

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

WINNENG

AABODATOPMS TEOPETMUELKOM

and the second

Дубна

P4 · 3930

Н.М.Плакида

УСЛОВИЯ УСТОЙЧИВОСТИ АНГАРМОНИЧЕСКОГО КРИСТАЛЛА

1968

P4 - 3930

Н.М.Плакида

УСЛОВИЯ УСТОЙЧИВОСТИ АНГАРМОНИЧЕСКОГО КРИСТАЛЛА

Направлено в ЖЭТФ

ALEXANDER FOR ALEXANDER ALEXANDER STRATEGY (S. 1997)

412/3 ng

1. Введение

При изучении динамики кристаллических решеток обычно в качестве нулевого приближения выбирают гармоническое приближение, рассматривая ангармонические члены в разложении потенциальной энергии как малое возмущение. Однако в целом ряде случаев, например, при достаточно большой энергии нулевых колебаний или в случае температур, близких к температуре плавления, такое рассмотрение оказывается слишком грубым.

В связи с этим М.Борном^{/1/} был предложен метод, позволяющий учитывать самосогласованным образом влияние ангармонических членов на динамику решетки. В дальнейшем этот метод был использован в работах^{/2/} для изучения динамики сильно ангармонических кристаллов при нулевой температуре. В последнее время в ряде работ (см. напр.^{/3-6/}) этот подход получил дальнейшее развитие и обоснование.

В работе^{/6/} был предложен метод самосогласованного определения частот колебаний решетки и их затухания при учёте ангармонизмов высших порядков с помощью теории возмущений для двухвременных функций Грина. При этом было отмечено, что метод может быть полезен при изучении областей неустойчивости решетки, приводящей к фазовым переходам. В работе^{/7/} с помощью этого метода была обнаружена неустойчивость одномерной решетки, обусловленная ангармонизмом колебаний атомов.

В предлагаемой работе на основе подхода, развитого в/6/, исследуется вопрос об устойчивости трехмерной ангармонической решетки в приближении самосогласованного поля. В разделе 2 формулируется общий ме-

3

тод получения самосогласованной системы уравнений для произвольной решетки. Решение этой системы уравнений рассматривается в разделе 3 на примере простой модели гранецентрированной кубической решетки с взаимодействием между ближайшими соседями: находятся критические параметры, определяющие область устойчивости решетки, и исследуется поведение термодинамических величин вблизи критической точки.

Самосогласованная система уравнений в псевдогармоническом приближении

2.1. Рассмотрим простую решетку, состоящую из N атомов с мас сой M , гамильтониан которой может быть записан в общем виде:

$$H = \sum_{\ell} \frac{\vec{P}_{\ell}^{2}}{2M} + U(\vec{R}_{1}, ..., \vec{R}_{N}), \qquad (2.1)$$

где P_{ℓ} , \vec{R}_{ℓ} – операторы импульса и координаты атома в узле ℓ . Действие внешних сил, деформирующих решетку кристалла в линейном приближении, может быть описано гамильтонианом

$$H_{1} = \sum_{\ell} \vec{F}_{\ell} \cdot \vec{R}_{\ell}$$
(2.2)

Введем операторы смещений атомов и ^a_l из положений равновесия ℓ_a согласно определению:

$$\mathbb{R}_{\ell}^{\alpha} = \langle \mathbb{R}_{\ell}^{\alpha} \rangle + \mathbb{U}_{\ell}^{\alpha} \equiv \ell_{\alpha} + \mathbb{U}_{\ell}^{\alpha}, \qquad (2.3)$$

где статистическое усреднение проводится с полным гамильтонианом:

$$\mathcal{H} = \mathcal{H} + \mathcal{H}_{1}$$

(2.4)
 $< \dots > = Z^{-1} Sp(e^{-\frac{\mathcal{H}}{T}} \dots), \quad Z = Sp(e^{-\frac{\mathcal{H}}{T}}).$

Т – температура в энергетических единицах. Равновесные положения атомов ℓ_{α} могут быть определены из условий равновесия решетки при наличии внешних сил^{/8/}:

$$\delta Z / \delta u_{\alpha\beta} = 0,$$

где $a\beta$ - тензор деформации: $\delta l_a = a\beta l\beta$. При этом внешние силы F^a_{ℓ} могут быть связаны с тензором напряжений $\sigma_{a\beta}$ (cp. c/4/):

$$\sigma_{\alpha\beta} = \frac{1}{V} \sum_{\ell} F_{\ell}^{\alpha} \ell_{\beta} = \frac{1}{V} \sum_{\ell} \langle \frac{\partial U}{\partial R_{\ell}^{\alpha}} \rangle \ell_{\beta} , (V = N_{V}).$$
(2.5)

В частности, изотропное давление Р определяется уравнением состояния:

$$P = -\frac{1}{3} \sum_{\alpha} \sigma_{\alpha \alpha} = -\frac{1}{3V} \sum_{\ell, \alpha} < \frac{\partial U}{\partial R_{\ell}^{\alpha}} > \ell_{\alpha}$$
(2.6)

Таким образом, и а в (2.3) – малые смещения, вызванные тепловыми колебаниями атомов, так что потенциальная энергия кристалла может быть разложена в ряд по смещениям:

$$U = U_{0}(\vec{l}_{1},...,\vec{l}_{N}) + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{n=1}^{\infty} \Phi_{1...n} u_{1}...u_{n}, \qquad (2.7)$$

где для сокращения записи мы ввели $u_1 = u_{\ell_1}^{\alpha_1}, ..., a$ также

$$\Phi_{1...n} \equiv \Phi_{\ell_1}^{\alpha_1..\alpha_n} = \begin{bmatrix} \frac{\partial^n}{\partial R_{\ell_1}^{\alpha_1}...\partial R_{\ell_n}^{\alpha_n}} & U \end{bmatrix}_{u_1 = 0}$$

2.2. Вычисление свободной энергии ангармонического кристалла оказывается весьма сложной задачей (см.^{/3,4/}), и поэтому для определения необходимых статистических средних мы воспользуемся методом двухвременных функций Грина^{/9/}. Рассмотрим однофононную функцию Грина в координатном представлении:

$$G_{\ell\ell'}^{\alpha\beta}(t-t') \equiv \ll u_{\ell'}^{\alpha}(t); u_{\ell'}^{\beta}(t') >> =$$

$$= -i \theta(t-t') < [u_{\ell}^{\alpha}(t), u_{\ell'}^{\beta}(t')] >, \qquad (2.8)$$

где и $\binom{a}{\ell}(t)$ - гейзенберговское представление оператора смещения с полным гамильтонианом (2.4). Учитывая трансляционную инвариантность системы, фурье-представление функции Грина (2.8) запишем в виде:

$$G_{\ell\ell'}^{\alpha\beta}(\iota-\iota') = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-i\omega(\iota-\iota')} G_{\ell\ell'}^{\alpha\beta}(\omega),$$

$$G_{\ell\ell'}^{\alpha\beta}(\omega) = \frac{1}{NM} \sum_{\vec{k},ij} e^{\alpha}_{\vec{k}j} e^{\beta}_{\vec{k}j'} e^{-\vec{l}\cdot\vec{k}} G_{\vec{k}jj'}(\omega),$$
(2.9)

где векторы е́кі, которые будут определены ниже, образуют полный и ортонормированный базис:

$$\sum_{j} e_{\vec{k}j}^{\alpha} e_{\vec{k}j}^{\beta} = \delta, \qquad \sum_{\alpha} e_{\vec{k}j}^{\alpha} e_{\vec{k}j}^{\alpha} = \delta \qquad (2.10)$$

Функция Грина (2.8) описывает линейную по смещениям атомов реакцию системы на действие внешнего возмущения; при этом полюса функции

Грина С (ω) определяют спектр коллективных возбуждений системы энергию однофононных возбуждений.

Перейдем к определению функции Грина. Пользуясь уравнениями движения для гейзенберговских операторов $u^{\alpha}_{\rho}(t)$ и $P^{\alpha}_{\rho}(t)$ х/

$$i \frac{\partial}{\partial t} u^{\alpha}_{\ell}(t) = \frac{i}{M} P^{\alpha}_{\ell}(t), \qquad (2.11)$$

$$i \frac{\partial}{\partial t} i \frac{P}{\ell}(t) = \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(1,...,n)}^{\alpha} \frac{P}{\ell} \sum_{(1,...,n)}^{\alpha} \frac{$$

получаем уравнение для функции Грина в виде:

$$-M \frac{\partial^{2}}{\partial t^{2}} G_{\ell\ell}^{\alpha\beta}(t-t') = \delta_{\ell,\ell'} \delta_{\alpha,\beta} \delta(t-t') +$$
(2.12)

$$+\sum_{n=1}^{\infty} \frac{1}{n! (1..n)} \Phi_{\ell_1...n}^{\alpha} << u_1(t) \dots u_n(t); u_{\ell'}^{\beta}(t') >> .$$

Очевидно, что многофононная функция Грина в правой части (2.12), где в сколь угодно велико, не может быть определена точно. Поэтому в качестве приближения можно представить многофононную функцию Грина в виде кумулянтного разложения по функциям Грина более низкого порядка^{/6/}. Рассмотрим здесь простейшее приближение, которое не учитыва-

х/Заметим, что условия равновесия решетки (2.5) непосредственно следуют из усредненных уравнений движения:

$$i \frac{\partial}{\partial t} < i P_{\ell}^{\alpha}(t) > = 0.$$

ет процессов распада фононов, принимая во внимание лишь перенормировку частоты колебаний атомов в самосогласованном поле; это приближение удобно назвать псевдогармоническим. Оно имеет вид:

$$< u_{1} \dots u_{n}; u_{\ell}^{\beta}(t^{\gamma}) >> \underset{j=1}{\overset{n}{\sum}} < < u_{j}; u_{\ell}^{\beta}(t^{\gamma}) >> < \underset{i\neq j}{\overset{n}{\prod}} u_{i} >$$

$$(.2.13)$$

Подставляя (2.13) в уравнение (2.12) и переходя к фурье-представлению по времени согласно (2.9), получаем уравнение для функции Грина того же вида, что и в гармоническом приближении:

$$M\omega^{2}G_{\ell\ell'}^{\alpha\beta}(\omega) = \delta_{\ell,\ell'}\delta_{\alpha\beta} + \sum_{m} \Phi_{\ell m}^{\alpha\gamma}G_{m\ell'}^{\gamma\beta}(\omega), \qquad (2.14)$$

но с перенормированной - псевдогармонической матрицей силовых постоянных:

 $\Phi_{\ell m}^{\alpha \alpha \gamma} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{(1..n)} \Phi_{\ell m 1..n}^{\alpha \gamma} \langle u_{1} ... u_{n} \rangle =$ $= \langle \frac{\partial^{2}}{\partial R_{\ell}^{\alpha} \partial R_{m}^{\gamma}} U \rangle.$ (2.15)

Переходя к пространственному фурье-разложению функции Грина (2.9) и учитывая условия ортонормированности (2.10), решаем уравнение (2.14). Фурье-образ функции Грина имеет вид:

$$G_{\vec{k},j,j}(\omega) = \delta_{j,j}(\omega^2 - \epsilon_{\vec{k},j}^2)^{-1}, \qquad (2.16)$$

где частота с и векторы с пределяются из уравнения на собственные значения:

$$M \epsilon^{2} e^{\alpha} = \sum \widetilde{\Phi}^{\alpha \beta} e^{i \vec{k} \cdot \vec{m}} e^{\beta}$$
(2.17)

Чтобы замкнуть систему уравнений, необходимо еще выразить статистическое среднее от произведения в операторов (в > 2) в (2.15) через парную корреляционную функцию, которая, согласно спектральной теореме^{/9/}, определяется функцией Грина:

$$< u \frac{\alpha}{\ell} u \frac{\beta}{\ell'} > = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d\omega}{1 - e^{-\frac{\omega}{T}}} \operatorname{Im} G_{\ell\ell'}^{\alpha\beta}(\omega + i\delta) =$$

$$= \frac{1}{MN} \sum_{\mathbf{k}_{j}} e^{\alpha}_{\mathbf{k}_{j}} e^{\beta}_{\mathbf{k}_{j}} e^{i\vec{\mathbf{k}}(\ell-\vec{\ell})} \frac{1}{2\epsilon} \operatorname{cth} \frac{\epsilon_{\mathbf{k}_{j}}}{2T} .$$
(2.18)

Разбивая статистическое среднее от произведения в операторов на произведение парных корреляционных функций как в приближении для функции Грина (2.13), получим:

$$\langle u_1 \dots u_n \rangle = \delta_{n,2s} \quad (2s-1)!! \prod_{i=1}^{s} \langle u_{2i-1} u_{2i} \rangle, \quad (2.19)$$

где (2s-1)!! - произведение нечётных чисел от 1 до 2s-1. При этом, очевидно, псевдогармоническая силовая матрица (2.15) будет определяться всеми чётными членами в разложении потенциальной энергии (2.7), а уравнение состояния (2.6) - всеми нечётными. Следовательно, частота колебаний решетки в псевдогармоническом приближении будет зависеть от температуры Т не только благодаря температурной зависимости равновесных расстояний между атомами согласно уравнению состояния (2.6), как это принимается в квазигармоническом приближении^{/8/}, но также и за счёт вклада в энергию взаимодействия всех чётных ангармонизмов. Чтобы учесть перенормировку энергии фононов за счёт нечётных ангармонизмов, необходимо рассмотреть второй порядок теории возмущения для массового оператора, как это сделано в работе^{/6/}, что потребует введения функции Грина от трех операторов смещения. Это приводит к эначительному усложнению системы уравнений и будет рассмотрено в отдельной работе.

2.3. Особенно простой вид самосогласованная система уравнений принимает в случае парных сил взаимодействия между атомами, который и будет дальше рассматриваться:

$$U(\vec{R}_{1},..,\vec{R}_{N}) = \frac{1}{2} \sum_{\ell \neq m} \phi(\vec{R}_{\ell} - \vec{R}_{m}). \qquad (2.20)$$

Уравнение на собственные частоты (2.17) принимает вид

$$M \epsilon_{\vec{k}j}^{2} e_{\vec{k}j}^{\alpha} = \sum_{\ell} (1 - e^{i\vec{k}\ell}) e_{\vec{k}j}^{\beta} \frac{\partial^{2}}{\partial \ell_{\alpha} \partial \ell_{\beta}} \vec{\phi}(\ell), \qquad (2.21)$$

где $\vec{\phi}$ (\vec{l} $-\vec{m}$) = $\langle \phi (\vec{R}_{\vec{l}} - \vec{R}_{\vec{m}}) \rangle$ - самосогласованный потенциал парных сил. Наиболее простой вид ему можно придать, если воспользоваться разложением потенциала в интеграл Фурье:

$$\phi(\vec{R}_{\vec{l}} - \vec{R}_{m}) = \sum_{q} \phi(\vec{q}) e^{i\vec{q}\cdot(\vec{l} - \vec{m})} e^{i\vec{q}\cdot(\vec{u}_{\vec{l}} - \vec{u}_{m})}$$

$$(2.22)$$

$$\phi(\vec{q}) = -\frac{1}{\sqrt{2}} \int d^{3}R e^{-i\vec{q}\cdot\vec{R}} \phi(\vec{R}).$$

Интегрирование проводится по всему объему кристалла V=Nv. Вычисляя статистическое среднее в разложении (2.22) согласно (2.19), получим

$$\langle \exp \{ i \vec{q} (\vec{u}_{\ell} - \vec{u}_{m}) \} \rangle = \exp \{ -\frac{1}{2} \langle [\vec{q} (\vec{u}_{\ell} - \vec{u}_{m})]^{2} \rangle \},$$

где корреляционная функция смещений атомов, согласно (2.18), имеет вид

$$\langle \left[\vec{q} \left(\vec{u}_{\ell} - \vec{u}_{m}\right)\right]^{2} = \frac{2}{NM} \sum_{\vec{k}j} 2\sin^{2} \frac{\vec{k} \left(\vec{\ell} - \vec{m}\right)}{2} \cdot \frac{\left(\vec{q} - \vec{e} \cdot \vec{k}_{j}\right)^{2}}{2\epsilon_{\vec{k}j}} \operatorname{cth} \frac{\epsilon_{\vec{k}j}}{2T} \cdot (2.23)$$

В случае кубической симметрии кристалла она не зависит от направления вектора 🖣 и может быть представлена в виде

$$< \left[\vec{q} \left(\vec{u}_{\ell} - \vec{u}_{m}\right)\right]^{2} > = q^{2} \frac{<\left[\vec{\ell} - \vec{m}\right] \left(\vec{u}_{\ell} - \vec{u}_{m}\right)\right]^{2} >}{\left|\vec{\ell} - \vec{m}\right|^{2}} \equiv q^{2} \quad \vec{u}^{2} \left(\vec{\ell} - \vec{m}\right).$$

В этом случае легко выполнить обратное фурье-преобразование и записать самосогласованный потенциал в виде:

$$\tilde{\phi}(\vec{\ell} - \vec{m}) = \frac{1}{(2\pi)^{3/2}} \int d^{3} R e^{-\frac{R^{2}}{2}} \phi(\vec{\ell} - \vec{m} + \vec{R} \sqrt{u^{2}(\vec{\ell} - \vec{m})}). \quad (2.24)$$

Как видно, интегрирование в (2.24) благодаря функции $\exp(-R^2/2)$ распространяется на малую область пространства, определяемую средними колебаниями атомов вблизи их положений равновесия. Поэтому при определении самосогласованного потенциала важен лишь вид парного потенциала вблизи дна потенциальной ямы. Случай потенциалов с твердой сердцевиной требует отдельного рассмотрения. Рановесные состояния между атомами *l* определяются из уравнения состояния (2.6):

$$P = -\frac{1}{3v} \sum_{\ell} \ell \vec{\phi}'(\ell). \qquad (2.25)$$

Внутренняя энергия, определяющая тепловые величины, в нашем приближении в случае парных сил имеет вид:

$$E = \langle H \rangle = \sum_{kj} \frac{\epsilon_{kj}}{4} \operatorname{cth} \frac{\epsilon_{kj}}{2T} + \frac{N}{2} \sum_{\ell} \phi \left(\ell\right). \qquad (2.26)$$

Таким образом, самосогласованная система уравнений для частоты колебаний решетки (2.17) или (2.21), матрицы силовых постоянных (2.15) или самосогласованного потенциала (2.24) и парной корреляционной функции (2.18) или (2.23), позволяет исследовать свойства сильно ангармоничес – кого кристалла в широком интервале температуры и внешнего давления. Подобная же система уравнений была получена в работах^{/3-5/} другими методами.

Однако эта система уравнений имеет действительные решения лишь при определенных значэниях температуры, давления и параметров связи атомов в решетке, которые определяют область устойчивости кристалла. В следующем разделе на примере простой модели мы исследуем область устойчивости кристаллической решетки.

3. Условня устойчивости ангармонической решетки с близкодействием

В этом разделе мы рассмотрим простую модель гранецентрированной кубической решетки с взаимодействием между ближайшими соседями, поскольку решение самосогласованной системы уравнений, полученной выше, может быть найдено для этой модели в явном виде. Эта модель удобна

12

также тем, что свойства ее в гармоническом приближении хорошо известны (см.^{/8/}), а роль ангармонических эффектов в рамках обычной теории возмущения подробно была рассмотрена в работах^{/10/}.

3.1. Предположим, что внешнее давление достаточно мало (Р≤10⁴ атм), так что среднее расстояние между ближайшими соседями ℓ мало отличается от ℓ₀ - равновесного расстояния при нулевом давлении; согласно (2.25), оно определяется из условия

$$\phi \quad (\ell_{0}) = 0.$$

$$(3.1)$$

При этом для давления Р в линейном приближении по ((-l_)) получаем

$$P = -\frac{z\ell_o}{6v_o} \tilde{\phi}''(\ell_o)(\ell-\ell_o), \qquad (3.2)$$

где z – число ближайших соседей (для гранецентрированной кубической решетки) z = 12, v_o = $\ell_o^3 / \sqrt{2}$, период кубической решетки d₀ = $\ell_0 \sqrt{2}$). Рассмотрим уравнение (2.21) для собственных частот. Учитывая (3.1), (3.2) для псевдогармонической силовой постоянной, получаем

$$\frac{\partial^{2}}{\partial \ell_{a} \partial \ell_{\beta}} \tilde{\phi}(\ell) = \frac{\ell_{a} \ell_{\beta}}{\ell^{2}} \left[\tilde{\phi}''(\ell) - \frac{1}{\ell} \tilde{\phi}'(\ell) \right] + \frac{\delta_{a\beta}}{\ell} \tilde{\phi}'(\ell) \sim$$

$$= \frac{\ell_a \ell_{\beta}}{\ell^2} \tilde{\phi}''(\ell_0) \left[1 - P \frac{\delta_{v_0}}{z\ell_0} - \frac{\tilde{\phi}'''(\ell_0)}{\left[\tilde{\phi}''(\ell_0)\right]^2}\right] = \frac{\ell_a \ell_{\beta}}{\ell^2} f(T, \ell),$$
(3.3)

где мы пренебрегли членами порядка ф́"(ℓ₀)/ℓ₀ф́"(ℓ₀)±1/10, как это обычно принимается^{/10/}. Следовательно, уравнение на собственные частоты можно записать в виде:

$$\epsilon_{\vec{k}_{1}}^{2} = \frac{f(T, \ell)}{M} \sum_{\ell} \frac{(\vec{\ell} \cdot \vec{e}_{\vec{k}_{1}})}{\ell^{2}} 2\sin^{2} \frac{\vec{k} \cdot \vec{\ell}}{2} \equiv a^{2} \omega_{\vec{k}_{1}}^{2}, \quad (3.4)$$

где ω_{kj}^{*} – частота колебаний в гармоническом приближении с силовой постоянной f = f(T, l)/a², т.е. в данной модели псевдогармоническая перенормировка a²(T) сводится только к перенормировке силовой постоянной и не зависит от (\vec{k} j).

Поскольку корреляционная функция смещений ближайших соседей, согласно (2.23), зависит лишь от расстояния ℓ между атомами, мы можем, пользуясь уравнением (3.4), записать ее в виде:

$$a^{2}(\ell) = \frac{1}{z} \sum_{\ell} \frac{1}{\ell^{2}} < [\vec{\ell} (\vec{u}_{\ell} - \vec{u}_{0})]^{2} > = .$$
(3.5)

$$= \frac{1}{z a^2 f} \frac{1}{N k_j} \sum_{k,j=1}^{\infty} a \omega_{kj} \operatorname{cth} \frac{1}{2 T}.$$

Выражение для внутренней энергии согласно (2.26) и с учётом (3.5), может быть представлено в виде

$$\frac{1}{N} = \frac{z}{2} \left\{ \frac{1}{2} f a^2 u^2(\ell) + \phi(\ell_0) \right\}.$$
(3.6)

3.2. Решение самосогласованной системы уравнений (3.1)-(3.5) можно получить в явном виде, если известен вид парного потенциала взаимодействия в (2.20), определяющего самосогласованный потенциал (2.24). Поскольку в нашем случае при интегрировании в (2.24) существенный вклад в интеграл дает лишь область потенциала вблизи дна потенциальной ямы, результаты последующих вычислений не должны быть критичны к конкретному выбору потенциала. Нам будет удобно здесь воспользоваться модельным потенциалом Морзе в виде/10/:

$$\phi(\mathbf{R}) = D\left[\left(e^{-a(\mathbf{R}-r_0)}-1\right)^2-1\right], \qquad (3.7)$$

где D – глубина потенциальной ямы, r_0 – равновесное расстояние между атомами в гармоническом приближении: $\phi'(r_0) = 0$; гармоническая силовая постоянная $f = \phi''(r_0) = 2 D a^2$. Выполняя в (2.24) интегрирование по углам и подставляя (3.7), получаем:

$$\stackrel{\approx}{\phi}(\ell) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx e^{-\frac{x^2}{2}} (1 + x \frac{\sqrt{u^2(\ell)}}{\ell}) \phi(\ell + x \sqrt{u^2(\ell)}) =$$
(3.8)

$$= D[e^{-2a(l-r_0)} e^{2y} (1 - \frac{2y}{al}) - 2e^{-a(l-r_0)} e^{\frac{y}{2}} (1 - \frac{y}{al})],$$

где $y = a^2 u^2(l)$. Пользуясь этим выражением, для (3.1)-(3.3), (3.6), приближенно находим:

$$l_{o} = r_{o} + \frac{3}{2a} y$$
 (3.9)

$$P = -\frac{z\ell_{0}}{6v_{0}} fe^{-y} (\ell - \ell_{0})$$
(3.10)

$$a^{2} = \frac{f(T, \ell)}{f} = e^{-y} + p$$
 (3.11)

$$\frac{1}{N} E = -\frac{z}{2} D \{ e^{-y} (1-y) - py \}, \qquad (3.12)$$

где $p = P(18 v_0 a / z \ell_0 f) = P(3 \ell_0^2 / 2 \sqrt{2} f) \ll 1$ – малое безразмерное давление. Уравнение, определяющее $y = a^2 u^{\frac{1}{2}}(\ell)$, согласно (3.5), имеет вид:

$$zD a^2 y = \epsilon(T) \equiv \frac{1}{N} \sum_{kj} \frac{a\omega_{kj}}{2} \operatorname{cth} \frac{a\omega_{kj}}{2T},$$
 (3.13)

где є (Т) – средняя энергия тепловых колебаний на атом. Рассмотрим далее отдельно случай высоких и низких температур, когда є (Т) может быть приближенно вычислено.

3.3. Высокие температуры: Т ≫ ω_L, где ω_L=(8 f/M)^{1/2} - максимальная частота колебаний решетки в гармоническом приближении. Разлагая котангенс в (3.13) и выполняя суммирование по (kj) в первых двух членах разложения, получаем

$$\epsilon (T \gg \omega_{L}) \approx 3 T (1 + a^{2} \beta), \beta = \frac{1}{24} \frac{\omega_{L}^{2}}{T^{2}}.$$
 (3.14)

В результате этого уравнение для у с учётом (3.11) в линейном приближении по р \ll 1, β \ll 1 принимает вид:

$$\lambda_1 y = e^{y} (1 - p e^{y}) + \beta$$
, (3.15)

где $\lambda_1 = zD/3T = 4D/T = M\omega_L^2/4a^2T$. Как видно, действительное решение этого уравнения существует лишь при температуре $T \le T_{0}$. т.е. критической температуре. Ее можно определить, дифференцируя (3.15) по у и решая полученное уравнение совместно с (3.15); вычисления дают:

$$T_{o} = \frac{z D}{3e} (1 - \beta_{o} + ep), \quad \beta_{o} = \frac{1}{24} \cdot \frac{\omega_{L}^{2}/e}{T_{o}^{2}}$$
 (3.16)

Вблизи критической температуры T ≤ T решение для у в пренебрежении членами (T - T)^{8/2} имеет вид:

$$y = 1 + ep + \beta_{o} - (1 + \frac{3}{2}ep - \frac{1}{2}\beta_{o})\sqrt{2(1 - \frac{T}{T_{o}})} + 3\beta_{o}(1 - \frac{T}{T_{o}}). \quad (3.17)$$

(Второе решение у > у (T) не имеет физического смысла). Частота колебаний, согласно (3.4), при T < T равна

$$\epsilon_{kj}^{2} \approx \frac{\omega_{kj}^{2}}{e} \left\{ 1 - e p - \beta_{o} + \sqrt{2(1 - \frac{T}{T_{o}})} + (1 - \frac{T}{T_{o}}) \right\},$$
 (3.18)

т.е. при $T > T_{c}$ становится комплексной, что означает неустойчивость решетки: смещения атомов из положений равновесия неограниченно возрастают с ростом времени. Таким образом, если средняя кинетическая энергия тепловых колебаний 3T/2 становится больше энергии связи на атом в самосогласованном поле z D/2c, решетка становится неустойчивой. Подобные же результаты ранее были получены для одномерной решетки/7/.

Среднее расстояние между атомами (3.9) и внутренняя энергия (3.12):

$$\frac{1}{N} E \approx -3T_{o}(1 - \frac{T}{T_{o}}) - \frac{3}{2} T_{o} \sqrt{2(1 - \frac{T}{T_{o}})}$$
(3.19)

при Т < Т, остаются конечными, но коэффициент линейного расширения

$$a_{\mathrm{T}} = \mathbf{k} \quad \frac{1}{\ell_0} \quad \frac{\partial \ell_0}{\partial \mathrm{T}} \quad \approx \frac{3 \, \mathbf{k}}{2 \, \mathbf{a} \, \ell_0} \quad \frac{1}{\mathrm{T}} \quad \frac{1}{\sqrt{2(1 - \frac{\mathrm{T}}{\mathrm{T}})}} \tag{3.20}$$

и теплоемкость при постоянном давлении

$$c_{p} = \frac{k}{N} \left(\frac{\partial E}{\partial T} \right)_{p} + P v_{0}^{3} \alpha_{T} \approx 3k \left(1 + \frac{1}{2} \frac{1}{\sqrt{2(1 - \frac{T}{T})}} \right)$$
(3.21)

неограниченно возрастают при Т - Т . Относительное смещение атомов в критической точке, однако, мало

$$\sqrt{\gamma_{o}} = \frac{\sqrt{\frac{2}{u_{o}}}}{\ell_{o}} = \frac{\sqrt{\gamma_{o}}}{a\ell_{o}} = \frac{1}{\frac{1}{ar_{o} + \frac{3}{2}}} = \frac{1}{4},$$
 (3.22)

т.е. неустойчивость решетки возникает при весьма малых относительных отклонениях атомов из положений равновесия. Следовательно, разложение потенциальной энергии в ряд по смещениям (2.3) справедливо вплоть до критической температуры Тс.

Заметим, что соотношение (3.16) для критической температуры может быть записано в виде:

$$\omega_{\rm L}^2 = \frac{4e}{\gamma} \frac{T_o}{M\ell^2} \approx 1.3 \cdot 10^2 \frac{T_o}{M\ell^2}, \qquad (3.23)$$

что соответствует соотношению Линдемана, связывающему дебаевскую частоту и температуру плавления (см. ^{/ 8/}). При этом критическая темпе-

ратура оказывается в 3 – 4 раза выше температуры плавления. В связи с этим отметим, что неустойчивость решетки выше критической температуры означает абсолютную неустойчивость динамической системы; плавление же наступает раньше, когда энергетически выгоднее оказывается неупорядоченная фаза. Для определения этой температуры, однако, необходимо вычислить свободную энергию неупорядоченной фазы, что представляется в настоящее время весьма трудной задачей. Итак, полученное значение критической температуры можно считать верхней границей температуры плавления.

3.4. Низкие температуры: T << ω . Выполняя приближенное интегрирование в (3.13) так же, как и в гармоническом приближении (см./10/), получаем

$$\epsilon(T \ll \omega_L) = \epsilon_0 \alpha \left(1 + \frac{1}{\alpha^4} \eta\right), \quad \eta = \frac{3\pi^4}{5} - \frac{T^4}{\omega_D^4}, \quad (3.24)$$

где $\epsilon_0 \approx 1.02 \omega_L$ – энергия нулевых колебаний на атом и $\omega_D \approx 1.05 \omega_L$ -дебаевская энергия в гармоническом приближении (см./10/). В результате уравнение (3.13) для $y = a^2 \overline{u^2(\ell)}$ с учётом (3.11) в линейном приближении по $p \ll 1, \eta \ll 1$ принимает вид

$$\lambda y = e^{\frac{y}{2}} (1 - \frac{1}{2} p e^{y} + \eta e^{2y}), \qquad (3.25)$$

где $\lambda = z D / \epsilon_{0}$ – безразмерный параметр связи атомов в решетке. Действительное решение этого уравнения существует лишь при $\lambda > \lambda_{0}$ и T < T₀, где критические параметры

$$\lambda_{0} = \frac{e}{2} \left(1 - \frac{1}{2} e^{2} p \right)$$
(3.26)

$$T_{o} = \frac{\omega_{D}}{e} \left[\frac{10}{3\pi^{4}e} \left(\lambda - \lambda_{0} \right) \right]^{1/4} \approx \frac{\omega_{D}}{\pi e} \left(\lambda - \lambda_{0} \right)^{1/4}$$
(3.27)

Вблизи критической температуры решение для у в пренебрежении членами (Т – Т)^{3/2} имеет вид

$$y = 2\left\{1 + e^{2}p - \frac{T^{4}}{T_{0}^{4}} = (\lambda - \lambda_{0}) - 2(1 + 2e^{2}p - 24 - \frac{\lambda - \lambda_{0}}{e})\sqrt{\frac{\lambda - \lambda_{0}}{e}(1 - \frac{T^{4}}{T_{0}^{4}})}\right] . (3.28)$$

Частота колебаний (3.4) при Т < Т имеет вид:

$$\epsilon_{\vec{k}j}^{2} \approx \frac{\omega_{\vec{k}j}^{2}}{e^{2}} \{1 - 2ep + 4\sqrt{\frac{\lambda - \lambda_{0}}{e}} (1 - \frac{T^{4}}{T^{4}})\}, \qquad (3.29)$$

т.е. при T > T_o или $\lambda < \lambda_0$ становится комплексной, как и в случае высоких температур. Таким образом, если перенормированная энергия нулевых колебаний $\epsilon_0/4$ с становится больше энергии связи на атом в самосогласованном поле z D / 2 e², решетка становится неустойчивой и при нулевой температуре: λ_0 – минимальное значение параметра связи для устойчивой решетки. Подобные же результаты были ранее получены для одномерной решетки/7/.

Поведение термодинамических величин в случае низких температур такое же, как и в случае высоких температур. Среднее расстояние между атомами l (3.9) и внутренняя энергия (3.12)

$$\frac{1}{N} = \frac{\epsilon_0}{4e} \left\{ 1 - \frac{8}{e} (\lambda - \lambda_0) \left[(1 - \frac{T^4}{T^4}) + 8\sqrt{\frac{\lambda - \lambda_0}{e}} (1 - \frac{T^4}{T^4}) \right] \right\} (3.30)$$

при $T \leq T_o$ и $\lambda \geq \lambda_o$ остаются конечными. Коэффициент линейного расширения

$$\alpha_{\rm T} = \frac{k}{\ell_0} \frac{\partial \ell_0}{\partial T} \approx \frac{3k}{a\ell} - 4 \frac{T^3}{T_0^4} \sqrt{\frac{\lambda - \lambda_0}{e(1 - T^4/T_0^4)}}$$
(3.31)

и теплоемкость при постоянном давлении

$$c = k \left(\frac{T}{\omega_{\rm p}/e}\right)^{8} \frac{12\pi^{4}}{5} \left(1 + 4\sqrt{\frac{\lambda - \lambda o}{e(1 - T^{4}/T_{o}^{4})}}\right) (3.32)$$

неограниченно возрастают при T→T_c. Относительное смещение атомов в критической точке также мало:

$$\sqrt{\gamma_{o}} = \frac{\sqrt{\frac{1}{n_{o}^{2}}}}{\ell_{o}} = \frac{\sqrt{y_{o}}}{a\ell_{o}} = \frac{\sqrt{2}}{ar_{o}+3} = \frac{1}{4}$$
 (3.33)

Соотношение типа Линдемана в предельном случае низких температур Т «« и в имеет вид

$$\omega_{\rm D} \approx \frac{4e}{3\gamma} - \frac{1}{M\ell^2} \left[1 + \frac{2\pi^4}{e} \left(\frac{T_{\rm o}}{\omega_{\rm r}/e} \right)^4 \right]$$
(3.34)

Как и в случае высоких температур, оно определяет верхний предел температуры плавления для "квантовых кристаллов" с большой энергией нулевых колебаний.

4. Обсуждение

Как было показано выше, неустойчивость решетки возникает, когда энергия тепловых колебаний атомов становится больше энергии связи атомов в самосогласованном поле. При вычислении критических параметров, определяющих область устойчивости решетки, были использованы различные приближения: псевдогармоническое приближение для функций Грина, приближение парных сил и взаимодействия ближайших соседей и др., поэтому значения параметров являются только оценочными. Однако явление неустойчивости ангармонической решетки не зависит от конкретных приближений и качественно его можно пояснить следующим образом. Рассмотрим тождество

$$\frac{\partial}{\partial t} \sum_{\ell} < u_{\ell}^{\alpha} P_{\ell}^{\alpha} > = 0,$$

откуда, пользуясь уравнениями движения (2.11), получаем равенство:

$$2K = \sum_{\ell} \langle u_{\ell}^{\alpha} P_{\ell}^{\alpha} \rangle = \sum_{\ell} \langle u_{\ell}^{\alpha} \frac{\partial U}{\partial R_{\ell}^{\alpha}} \rangle \approx \sum_{\ell} \Phi_{\ell m}^{\alpha} \langle u_{\ell}^{\alpha} P_{\ell m}^{\alpha} \rangle$$
(4.1)

Это условие равенства средней кинетической К и потенциальной энергии колебаний кристалла обеспечивает финитность движения атомов решетки вблизи положений равновесия. В гармоническом приближении, когда $\Phi^{\alpha\beta}_{nm}$ - постоянная, не зависящая от температуры, уравнение (4.1) всегда имеет решение. При учёте ангармонических членов в разложении потенциальной энергии $\Phi^{\alpha\beta}_{nm}$ становится функцией температуры, уменьшающейся с ее ростом, и при некоторой температуре T₀ правая часть (4.1) достигает максимально возможного значения. Выше этой температуры средняя кинетическая энергия превышает среднюю потенциальную, так что движение атомов становится нелокализованным и система теряет устойчивость. В более сложных случаях, например, для решетки с базисом, возможна потеря устойчивости для определенных оптических ветвей коллективных возбуждений/11/. Рассмотрение этих возможностей, а также учёт затухания фононов будет проведено в следующих работах.

В заключение мие бы хотелось отметить, что тема этой работы была предложена С.В.Тябликовым и многократно с ним обсуждалась. Мне бы хотелось также поблагодарить Т.Шиклоша за обсуждения.

Литература

1. M.Born, Festschrift Acad. Wiss. Götingen, Math. Phys. Kl., 1, 1951.

2. D.J.Hooton, Phil. Mag. (7), 46, 422, 433, 1955.

Phil. Mag. (8) 3, 49 , 1958.

3. H. Horner, Zs. f. Phys., 205, 72, 1967.

4. W.Götze, Phys. Rev., 156, 951, 1967.

5. N. S. Gillis, N.R. Werthamer, T.R. Kohler, Phys. Rev., 165, 951, 1968.

6. Н.М.Плакида, Т.Шиклош. Препринт ОИЯИ Р4-3449, Дубна, 1967. Acta Phys. Hung. (в печати).

- 7. Н.М.Плакида, Т.Шиклош. Препринт ОИЯИ Р4-3706, Дубна, 1968; Phys. Lett. <u>26 А</u>, 342, 1968.
- 8. Г.Лейбфрид. Микроскопическая теория механических и тепловых свойств кристаллов. ФМ, М-Л, 1963.
- 9. Н.Н.Боголюбов, С.В.Тябликов. ДАН СССР <u>126</u>, 53, 1959. Д.Н. Зубарев. УФН, <u>71</u>, 71, 1960.

10, A.A.Maradudin, P.A.Flinn, R.A. Coldwell-Horsfall, Ann. Phys., (N.Y.)

<u>15,</u> 337, 360, 1961; P.A.Flinn, A.A.Maradudin, Ann. Phys., (N.Y.) <u>22</u>, 223, 1963.

11. N.Boccara, G., Sarma, Physics 1, 219, 1965.

Рукопись поступила в издательский отдел 17 июня 1968 года.