

and the second

W&. AH CCCP, cep. grus, 28/2 1968, T. 32, N.S, c. 831-840 28/2

P4 - 3576

А.А. Кулиев, Н.И. Пятов

ЕО-ПЕРЕХОДЫ И СТРУКТУРА О⁺ ВОЗБУЖДЕНИЙ В ДЕФОРМИРОВАННЫХ ЯДРАХ

1967.

P4 - 3576

А.А. Кулиев, Н.И. Пятов

ЕО-ПЕРЕХОДЫ И СТРУКТУРА О⁺ВОЗБУЖДЕНИЙ В ДЕФОРМИРОВАННЫХ ЯДРАХ

Направлено в Изв. АН СССР

объеданеный ниститут перных исследований БИБЛИТОТЕНА

5513/, up.

Введение

Монопольные электрические переходы являются важным инструментом в экспериментальном исследовании возбужденных 0⁺ состояний и их ротационных групп. Теория ЕО-переходов была развита Черчем и Венезером^{/1/}, которые определили приведенную вероятность перехода как

$$\rho(E0) = \sum_{p} \int \Psi_{f}^{*} \left[\left(-\frac{r_{p}}{R_{0}} \right)^{2} - \sigma \left(-\frac{r_{p}}{R_{0}} \right)^{4} + \dots \right] \Psi_{i} dr, \qquad (1)$$

где Ψ₁ и Ψ_f - волновые функции начального и конечного ядерных состояний, r_p - радиус-вектор протона, R₀ -радиус ядра, а σ определяется распределением заряда в ядре и обычно мало.

Для сфероидальных ядер были проведены численные расчеты матричных элементов ЕО-переходов с *β* -вибрационных уровней на основе различных модельных цредставлений о структуре ядер/2-5/. Расмуссен ^{/2/} ввел безразмерное отношение

$$\mathbf{X} = \frac{e^2 R_0^4 \rho (E 0)^2}{B(E 2, 0 \to 2)},$$
 (2)

в котором В(Е2,0→2) - приведенная вероятность Е2-перехода. В моделя колеблющегося, однородно заряженного сфероида для этой величины получено простое выражение^{/2/}:

$$\mathbf{x} = \mathbf{4}\,\boldsymbol{\beta}^2 \,, \tag{3}$$

где β-параметр деформации ядра.

В рамках одночастичной модели, при условиии когерентного вклада всех протонов, отношение вероятностей ЕО-и Е2-переходов примерно вдвое больше, чем в вышеуказанной модели/2/:

$$X \approx 9 \beta^2 . \tag{4}$$

Сравнение расчетов с экспериментальными данными показало, что обе модели предсказывают слишком большие ρ (ЕО)и Х ^{/2,3/}.

Модель неаксиальных ядер предсказывает β и у вибрационные 0⁺состояния. Численные расчеты ρ (E0) и X в этой модели были проведены Давыдовым и Ростовским^{/4/}. Расчеты и сравнение с экспериментом показали, что нижайшие 0⁺ -возбуждения в деформированных ядрах являются β -вибрациями. Однако и эта модель предсказывает большие ρ (E0) α X. Гамма-вибрациямные 0⁺ -состояния в этой модели характеризуются большими эначениями X = 10.

В рамках микроскопической модели со спариванием и квадрупольными взаимодействиями расчеты $\rho(E0)$ и Х были проведены в работах^{/5,6/}. Вычислецные в работе^{/5/} значения Х систематически больше, чем дает формула (3).

Цель настоящей работы - связать значения ρ (E0) и X со структурой ядерных 0⁺ возбуждений. Нами проведены расчеты энергий 0⁺ -возбуждений, ρ (E0) и X в рамках ранее предложенной модели с учетом спиновых взаимодействий $7^{,8/}$ и анелиз экспериментальных денных.

Теоряя

Известно, что в деформированных ядрах существует несколько различных по структуре типов 0⁺ -возбуждений:

а) Парные вибрации, обусловленные нарными взаимодействиями/θ,10/. Эта возбуждения (нейтронные и протенные независимо) лежат выше эпергетической щели (ω > 2 C).

б) β-вибрация, лежащие няже энсргетической щели и карактеризующиеся, как правило, большими значениями В(Е2). Появление этих состояний обусловлено остаточными квадрупольными взаимодействиями типа:

$$-\kappa_{q} r_{1}^{2} r_{2}^{2} Y_{2\mu}^{*(1)} Y_{2\mu}^{(2)} , \qquad (5)$$

где к_q - квадрупольная константа связи, r_i - радиусы-векторы частиц, Y_{2µ} - сферические функции. Исследованию этих 0⁺ возбуждений посвяшен ряд работ

(см., например, ^{/5,10/}). Возбуждения этого типа связалы с парными вибрациями.

в) Спин-квадрупольные возбуждения, обусловленные остаточными взаимодействиями типа:

$$-\kappa_{t} r_{1}^{2} r_{2}^{2} (\sigma_{1} Y_{2}^{(1)})_{2\mu}^{*} (\sigma_{2} Y_{2}^{(2)})_{2\mu}, \qquad (6)$$

где к₁ - спин-квадрупольная константа связи, а σ₁ - матрицы Паули. Эти состояния исследовались в работах^{77,8,117}. Выло показано, что спин-квадрупольные взаимодействия могут генерировать 0⁺ возбуждения ниже энергетической щели. В действительности, спин-квадрупольные 0⁺ -состояния связаны с β-вибрациями и не связаны с парными вибрациями.

Каждому из указанных типов 0⁺ -возбуждений соответствует определенная структура волновой функции. Так, волновая функция парных вибраций является суперпозицией пар (каждая пара на одном уровне) квазичастиц. Волновая функция β вибраций включает также пары квазичастиц, сидящие на различных одночастичных уровнях. Вклад этих состояний обычно невелик. Спин-квадрупольная сила не имеет диагональных одночастичных матричных элементов, поэтому волновая функция спин-квадрупольных состояний включает только квазичастицы, сидящие на разных уровнях.

Для любого из этих типов возбуждений легко получить в приближении вторичного квантования следующие формулы приведенных вероятностей $\rho(E0)$ и B(E2)^{/7/}

$$\rho (E0)^{2} = \frac{1}{2R_{0}^{4}} | e_{p} \sum_{(prot)} U_{ss}' g_{ss}' r_{ss}' + (7)$$

$$+ e_{n} \sum_{(neutr)} U_{ss}' g_{ss}' r_{ss}' |^{2} ,$$

$$B(E2) = \frac{1}{2} | e_{p} \sum_{(prot)} U_{ss}' g_{ss}' q_{ss}' + (8)$$

$$+ e_{n} \sum_{(neutr)} U_{ss}' g_{ss}' q_{ss}' |^{2} ,$$

$$(8)$$

где U , = u v , + u , v , , t , и q , - одночастичные матрич-

ные элементы ЕО-и Е2-переходов соответственно, а g _{в в'} – амилитуда двухквазичастичных состояний в волновой функции 0⁺ возбуждения (см., например, ^{/7},8,10[/]). В формулах (7) и (8) введены эффективные заряды нейтрона и протона:

$$e_p = e + e_{eff}; e_n = e_{eff}$$

Исследуем отношение X (формула (2)) для различных типов 0⁺ -возбуждений. а) Парные вибрации

Ввиду независимости нейтронных и протонных парных вибраций отношение вероятностей ЕО-и Е2-переходов не зависит от параметра эффективного заряда и определяется формулой:

$$X = \left| \begin{array}{c} \sum_{a,a} r_{a,a} (E_{a,a} - E_{a,a}) / \epsilon_{a,a} \epsilon_{a,a} (4 \epsilon_{a,a}^{2} - \omega^{2}) (4 \epsilon_{a,a}^{2} - \omega^{2}) \\ \sum_{a,a} q_{a,a} (E_{a,a} - E_{a,a}) / \epsilon_{a,a} \epsilon_{a,a} (4 \epsilon_{a,a}^{2} - \omega^{2}) (4 \epsilon_{a,a}^{2} - \omega^{2}) \\ \end{array} \right|_{a,a} (10)$$

где $\epsilon_{\bullet} = [(E_{\bullet} - \lambda)^2 + C^2]^{5}$ одноквазичастичные энергии, E_{\bullet} - одночастичные уровни среднего поля, λ - химический потенциал, а ω - энергия 0^+ возбуждения. Суммирование проводится по нейтронным (если $e_{off} \neq 0$), либо по протонным одночастичным состояниям.

Матричные элементы : в модели Нильссона равны:

$$\langle N \Omega | r^2 | N \Omega \rangle = N + 3/2$$
, (11)

где N - главное квантовое число.

Вклады различных состояний в суммы некогерентны, поэтому величину X можно оценить только при $\omega \approx 2 \epsilon$

$$X \approx \left| \frac{r_{ab}}{q_{ab}} \right|^2 .$$
 (12)

Отсюда следует, что для двухквазичастичных 0⁺ -состояний (обе квазичастицы на одном уровне). в общем случае можно ожидать больших значений X >> 1 , так как матричные элементы q всегда эначительно меньше г .

Числитель выражения (10) с точностью до фактора, зависящего от энергии возбуждения, определяет приведенную вероятность ρ (E0). Матричные элементы ^т одного знака и постоянны внутри одной оболочки. Если вынести за знак суммы некоторую среднюю величину ^т, то очевидно, что ρ (E0)=0. Следовательно, в общем, ρ' (E,0) мало для парных вибраций.

б) Спин-квадрупольные возбуждения.

В этом случае амплитуды g_{ва}, имеют вид (с точностью до фактора, зависящего от энергии ω)^{/7,8/}:

$$g_{aa} \approx \frac{L_{aa}, t_{aa}}{\epsilon^2 - \omega^2}, \qquad (13)$$

где L_{ве} = u_v, -u_v, t_{ве} - одночастичные матричные элеме́нты спинквадрупольной силы (t_в=0). Для отношения вероятностей ЕО- и Е2-переходов легко получить выражение:

$$X = \left| \begin{array}{c} e_{p} \sum \\ (prot) \end{array} \right|^{2} \\ R_{p} \sum \\ (prot) \end{array} \left| \begin{array}{c} U_{p}, L_{p}, t_{p}, r_{p}, / (\epsilon^{2}_{p}, -\omega^{2}) + e_{p} \sum \\ R_{p}, L_{p}, t_{p}, r_{p}, q_{p}, / (\epsilon^{2}_{p}, -\omega^{2}) + e_{p} \sum \\ (prot) \end{array} \right|^{2}$$
(14)

Для состояний в одной оболочке N все $r_{ss} = 0$ (кроме диагональных, которые не входят в суммы). Основной вклад в суммы в числителе формулы (14) дают матричные элементы r_{ss} , для состояний с $\Delta N = \Delta n_s = \pm 2$. В суммы в энаменателе дают вклад все состояния. Поэтому в общем случае можно ожидать, что для спин-квадрупольных 0⁺ возбуждений $X \ll 1$ и $\rho(E0)$ мало. Особенно малые эначения X можно ожидать для 0⁺ -состояний, близких по структуре к двухквазичастичным, если квазичастицы находятся на разных уровнях одной и той же оболочки.

в) β - вибрации.

Для чистых β -вибраций (без исключения духового состояния, т.е. без учета связи с парными вибрациями) амплитуды g_{ss}, с точностью до фактора, зависящего от энергии ω, имеют вид:

$$\mathbf{g}_{\mathbf{q}}, \approx \frac{\epsilon_{\mathbf{q}}, \mathbf{U}_{\mathbf{q}}, \mathbf{q}_{\mathbf{q}}}{\epsilon_{\mathbf{q}}^{2}, -\omega^{2}} \quad (15)$$

Из-за когерентности вкладов в суммы в энаменателе и некогерентности вкладов в суммы в числителе, можно ожидать, что X < 1. Учет связи β -вибраций с парными вибрациями усложняет все формулы, нарушает когерентность. Однако для низколежащих 0^+ -состояний ($\omega < 1$ MeV) эффекты связи малы и для них, по-прежнему, можно ожидать значений X < 1. Связь парных вибраций с β - вибрациями может оказаться существенной при $\omega \approx 2$ с , где интерференция фононов β -вибрации и парных вибраций может существенно изменить величину X.

При учете связи спин-квадрупольных возбуждений с β -вибрацконными, нельзя предсказать определенных границ для ρ (E0). Если спин-квадрупольные возбуждения появляются ниже щели (ω <2C), то интерференция спин-квадрупольного и β -вибрационного фононов может существенно изменить X, ρ (E0) и B(E2) даже для низколежащих 0⁺-возбуждений, так как, как правило, амплитуды смешивания этих фононов имеют противоположные знаки для нижайших 0⁺возбуждений /11/.

Результаты и обсуждение

х

Численные расчеты энергий 0⁺ -состояний ρ (E0), B(E2)и безразмерного отношения X были проведены для редкоземельных ядер. В расчетах использовались по 40 протонных и нейтронных уровней схемы Нильссона из работы^{/12/}. Были учтены все возможные одночастичные матричные элементы q₁₀, t₁₀, и t₁₀

Результаты расчетов для протонных и нейтронных парных вибраций - в таблице 1. При вычислении В(Е2) и р (Е0) использовано значение параметра эффективного заряда е ... = 0,2 (отношение Х не зависит от е ...). Расчеты подтвердили малость р(ЕО) и В(Е2) для парных вибраций, однако, отношение Х варьируется в широких пределах. Как правило, энергии парных вибраций велики. Однако в ряде случаев эти состояния можно идентифицировать с экспериментально обнаруженными состояниями. Так, в ¹⁶⁸ Уb обнаружено 0⁺ состояние с энергией 1543 кэв, для которого установлено, что ρ^2 (E0)>3 · 10⁻⁵, а X = 1 (см. ссылку 8,13 к таблице 3). По-видимому, это состояние можно идентифицировать с нейтронной парной вибрацией N = 98. В ¹⁶⁴ Ег обнаружены 0⁺ состояния с энергиями 1766 и 2170 кэв и значениями Х , равными 0,78±0,11 и 1,76 +0,25 соответственно (см. ссылку 11 к таблице 3). В этой области энергий теория предсказывает появление протонной и нейтронной парных вибраций с близкими к экспериментальным значениям Х. Заметим, что и в 188 Ув. и в ¹⁶⁴ Ег. ниже указанных состояний обнаружены еще по два 0⁺ состояния, которые никак не могут быть идентифицированы с парными вибрациями.

Расчеты подтвердили малость $\rho(E0)$ для чистых спин-квадрупольных 0^+ -возбуждений (см. табл. 2). В расчетах использованы экспериментальные значения энергий 0^+ состояний. Оказалось, что им соответствуют небольшие вариации параметра κ_i от ядра к ядру. Значения $\rho(E0)$, B(E2)и X слабо меняются от ядра к ядру. Ввиду малости B(E2) пока затруднительно провести идентификацию наблюдавшихся 0^+ состояний с чистыми спин-квадрупольными возбуждениями, хотя теоретические значения X того же порядка, что и экспериментальные для нижайших 0^+ возбуждений.

В таблице 3 приведены результаты расчетов с учетом связи *β*-вибраций с парными вибрациями (*x*, =0), а также для общего случая, с учетом связи *β* вибраций и спин-квадрупольных возбуждений. В 10-13 столбцах таблицы приведены экспериментальные данные.

Расчеты показали, что без учета спин-квадрупольных взаимодействий невозможно объяснить появление вторых низколежащих 0⁺ -состояний. Связь β вибраций со спин-квадрупольными возбуждениями приводит к уменьшению ρ(E0) B(E2) и X для нижайших 0⁺ состояний. В ряде ядер интерференционные эффекты очень сильны, и могут приводить к образованию 0⁺ возбуждений (ниже энергетической щели) со значениями X = 10⁻² - 10⁻³.

Энергетическая зависимость параметра X для различных по структуре 0^+ возбуждений показана на рис. 1 для ядра ¹⁶⁶ Ег. Видно, что для спян-квадрупольных возбуждений X слабо зависит от ω . В случае β -вибраций (без учета связи с парными вибрациями) X также слабо зависит от энергии состояния. Связь β -вибраций с парными вибрациями приводит, как правило, к резким скачкам значений X вблизи энергий перных вибраций. Однако только связь β -вибраций и спин-квадрупольных возбуждений может сильно понижать величину X для нижайших 0^+ состояний.

На рис. 2 показана зависимость ρ(E0) от величины параметра эффективного заряда е_{off} при различных значениях κ_t. Расчеты показывают, что величина X слабо уменьшается с увеличением е_{off} (для спин-квадрупольных возбуждений и β-вибраций).

Для всех ядер расчеты удовлетворительно согласуются с экспериментальными данными при учете спин-квадрупольных взаимодействий.

В ряде случаев теория предсказывает очень большое значение X для 0⁺ высоколежащих 0⁺ -возбуждений (как и теория Давыдова для у вибрационных 0⁺ состояний^{/4/}). Эти состояния обычно по структуре близки к парным вибрациям (например, в ¹⁵⁸ Dy).

Отметим, что теория объясняет тенденцию роста эначений X с повышением энергии 0⁺ возбуждений (например, в Er). Однако среди состояний с высокими эначениями X могут появиться также состояния с очень малыми X, экспериментальное наблюдение которых, очевидно, затрудни**тел**ьно. Резкое падение X для высоколежащих 0⁺ возбуждений может быть объяснено интерференцией нейтронных и протонных парных вибраций, связанных между собой квадруюльными взаимодействиями.

Наконец, отметим, что интерференция β -вибрации и слин-квадрупольных возбуждений приводит также к сильному уменьшению скорости разрешенного β распада на нижайшее 0⁺ состояние/11/.

Заключение

Итак, мы исследовали связь значений $\rho(E0)$, B(E2) и их отношения X со структурой 0⁺ возбуждений в деформированных ядрах. Установлено, что для парных вибраций и спин-кведрупольных возбуждений значения $\rho(E0)$ и B(E2)

значительно меньше, чем для β -вибраций. Однако значений X > 1 можно ожидать только для для парных вибраций. Проведена идентификация ряда наблюдавшихся 0⁺ состояний как парных вибраций. Теоретически объяснена тенденция роста X с увеличением энергии 0⁺ возбуждения. Показано, что интерференция различных типов возбуждений играет важную роль и может приводить к сильному увеньшению X даже для низколежащих 0⁺ возбуждений. В последнем случае можно ожидать заметной величины М1 -компоненты при 2⁺ + 2⁺ -гамма-переходе между ротационными уровнями основного и возбужденного состояний.

В заключение авторы выражают глубокую благодарность проф. В.Г. Соловьеву за интерес к работе и Б.Н. Калинкину за полезные дискуссии. Авторы благодарны К.Я. Громову, Е.П. Григорьеву, Н.А. Бонч-Осмоловской и В.А. Морозову за обсуждение экспериментальных данных и А.А. Корнейчуку и К.М. Железновой за помощь при составлении программы численных расчетов.

Литература

- 1. E.L. Church, J.Weneser. Phys.Rev., 103 (1956) 1035
- 2. J.O. Rasmussen, Nucl. Phys. 19 (1960) 85
- 3. A.S. Reiner, Nucl. Phys. 27 (1961) 115
- 4. A.S. Davydov, V.S. Rostowsky, Nucl. Phys. 60 (1964) 529
- 5. D.R. Bes, Nucl. Phys. 49 (1963) 544
- 6. П. Фогель. Ядерная физика 1, 752 (1965).
- 7. К.М. Железнова, Р.И. Пятов, М.И. Черней. Изв. АН СССР, сер. физ. 31, 550 (1967).
- 8. N.I. Pyatov, Proced. of the Lysekil Symposium, Lysekil, Sweden, Aug. 21-27, 1966 (публикуется Ark. Fys.)
- 9.D.R. Bes, R.A.Broglia, Nucl. Phys. 80 (1966) 289
- 10V.G. Soloviev, Nucl. Phys. 69 (1965) 1
- 11. А.А. Кулкев, Н.И. Пятов. Препринт Р4-3171, Дубна 1987.
- К.Н. Железнова, А.А. Корнейчук, В.Г. Соловьев, П. Фогель, Г. Юнгклауссен. Препринт ОИЯИ Д-2157, Дубиа 1966.

Рукопись поступила в издательский отдел 1 ноября 1967 г.

5
2
E
5
0
_CC
F

Вичисленные зпертии, приведенные вероятности Е2 и Е0- переходов и их отношение для парных вибраций

		17.0					1011 0			
2	Mer	D.P.U.	P(EO)	×	Z	Nev	D(E2)	P(EO)	×	
90	2,10	0,03	0,013	0,04	62	1,96	0,15	0°,097	0,43	
92	2,10	0,006	0,003	0,008	64	1,97	0,012	-0,006	0,02	
94	2,00	3.0.L0 ⁻³	0,017	0,68	66	1,91	1,5 10	11,0	54,58	
96	1,83	1.5.10-3	C10 0	0,83	68	1,85	0,03	0,066	1,02	
98	1,55	5,5.10-4	600 0-	1,10	10	1,81	0,085	0,05	0,21	
100	1,58	5,8,10-4	0,018	3,8	72	1,80	0,026	11,0	3,28	
102	1,54	4,8.10-3	0,004	0,02	74	1,75	0,127	0,006	0,002	
104	1,45	8,6,10-4	0,004	61°0						
106	1,64	1,1.10-4	0,016	16,4						

Таблица	2

Распадные характеристики спин-квадрупольных О⁺возбухдений. В расчетах использованы экспериментальные энергии. Соответствующие им значения \mathcal{H}_{t} даны в третьем столбце

Ядро	Wexp MeV	Ht A-43 hwo	B(E2) J.P.U.	Х	P(EO)
152 _{Sm}	0,69	8,74	0,006	0,123	-0,01
154 _{Sm}	1,10	8,49	0,009	0,114	-0,012
156 Sm	1,07	8,48	0,009	0,115	-0,012
154 Gd	0,68	8,87	0,006	0,110	-0,010
56 Gd	1,05	8,7	0,009	0,12	-0,012
158 _{Gd}	1,45	8,30	0,012	0,112	-0,014
156 _{Dy}	0,68	8,90	0,006	0,133	-0,011
158 _{Dy}	0,99	8,73	0,009	0,115	-0,012
160 _{Dy}	1,263	8,50	0,011	0,12	-0,014
162 _{Er}	1,08	8,60	0,009	0,13	-0,013
164 _{Er}	1,245	8,39	0,010	0,122	-0,013
L66 Br	1,46	7,89	0,008	0,109	-0,011
168 _{Yb}	1,156	8,3	0,007	0,130	-0.011
170 _{¥b}	1,065	8,59	0,006	0,133	-0,011
172 _{Yb}	1,045	8,80	0,006	0,136	- 0,011
174YD	1,32	8,53	0,007	0,127	- 0,011
.78 _{Hf}	1,199	9,29	0,006	0,145	- 0,011

12

Теоретические результати и экспериментальные данные по энергиям 0^{*}состояния, вероятностям E2 и E0-переходов и их отношения. При вычислении Р(EO) и B(E2) использован параметр эффективного заряда С₂, = 0,2

Таблица 3

Mapo MeV $\vec{F}(E,2)$ $\vec{F}(E)$ 1 2 3 4 1 2 3 4 152sm 0,66 4,10 0,35 0 154sm 1,97 0,05 -0,07 0 154sm 1,98 0,04 -0,07 0 156sm 1,96 0,02 -0,05 0 156da 1,96 0,02 -0,05 0 156da 1,98 0,004 0,012 0 156da 1,99 0,004 0,012 0 156da 1,99 0,003 0,23 0 156da 1,91 0,012 0 0 156da 1,91 0,003 0,012 0 156da 1,91 0,013 0,015 0 156da 2,0 0,013 0,015 0	St IIO		()	$\kappa_{\pm} = 8$	22				Экспери	THOM	JINT C-
1 2 3 4 15 ² Sm 0,66 4,10 0,35 0 1 ⁹ 4Sm 1,97 0,05 -0,07 0 1 ⁹ 4Sm 0,99 2,56 0,28 0 1 ⁹ 4Sm 0,99 2,56 0,23 0 1 ⁹ 4Sm 1,942 1,55 0,07 0 0 1 ⁹ 56sm 1,942 1,55 0,23 0	B(E2) PE	X	Swer	B(E2)	P(EO)	×	Mer	B(E2)	P(EO)	×	pary-
152Sm 0,666 4,10 0,35 0 154Sm 1,997 0,005 -0,07 0 154Sm 0,999 2,566 0,288 0 156Sm 1,942 1,55 0,233 0 156Gm 1,946 0,002 -0,07 0 156Gm 1,948 0,002 -0,056 0,288 0 156Gd 1,948 0,002 -0,056 0,288 0 0 156Gd 1,912 1,933 0,233 0 0 0 0 0 156Gdd 1,912 1,833 0,233 0	4 6-	6	9	2	8	6	10	11	12	13	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4,10 0,3	5 0,21	0,64	4,00	0,34	0,20	0,69	1,0	0,2+0,02	0,29+0,06	1,1,2
1948m 0,99 2,56 0,28 0 1568m 1,942 1,55 0,07 0 1568m 1,942 1,55 0,23 0 1568m 1,96 0,02 -0,05 0 1568m 1,96 0,004 0,012 0 1566d 1,912 1,83 0,012 0 1566d 1,912 1,83 0,23 0 156 1,93 0,003 0,015 0 158 0,012 0,015 0 0 0	0,05 -0,0	7 0,73	1,50	0,03	0,06	62.0	1,09				5
^{J56} Sm 1,98 0,04 -0,07 0 ¹⁵⁶ Sm 1,96 0,02 -0,05 0 ¹⁵⁴ dd 1,98 0,004 0,012 0 ¹⁵⁶ dd 1,91 1,83 0,23 0 ¹⁵⁶ dd 1,97 0,003 0,015 0 ¹⁵⁸ dd 2,0 0,018 0,024 0	2,56 0,24	B 0,21	0,95	2,40	0,26	0,20	1,12	1,2+0,3			4
156 _{5m} 1,42 1,55 0,23 0 156 _{5m} 1,96 0,02 -0,05 0 154 _{6d} 1,98 0,004 0,012 0 156 _{6d} 1,912 1,83 0,23 0 156 _{6d} 1,97 0,003 0,015 0 158 _{6d} 2,0 0,018 0,024 0	0,04 -0,0	1 . 0,86	1,50	60 * 0	0,08	0,53	1,22				n
¹⁷⁸ Gm 1,96 0,02 -0,05 0 ¹⁵⁴ Gd 1,98 0,004 0,012 0 ¹⁵⁶ Gd 1,97 0,003 0,015 0 ^{1,53} 1,10 0,19 0 ¹⁵⁸ Gd 2,0 0,018 0,024 0	1,55 0,2	3 0,23	1,29	1,01	0,16	0,18	1,07				e
1546d 1,984 2,68 0,28 0 1546d 1,98 0,004 0,012 0 1566d 1,12 1,83 0,23 0 1,97 0,003 0,015 0 1,53 1,10 0,19 0 1586d 2,0 0,018 0,024 0	0,02 -0,0	5 0,65	1,57	0,52	0,16	0,36					
¹⁷⁸ 64 1,98 0,004 0,012 0 ¹⁵⁶ 64 1,12 1,83 0,23 0 1,97 0,003 0,015 0 1,53 1,10 0,19 0 158 ₆₄ 2,0 0,018 0,024 0	2,68 0,20	8 0,20	0,82	2,60	0,28	0,20	0,68	4,8+1,2	0,4+0,08	0, 3+0,18	4,5
156 _{6d} 1,12 1,83 0,23 C 156 _{6d} 1,97 0,003 0,015 (158 _{6d} 1,53 1,10 0,19 (158 _{6d} 2,0 0,018 0,024 (0,004 0,00	12 0,22	1,64	0,013	0,05	1,20					
158 _{6d} 1,97 0,003 0,015 0 158 _{6d} 2,0 0,018 0,024 (1,83 0,2	3 0,21	1,08	1,76	0,22	0,20	1,05	2,8+1,2	0,4+0,05	0, 55+0, 34	2,4
1 ⁵⁸ Gd 2,0 0,018 0,19 (0,003 0,0	15 0,52	1,64	0°01	0,06	0,70					
2,00 0,018 0,024 (1,10 OL.L	9 0,23	1,42	0,85	0,15	0,18	1,45				9
	0,018 0,03	24 0,22	1,70	0,23	0,11	6, 39					

1 C

F

-	2	S	4	5	9	E	8	6	10	11	12	13	14
160, .	1,76	0,33	11,0	0,26	1,38	0,20	0,05	0,10					
5	1,93	0,13	0°05	0,13	1,77	0,23	0,10	0,31.					
	0,77	2,77	0,29	0,21	0,75	2,70	0,28	0,20	0,68				2
Adoct	1,94	6.10	11,0 1	137	1,68	6.10 ⁻³	0,04	2,10,					
158.	1,09	1,75	0,23	0,21	1,04	1,71	0,22	0,20	0,99	₹0,3	>0,07 0,:	10 + 0,15	30
An	1,93	4.10-4	-0,11	204	1,67	0,02	0,05	1,10,					
160, 1	1,53	\$6*0	0,18	0,23	1,44	0,82	0,15	0,18	1,26				6
£ n	1,92	1,8,10	4-0,104	423	1,74	0,13	0,10	0,54 .					
162	1,76	0,18	60 * 00	0,31	1,44	0,14	0,04	0,08	1,127				16
ßn	1,91	0,008	0,12	12,6	1,78	11,0	0,08	0,40 .					
164	1,54	0,019	0,013	.90*0	1,12	0,043	0,013	0,27					
Ån	1,91	0,006	0,12	15,3	1,55	0,015	0,012	0,07					
162	1,13	310	0,25	0,21	1,08	2,0	0,24	0,20	1,08				10
Br	1,87	1,3,10	-3_0,04	8,8	1,7	0,041	0,07	0,84,					
	1,62	0,76	0,16	0,24	1,39	0,44	60°0	0,13	1,25		0	,15±0,03,	11
	1,84	0,02	0,05	0,85	1,69	0,32	0,13	0, 34	1,70		0	,39+0,06	
164Br	1,95	0,08	0,03	0,05	1,84	0,02	0,05	0,87	1,77		0	,78±0,11	
	2,17	0,22	0,03	0,02	1,96	0,07	0,03	0,08	2,17		н Г	,76±0,25	-
	2,22	10-3	60 * 0-	50	2,18	0,21	0,03	0,03	2,185		5	,56+1,84	

14

-		-
	_	2
	α)
	-	2
	β	i
	7	1
	Ξ	1
	a)
	ý	4
	*	1
	-	i
	5	
	С)
	_	1
		1
	c	١
	5	1
	c	1
	-	
	⊢	4
~	-	1
-	-	
-	-	
`	- 	
` 0		; >
0	۲.	
0	۲.	
0	- 	
` 0		
~		
~		
` 0	TUTA STUTE	
` 0	7) Y. EUNE	
~ ~ ~		
\ \ \		
~ ~ ~	ADJUTIA . A LT	
~ ~ ~		
۲ ۲		

1	2	S	Ч	Ž	6	Z	8	6	10	11	12	13	14
	1,53	0,05	0,03	11,0	1,45	0,14	0,04	0,08	1,46			MGRO	12
166 _{Er}	1,80	0,18	0,11	0,43	1,54	8.10 ⁻³	C10 ° 0	0,14					
	2,02	0,06	0,04	0,15	1,81	0,14	0,10	15,0.					
	1,55	01,0	0,07	0,34	1,33	11,0	0,04	0,1					
168 _{Er}	1,73	0,25	0,09	0,22	1,56	0,05	0,06	0,5					
	1,84	0,003	-0,04	3,84	1,74	0,20	0,09	0,27					
	1,40	0,23	0,08	0,19	1,37	0,29	0,08	0,15					
1/0Er	1,78	0,05	0,07	1,53	4,8.10	-40,018	0,018	4,70					
	1,82	0,03	0,05	0,66	1,79	0,04	0,06	0,66					
	1,38	1,38	0,16	0,13	1,14	0,84	0,12	0,13	1,156		×0,008		Ø
q _{хоот}	1,62	0,43	0,07	0,09	1,47	0,42	0,09	D,13	1,197		0,04 + 0,	08	13
	1,98	11,0	0,15	1,43	1,64	0,47	0,08	0,10	1,543		~ 0 , 005		
	1,34	1,41	0,18	0,15	1,24	1,26	0,16	0,14	1,065				14
170 _{Y b}	1,61	0,16	0,02	0,03	1,53	0,09	0,06	0,29					
	1 , 82	6.10-3	0,06	4,40	1,63	0,20	0,04	0,05					

10

	7	С	7	5	9	t	89	0	10	11	12	€ I	4
	1 15	1 27	21.0	9.16	21.1	1.35	0.17	0.15	1,045				14
172 _{Yb}	1,72	0,21	0,015	0,007	1,59	0,02	-0,002	0,001					
	2,04	0,05	0,13	1,97	1,72	0,16	0,01	0,005					
	1 , 36	0 , 5	0,09	0,12	1,33	0,67	01°0	0,11	1,32	÷ 0,5			4
174 Yb	1,62	0,57	0,07	0,06	1, 52	0,19	0,04	0,06					
	1,90	0,04	0,10	č7 ,1	1,68	0,25	0,04	0,04					
	1,36	3,80	0,33	0,20	1,21	2,65	0,26	0,18	1,20			0,18+0	04;15
178 _{Hf}	1,64	0,12	0,05	0,15	1,58	0,63	0,17	0,30	1,434			0,10+0	02.
	1,86	0,30	-0,02	0,01	1,66	0,35	0,11	0,24	1,444.			0,38+0	08.

17

<u>Примечание</u>. В расчетах для $166_{\rm Er}$ использовано значение \mathcal{H}_t =7,85, $a_{\rm для}$ $17^{3}_{\rm Hf}$ – \mathcal{H}_t =9,0.

а дом на то страна и развительно значения X получены из данных по В(Е2) и РСЕФ)

Литература к таблице

- 1. G.D.Symons, A.C.Douglas, Phys.Lett., 24B, 11 (1967).
- 2. G.T.Ewan, G.I.Anderson, Contributions of the Intern, Conference on Nucl.Structure, Sept. 7-13, Tokyo, p.191.
- 3. J.H.Berregaard. O.Hansen, O.Nathan, S.Hinds, Nucl. Phys., 86, 145(1966)
- 4. Y.Yoshizawa, B.Elbek, B.Herskind, M.C.Olesen, Nucl. Phys., 73,273(1965)
- 5. N.R.Johnson, L.L.Riedinger, J.H.Hamilton.

Доклад на международной конференции по ядерной структуре, 3-13 сентября, Токно, стр. 189.

- 6. R.Bloch, B.Elbek, P.O.Tjorn, Nucl. Phys., A91 ,576 (1967).
- 7. G.B.Hagemann, M.C.Olesen, Доклад на XVII Совещании по ядерной спектроскопии, Харьков 1967.
- R.Graetzer, G.B.Hagemann, K.A.Hagemann, B.Elbek, Nucl. Phys., <u>76</u>, 1 (1966).
- 9. Н.А. Бонч-Осмоловская, Я. Врзал, Е.П. Григорьев, Я. Липтак, Я. Урбанец. Преприят ОИЯИ Р-2817, Дубиа 1966.
- 10. Р.О. Тот . (Частное сообщение).
- 11. Я. Врзал, К.Я. Громов, Я. Липтак, Ф. Молнар, В.А. Морозов, Я. Урбанен, В.Г. Чумин. Изв. АН СССР, сер. физ. <u>31</u>, 604 (1967).
- C.J.Gallagher, V.G.Soloviev, Mat.Fys.Skr.Dan.Bid.Selsk., 2, No.2, (1962).
- 13. K.Kemp, G.B.Hagemann, Nucl. Phys., A97, 666 (1967).
- D.G.Burke, B.Elbek, A Study of Energy Levels in Even-Even Ytterbium Isotopes by Means of (dp) (dt) and (dd') Reactions. (будет опубликовано).
- H.L.Nielsen, K.Wilsky, J.Zylicz, G.Sorensen, Nucl.Phys., <u>A93</u>, 385 (1967).
- 16. A.Backlin, A.Suarez, O.W.B.Schult, et al. Phys.Rev., 160, 1011, (1967).

Рис. 1. Отношение X как функция энергии O⁺ состояния для спин-квадрупольного возбуждения (κ_q = 0, штрихпунктирная линия) β – вибраций с учетом связи с парными вибрациями (κ_q = 0, сплошная кривая) и в общем случае с учетом спин-квадрупольных взаимодействий (пунктирная кривая).

Рис. 2. Зависимость р (Е0) от величины параметра эффективного заряда при различных значениях к, (заштрихованные области).