

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

DETNUECK

PPM9 TE

TNA

and the second

Дубна

P4 - 3800

30/5-68

И.З.Артыков, В.С.Барашенков

МЕЗОН-ЯДЕРНЫЕ ВЗАИМОДЕЙСТВИЯ ПРИ ОЧЕНЬ ВЫСОКИХ ЭНЕРГИЯХ

И.З.Артыков, В.С.Барашенков

МЕЗОН-ЯДЕРНЫЕ ВЗАИМОДЕЙСТВИЯ ПРИ ОЧЕНЬ ВЫСОКИХ ЭНЕРГИЯХ

Направлено в Nuclear Physics

4289/3 np.

Анализ известных экспериментальных данных по взаимодействиям нуклонов с атомными ядрами в области энергий, больших нескольких десятков Гэв, показал, что внутри ядра с большой вероятностью происходят "многочисленные взаимодействия", в которых с одним внутриядерным нуклоном одновременно взаимодействуют несколько быстрых частиц/1-4/.

Полученные недавно краковской группой экспериментальные данные о взаимодействиях π - мезонов с фотоэмульсией при средней энергии около 200 Гэв (см. рис.1) /5,6/ позволяют выполнить дополнительную проверку этого заключения. Так как данные краковской группы являются в настоящее время наиболее обстоятельным исследованием ядерных взаимодействий в области космических энергий, их анализ представляется весьма интересным x).

При расчете пион-ядерных столкновений мы использовали в точности те же самые приближения и те же предположения о свойствах многочастичных взаимодействий внутри ядра, что и в случае нуклон-ядерных столкновений /2,4/. Никаких изменений в программе расчетов не делалось.

Для полного сечения неупругих взаимодействий *т* – мезонов со средним ядром фотоэмульсии получена величина *σ*_{in} = 835+42 мб, средние сечения неупругих взаимодействий отдельно с группой легких и с группой тяжелых ядер фотоэмульсии оказались равными соответственно 195+8 мб и 960+55 мб. Эти значения близки к экспериментальным (см.рис.2).

В таблице 1 приведены наиболее важные средние характеристики неупругих пион-ядерных взаимодействий. Колонки LEm и HEm относятся

x)

х) В области ускорительных энергий нуклон-ядерные взаимодействия хорошо согласуются с обычной каскадной моделью /7/.

соответственно к группам легких и тяжелых ядер фотоэмульсии, колонка Е m - ко всей фотоэмульсии. Индексами s , g и b , как обычно, отмечены величины, относящиеся к ливневым, каскадным и испарительным частицам. В скобках указаны экспериментальные значения из работы ^{/6/}. На рис.3 сравниваются теоретические и экспериментальные угловые распределения ливневых частиц.

Из приведенных данных видно, что расчет и опыт хорошо согласуются друг с другом. Если не учитывать многочастичных взаимодействий внутри ядра, то различие между расчетной и экспериментальной множественностью ливневых частиц оказывается не столь разительным, как в случае нуклон-ядерных взаимодействий х), т.к. в случае пион-ядерного взаимодействия внутри ядра происходит, грубо говоря, вдвое меньше столкновений, чем в случае взаимодействия нуклон + ядро. В то же время учет многочастичных взаимодействий оказывается весьма существенным для объяснения угловых распределений ливневых частиц.

Из таблицы П видно, что доля многочастичных взаимодействий внутри ядра составляет значительную величину.

Как и в случае нуклон-ядерных столкновений, многочастичные взаимодействия составляют больший процент в легких ядрах. Обращает на себя внимание значительный вклад столкновений, когда с нуклоном взаимодействует сразу пять и большее число частии.

Все приведенные выше теоретические величины относятся к энергии первичных пионов T = 200 Гэв, являющейся средней для экспериментального распределения(рис.1).Если энергию первичных пионов разыгрывать непосредственно по этому распределению, то результаты расчетов изменяются очень мало: величины n_s и n_s^{\pm} возрастают на 10%, угол $\theta_{1/2s}$, наоборот, уменьшается на 10% (см.рис.3), остальные величины таблицы ї в пределах ошибок остаются практически неизменными. Более заметные изменения претерпевает таблица II-, в случае Е m доля многочастичных взаимодействий W_{int} (n > 2) увеличивается с 30 до 38%, соответственно W_{prt} (n > 2) возрастает с 47 до 56%, Приблизительно в таком же соотношении увеличивается вклад многочастичных взаимодействий в группе легких и тяжедых ядер.

x) Это обстоятельство уже подчеркивалось в работе /5/.

Мы пользуемся случаем поблагодарить профессоров М.Миезовича и Я.Геруля, а также сотрудников фотоэмульсионной группы в Кракове К.Рябитски и Я.Бабетски за обсуждения, мы особенно благодарны проф. Я.Геруля за предоставление нам экспериментального материала до его опубликования.

Литература

- 1. I.Z.Artykov, V.S.Barashenkov, S.M.Eliseev, Nucl.Phys., 87, "241 (1966).
- 2. I.Z.Artykov, V.S.Barashenkov, S.M.Eliseev, Nucl.Phys. (в печати), препринт ОИЯИ Р2-3604 (1967).
- 3. И.З.Артыков, В.С.Барашенков, С.М.Елисеев. Известия АН СССР 31, 1448 (1967).
- И.З.Артыков, В.С.Барашенков, С.М.Елисеев. Материалы Всесоюзного совешания по физике космических лучей в Новосибирске, 1967. Препринт ОИЯИ Р2-3508 (1967).
- Z.Czachowska, J.Gierula, S.Krzywdzinski, M.Miesowicz, K.Rybicki, W.Wolter. Institut Badan Jaderwoch Report "P" No. 826, Warszawa, 1967.
- 6. J.Cierula, S.Krzywdzinski, Nuovo Cim. (в печати).
- 7. I.Z.Artykov, V.S.Barashenkov, S.M.Eliseev, Nucl. Phys. 87,83(1966).
- 8. В.С.Барашенков. Сечения взаимодействия элементарных частии, Москва, изд-во "Наука", 1966.

Рукопись поступила в издательский отдел 9 апреля 1968 года.

Таблица 1

Взанмодействие π - мезонов с ядрами фотоэмульсии при энергии 200 Гэв. п - множественность вторичных частиц; п⁺ - множественность заряженных вторичных частиц; г - их кинетическая энергия; ге- кинетическая энергия лидирующей частицы (пиона), уносящей основную часть энергия (~70%); Р_↓ - поперечный импульс вторичных частиц; θ ½- угол, в который вылетает половина этих частиц.

	LEm	Em	HEm	
1.	15,0+0,6	17,5+I,I	24,0+1,4	
a t s	9,7+0,4	II,2+0,6	15,4+0,7	
+	(8,0+0,9)	(10,7+0,9)	(I4,7+2,0)	
B g	I,7+0,I	3,9+0,3	4,7 (0,3	
а _ь		I2,I+0,6	17,0+0,9	
n b	+	9,4+0,5	I3,I+0,7	
18,Гэв	I20 + 5	104 + 6	94 + 6	
га, Гев	5,6+ 0,3	5,4+0,4	4,4+0,3	
r _g , Мэв	150 + 6	I50 + 7	I50 + 7	
r _b , Мэв		I3,5+0,6	I4 +0,6	
Р Мэв/с	. 420 + 20	470+ 30	520+ 30	
Р⊥с, Мэв/с	350 + 20	360 + 30	350 + 20	
θ _{1/2:,} град.	6;5 + 0,3	9,0+ 0,5	I2,0+ 0,6	
	(6,2+0,4)	(8,3+0,6)	(II,0+ I,I)	
θ _{1/29} , град.	6I + 3	64 + 4	70 + 4	

Таблица Ш

Вилад многочастичных взаимодействий в пион-ядерном взаимодействии при энергии 200 Гэв (%%) W_{int} (a) - относительное число a - частичных взаимодействий, когда с внутриядерным нуклоном взаимодействует (a-1) частица (по отношению к полному числу упругих и неупругих столкновений s- и g - частиц внутри ядра); W_{prt}(a) - относительная доля частиц, участвующих в a - частичных взаимодействиях (в <u>начальных</u> состояниях).

8	LEm		Em		HEm	
	W _{int} (n)	W _{prt} (a)	W _{int} (a)	W _{pet} (a)	W _{int} (a)	W _{prt} (n)
2	61	42	70	51	74	56
3	18	19	15	17	I4	16
4	IO	I4	7	II	6	9
5	6	9	4	8	3	7
26	5	16	4	13	3	12

A2/3

Рис.3. Распределение заряженных ливневых частиц по величине **x**-logtanθ. Сплошная гистограмма - эксперимент ^{/6/}, пунктир-расчет для энергии первичных *n* - мезонов Т=200 Гэв, точечная гистограмма расчет с розыгрышем энергии первичных *n* - мезонов по распределению рис.1.