⁺ [404]	396,I	6,3·10 ⁻⁹	I,I [8]	6	2,9	0,20	182 [8]	36,4 [5a]
71 ^{Lu¹⁷⁷}	9/2 - [514]	7/2 ⁺ [404]	147	1,94°10 ⁻⁷	0,7 [8]	9,4	4,5	0,20	250 [8]	50 [5a]
73 ^{T# 179}	9/2 [514]	7/2 ⁺ [404]	30,7	7,3°10 ⁻⁶	2 [11]	3,2	0,45	0,20	77 [8]	30,8
73 ^{Ta^{I8I}}	9/2-[514]	7/2 ⁺ [404]	6,3	3,1.10-4	5,75 [8]	I,I	0,16	0,20	29 [8]	II,6 [5a]
65 ^{Tb} 161	7/2-[523]	5/2 ⁺ [413]	102,4	6,9°I0 ⁻⁹	58,I[II]	8,7	0,37	0,31	5,8 [1]]
vh ¹⁷⁷	7/2 [514]	9/2+ [624]	τ04	6.6°T0 ⁻⁹	58 [11]	6.4	3.6	0.25	ន វារៀ	•

12

.