<u>с 323</u> Спр. Рнух., 1968, 31/т. 67 Е-28 В. 13.21, NS/6, с. 225-23У объединенный институт ядерных исследований

Station of the second

Пубна

P4 - 3354

Sepatephy teepethue(Kem eminn

1967.

И.А. Еганова , М.И. Широков

ДВУХТОЧЕЧНЫЕ ФУНКЦИИ

P4 - 3354

И.А. Еганова *, М.И. Широков

5220/1 mp.

ДВУХТОЧЕЧНЫЕ ФУНКЦИИ

Направлено в "Annalen der Physik"

Физический институт АН АзССР.

§1. Введение

Пусть частица с импульсом b k рассеивается на потенциале малого радиуса а .*Известно, что тогда рассеяние происходит преимущественио в состоянии с орбитальным моментом ℓ , если ka <<1. Аналогично рассеяние или излучение мягких фотонов хорошо описывается дипольным приближением, если размеры рассеивающей или излучающей системы малы (и нет специальных запретов). Математическая причина этих явлений заключается в том, что собственные функции оператора квадрата импульса k^2 с определенным орбитальным моментом- так называемые сферические функции Бесселя $j_{\ell}(x)$, x = kt - все обращаются в нуль в точке x = 0, кроме одной $-j_{0}(x)$. Более точно, $j_{\ell}(x) = x^{\ell}/(2\ell + 1)!!$, при x + 0

Полную систему собственных функций \tilde{k}^2 , обладающих аналогичным свойством по отношению к двум выделенным точкам (+d)_н (-d), мы назовём двухточечными функциями. Как окажется, только две первые функции этой системы не равняются нулю в точках (±d). Область их применения - задачи с потенциалами, сосредоточенными около двух точек. Например, рассмотрим задачу трех тел с таким гамильтонианом:

$$H = \sum_{i=1}^{3} \frac{P_i}{2m_i} + V(\vec{r}_1 - \vec{r}_2) + b_1 \delta(\vec{r}_3 - \vec{r}_1) + b_2 \delta(\vec{r}_3 - \vec{r}_2).$$
(1.1)

Под символом б в двух последних членах (к далее в этом введеник) следует понимать не б- функции Дирака, но потенциалы с очень ма-

лым радиусом а , но с большой глубиной U (ещё точнее: имеется в виду предел'при а→0, U→∞). После введения координат Якоби и отделения движения центра тяжести получим в случае m₁ = m₂ = m

$$H' = -\frac{\nabla_{d}^{2}}{4m} - \frac{\nabla_{r}^{2}}{2\mu_{2}} + V(2d) + b_{1}\delta(r+d) + b_{2}\delta(r-d). \quad (1.2)$$

3 десь $2d = r_{1}^{2} - r_{2}^{2}; \frac{1}{\mu_{1}} = \frac{1}{2m} + \frac{1}{m_{1}}; r = \frac{r_{1}^{2} + r_{2}^{2}}{2} - r_{3}^{2}$

(относительная координата частицы 3 и комплекса частиц 1 и 2). Гамильтониан (1.2) может, например, описывать рассеяние нейтрона на двух протонах 1 и 2, связанных некоторым эффективным потенциалом $V(\mathbf{r}_1 - \mathbf{r}_2)$ в молекулу водорода.

Пусть вместо молекулы имеем жесткую гантель (d фиксировано), тяжелую (m велико) и ориентированную вдоль оси Z , так что d_x = d_y = 0 . Тогда получаем задачу о движении частицы в поле двух δ -потенциалов:

$$H'' = -\frac{\nabla_{t}^{2}}{2m_{a}} + b_{1}\delta(\vec{r} + \vec{d}) + b_{2}\delta(\vec{r} - \vec{d}). \qquad (1.3)$$

Знание двухточечных функций позволяет сразу указать "почти все" собственные функции Н ". Ими являются все двухточечные функции, кроме первых двух: ведь они обращаются в нуль как раз там, где потенциал не равен нулю, так что для них Н " совпадает с к ²/2m₈ и его собственные значения равны просто к²/2m _в. Остальные собственные функции Н″ могут быть найдены как суперпозиции двух оставшихся двухточечных функций (поскольку двухточечные функции образуют полную систему). Если радиусы δ -потенциалов конечны и равны а 1 и а 2 , то можно ожидать, что рассеяние на них с хорошим приближением может быть описано с помощью всего двух волн. Условие успеха такого описания должно иметь вид ka1 ка2 «1 . При этом kd может быть любым. Собственные функции Ф_п(г; ; ;) задачи (1.3) могут быть испольдля нахождения собственных функций Н', см. (1.2). Посзованы кольку Н " входит в Н ' как составная часть, то их можно находить в виде разложения Борна-Оппенгеймера /1,2,3/

$$\Psi(\vec{r},\vec{d}) = \sum_{n} X_{n}(\vec{d}) \Phi_{n}(\vec{r},\vec{d}).$$

(1.4)

Подставив (1.4) в Н'Щ = ЕЩ , умножив полученное соотношение на Ф * и проинтегрировав по г , получим уравнение для Х (d)

Возможность точного решения задачи (1.3) с помощью двухточечных функций имеет и методическое значение для проверки эффективности приближенных методов решения задачи трех тел, см., например, ⁴⁴. Другое методическое применение эти функции могут найти в моделях теории поля. Пусть, например, имеем два электрона в разных осцилляторных ямах (ямы разделены расстоянием 2d), взаимодействующие дипольно с квантованным электромагнитным полем. Векторные двухточечные функции (см. § 3) позволяют получить точное решение задач этой модели тем же способом, как это было сделако для модели с одним осциллирующим электроном⁷⁵⁷.

§2. <u>Скалярные двухточечные</u> функции

1. Предварительное замечание. Существуют вытянутые сфероидальные координаты ξ , η , ϕ , в которых две точки являются выделенными. Соответствующая координатная сетка определяется 1) семейством софокусных эллипсоидов вращения с фокусами в точках $z = \pm d$; точке $\xi = 1$ соответствует эллипсоид, выродившийся в отрезок (-d, +d); 2) пересекающими их гиперболоидами вращения с фокусами в тех же точках,

 η -угол раскрытия; 3) семейством азимутальных плоскостей, проходящих через ось Z (см. (10.3.46) в^{/6/}). Выделенные точки соответствуют крайним значениям ξ и η : ξ =1, сов η = \pm 1 . В этих координатах оператор k^2 разделяется. Естественно проверить, не обладают ли искомым свойством соответствующие вытянутые сфероядальные функции $R_{nm}(\xi) S_{nm}(\eta) e^{im\phi}$, см.^{/6/}, гл. 11.3 и^{/7/}. Оказывается, что функции, у которых азимутальное число m не равно нулю, обращаются в нуль в точках сов η = \pm 1. Однако все же бесконечно много функций $R_{no} S_{no}$ при фиксированном k не обращаются в нуль в точке ξ =1. Поэтому вытянутые сфероидальные функции не являются "двухточечными".

2. Чтобы обеспечить ортонормированность и полноту искомой системы функций F , мы их построим с помощью унитарного преобразования U из известной полной и ортонормированной системы. В качестве последней возьмем систему из функций

$$i_{k\ell m}(\mathbf{r},\theta,\phi) = j_{\ell}(\mathbf{k}\mathbf{r})Y_{\ell m}(\theta,\phi); \quad j_{\ell}(\mathbf{k}\mathbf{r}) = J_{\ell} + \frac{1}{2}(\mathbf{k}\mathbf{r})/\sqrt{\mathbf{k}\mathbf{r}} \quad (2.1)$$

Соотношения ортонормировки и полноты для них имеют вид:

$$\int f^{*}_{k_{1}\ell_{1}m_{1}} (\mathbf{r},\theta,\phi) f_{k_{2}\ell_{2}m_{2}} (\mathbf{r},\theta,\phi) d^{3}x = \frac{\delta(k_{1}-k_{2})}{k_{1}^{2}} \delta_{\ell_{1}\ell_{2}} \delta_{m_{1}m_{2}}, \quad (2.2)$$

$$\int k^{2} dk \sum_{\ell,m} f_{k\ell m} (r_{1}, \theta_{1}, \phi_{1}) f_{k\ell m} (r_{2}, \theta_{2}, \phi_{2}) = \delta(\vec{x}_{1} - \vec{x}_{2})$$
(2.3)

Пусть k фиксировано и f означает строку из функций $f_{k\ell m}(r, \theta, \phi)$, $\ell = 0, 1, 2, ...; -\ell \le m \le \ell$. Пусть F - строка из искомых функций, взятых в той же точке t, θ, ϕ :

 $\mathbf{F} = \mathbf{f} \mathbf{U} \,. \tag{2.4}$

Сначала рассмотрим случай, когда выделенные две точки лежат на оси 7 : $d = \{d, 0, 0\}$, т.е. $\theta_d = 0$. $\phi_d = 0$. Поскольку все функции $f_{\ell m}$ с $m \neq 0$ равны нулю при $\theta = 0$ или $\theta = \pi$ (т.е. на всей оси 7), то фактически надо ввести новые функции только вместо функций $f_{\ell m}$.

$$F_{kLm}(\mathbf{r},\theta,\phi) = \sum_{\ell=m}^{\infty} f_{k\ell m}(\mathbf{r};\theta,\phi) U_{\ell \mathbf{i}}^{m}(\mathbf{k},\mathbf{d}); \qquad (2.5)$$

При т≠′ 0 можно положить U^m = δ_l

3. Покажем; что по крайней мере две функции F не должны обращаться в нуль в точках (+ d). Прежде всего заметим, что функции полной системы не могут все одновременно исчезать вблизи одной или нескольких точек: тогда по ним нельзя было бы разложить функцию, ие исчезающую вблизи этих точек.

Рассмотрим функцию

$$\phi_{k}(\mathbf{r},\theta,\phi) = \sum_{\mathbf{L},\mathbf{m}} F_{k\mathbf{L}\mathbf{m}}(\mathbf{r},\theta,\phi) C(\mathbf{L},\mathbf{m}) .$$
(2.8)

Она может принимать произвольные значения на сфере радиуса d (однако значения её при других г определяются её значениями на этой сфере). В частности, в качестве значений ϕ_k в точках $(\pm d)$ могут быть взяты произвольные числа. Если в точке $(\pm d)$ только одна функция $F_{10} \neq 0$, то $\phi(+d) = F_{10}(d)C(1,0); \phi(-d) = F_{10}(-d)C(1,0)$. Отсюда следует, что отношение $\phi(d)/\phi(-d)$ тогда не произвольно, но строго фиксировано, поскольку $F_{10}(d)$ и $F_{10}(-d)$ являются двумя конкретными значениями вполне определенной функции. Только если две функции F_{10} и F_{20} не равны нулю в точках $(\pm d)$, система

$$\phi(\vec{d}) = F_{10}(\vec{d})C_1 + F_{20}(\vec{d})C_2 , \qquad (2.7)$$

$$\phi(-\vec{d}) = F_{10}(-\vec{d})C_1 + F_{20}(-\vec{d})C_2$$

имеет решения для C_1 и C_2 при произвольных $\phi(\vec{d})$ и $\phi(-\vec{d})$. Конечно, детерминат (2.7) должен быть неравным нулю.

4. Два набора действительных чисел

$$f_{00}(\vec{d}), f_{10}(\vec{d}), f_{20}(\vec{d}), \dots$$

 $f_{00}(-\vec{d}), f_{10}(-\vec{d}), f_{20}(-\vec{d}), \dots$
(2.8)

можно рассматривать как проекции двух векторов (в гильбертовом пространстве). В сферических координатах $\vec{d} = \{ d, 0, 0 \}$, $-\vec{d} = \{ d, \pi, 0 \}$. Из-за $Y_{\ell_0}(\pi, 0) = (-1)^{\ell} Y_{\ell_0}(0, 0)$ векторы (2.8) отличаются только знаками

7

нечетных компонент. В геометрической интерпретации задача U заключается в таком повороте векторов (2.8), чтобы только две проекции у каждого из повернутых векторов оказались неравными нулю. Все столбцы бесконечной матрицы U должны быть ортогональными и нормированными и строки тоже^{/8/}. Тогда U унитарна и функции F ортонормированны и составляют полную систему.

Первые два столбца U обязательно должны быть линейными суперпозициями векторов (2.8). Только тогда $F_{30}(\pm \vec{d})$, $F_{40}(\pm \vec{d})$ и т.д. будут равняться нулю. Действительно, $\sum_{l} f_{l_0}(\pm \vec{d}) U_{l_3} = 0$, если третий столбец U_{l_3} ортогонален к обоим векторам (2.8). Это так и будет, если первые два столбца унитарной матрицы U являются суперпозициями (2.8), причём ортогональными и нормированными. В качестве таких возьмем векторы

$$g_{+} = \{ N_{+} [f_{0}(\vec{d}) + f_{0}(-\vec{d})] \} = \{ 2N_{+} f_{00}(\vec{d}), 0, 2N_{+} f_{20}(\vec{d}), 0, ... \},$$

$$g_{-} = \{ N_{-} [f_{0}(\vec{d}) - f_{0}(-\vec{d})] \} = \{ 0, 2N_{-} f_{10}(\vec{d}), 0, ... \}.$$
(2.9)

Нормировочные коэффициенты вычисляются с помошью формулы (1) в /9/:

$$N_{+}^{-2} = 4 \sum_{n=0}^{\infty} f_{2n,0}^{2} (d) = \frac{1}{\pi} \sum_{n=0}^{\infty} (4n+1) j_{2n}^{2} (kd) = \frac{1}{\pi^{2}} (1 + \frac{\sin 2kd}{2kd}),$$

$$N_{-2}^{-2} = + \sum_{n=0}^{\infty} f_{2n+1,0}^{2} (d) = \frac{1}{-2} (1 - \frac{\sin 2kd}{2kd}).$$
(2.10)

Заметим, что можно положить равными нулю все чётные элементы нечётных столбцов, как это сделано у g_+ , а также все нечётные элементы чётных столбцов, как у g_- . Тогда все нечётные столбцы будут ортогональны к чётным и достаточно решить "половину задачи": найти унитарную матрицу U_+ с действительным вектором $g^+=\{2N_+f_{00}(\overrightarrow{d}), 2N_+f_{20}(\overrightarrow{d}), ...\}$ в качестве первого столбца. Для матрицы конечного порядка это можно сделать, например, следующим сбразом.

Возможно выписать самый общий вид ортогональной матрицы п-ого порядка, т.е. выразить все её элементы через п(n-1)/2 независимых параметров. Такая матрица может быть получена как произведение матриц вращения в $_{k+1,k}(\theta)$ в плоскости (k+1,k) на угол Эйлера θ , см. $^{/10/}$, гл. 1X, 81. Возьмем матрицу частного вида:

 $g = g_{n,n-1}(\theta_{n-1}) \dots g_{48}(\theta_{8}) g_{82}(\theta_{2}) g_{21}(\theta_{1})$

		1	2	3	4
	1	$\cos \theta_1$	$-\sin\theta_1$	0	0
	2	$\sin\theta_1 \cos\theta_2$	$\cos \theta_1 \cos \theta_2$	$-\sin\theta_2$	0
	3	$\sin\theta_1 \sin\theta_2 \cos\theta_8$	$\cos\theta_1\sin\theta_2\cos\theta_3$	$\cos\theta_2 \cos\theta_8$	(2.11) $-\sin\theta_3 \dots$ $\cos\theta_8 \cos\theta_4 \dots$
-	4	$\sin\theta_1\sin\theta_2\sin\theta_3\cos\theta_4$	$\cos\theta_1 \sin\theta_2 \sin\theta_3 \cos\theta_4$	$\cos\theta_2 \sin\theta_3 \cos\theta_4$	

Элементы g_{ik} всех столбцов, кроме первого, имеют такой общий вид:

$$g_{ik} = \begin{cases} 0 & \Pi pH & i < k - l, \\ -\sin \theta_{k-1} & \Pi pH & i = k - l, \\ \cos \theta_{1} \sin \theta_{2} \dots \sin \theta_{i-1} \cos \theta_{i} & \Pi pH & n > i > k - l, \\ \cos \theta_{1} \sin \theta_{2} \dots \sin \theta_{i-1} \sin \theta_{i} & \Pi pH & i = n. \end{cases}$$

$$(2.12)$$

Первый же столбец состоит из проекций x_1 , x_2 ,... произвольного единичного вектора в сферических координатах в п-мерном пространстве. Если теперь приравнять эти проекции элементам первого столбца g^+ матрицы U_+ и заменить в (2.12) углы θ_1 , θ_2 , ... их выражениями через $N_+ f_{00}(\vec{d})$, $N_+ f_{20}(\vec{d})$ и т.д., то получим пример ортогональной (т. е. унитарной и действительной) матрицы с заданным первым столбцом.

Бесконечную унитарную матрицу можно строить таким способом. Присоединим к g и g другие столбцы, про которые известно, что они вместе с g и g образуют полный базис нашего гильбертова

пространства. В качестве таковых возьмем векторы $e_8 = \{0,0,1,0,0,...\}, e_4 = \{0,0,0,1,0,...\}$ и т.д. . Первые два вектора этого базиса — $e_1 = \{\delta_{k1}\}$, $e_2 = \{\delta_{k2}\}$ не берем потому, что они совпадают с g_+ и g_- в частном случае kd = 0 (а нам нужны векторы, линейно независимые от g_+ и g_-). Затем вместо третьего столбца матрицы

$$\begin{pmatrix}
 g_{+0} & 0 & 0 & 0 & \dots \\
 0 & g_{-1} & 0 & 0 & \dots \\
 g_{+2} & 0 & 1 & 0 & \dots \\
 0 & g_{-8} & 0 & 1 & \dots \\
 \dots & \dots & \dots & \dots
 \end{pmatrix}$$
(2.13)

берём линейную суперпозицию g_+ , g_- и e_8 , ортогональную к g_+ и $g_$ и нормированную. То же делаем с четвёртым столбцом и т.д., см. /11/, Такая последовательная ортогонализация (способ Шмидта) дает нам матрицу U такую, что U⁺ U = 1 . Однако бесконечная матрица будет унитарной, если ещё и UU⁺ = 1 /8/. Мы знаем, что столбцы полученной матрицы $g_+ \equiv \vec{U}_1$; $g_- \equiv \vec{U}_2$; $\{U_{k8}\} \equiv \vec{U}_8$,.... составляют полную систему. Тогда проекция любого вектора й на эту систему $\sum_{n=1}^{\infty} \vec{U}_n(\vec{U}_n \vec{h})$ должна совпадать с й. Если $\vec{h} = \{1,0,0,...\}$, то получаем

 $\mathbf{h}_{\mathbf{k}} = \sum_{\mathbf{n}} U_{\mathbf{k}\mathbf{n}} \sum_{\boldsymbol{\ell}} U_{\mathbf{\ell}\mathbf{n}}^{*} \mathbf{h}_{\boldsymbol{\ell}} = \sum_{\mathbf{n}} U_{\mathbf{k}\mathbf{n}} U_{\mathbf{i}\mathbf{n}}^{*},$

что должно равняться δ_{k1} . Беря в качестве \vec{h} векторы $\vec{e_2} = \{\delta_{k2}\}, \vec{e_3}$ и т.д., убеждаемся, что для построенной матрицы должна быть справедлива система соотношений UU⁺=1.

Может быть, полезно будет указать простую унитарную матрицу U₊ восьмого порядка, см. (2.14). Элементы g⁺ обозначены цифрами от 1 до 8, цифра с минусом обозначает соответствующий элемент, взятый с обратным знаком. Заметим, что матрицу бо́льшего порядка по способу (2.14) построить нельзя. Конкретный выбор U должен определяться деталями задачи. Для многих задач вообще нужны только функции F₁₀ и F₂₀. Для их нахождения достаточно знать только два первые столбца U, т.е. g₁ и g₂.

	1							``	
	1	-2	-3	-4	-5	-6	-7	-8 \	
1	2	1	-4	3	-6	5	-8	7	
	3	4	1	-2	7	-8	-5	6	
	4	-3	2	1	-8	-7	6	5	
	5	6	-7	8	1	-2	3	-4	
	6	-5	8	7	2	1	-4	-3	
	7	8	5	-6	-3	4	1	-2	
	8	-7	-6	-5	4	3	2	1	(2.14)
	1								

Приведем значения $F_{10}(\pm d)$ и $F_{20}(\pm d)$

$$F_{10}(\vec{d}) = 2N_{+}(f_{00}^{2} + f_{20}^{2} + ...) = \frac{1}{2N_{+}} = F_{10}(-\vec{d}),$$

$$F_{20}(\vec{d}) = 2N_{-}(f_{10}^{2} + f_{80}^{2} + ...) = \frac{1}{2N_{-}} = -F_{20}(-\vec{d}),$$
(2.15)

Детерминант (2.7) оказывается равным – $\frac{1}{2N+N} \neq 0$.

Отметим еще, что функции $F_{kLm}(r,\theta,\phi)$, построенные по формуле (2.5), являются суперпозицией функций $f_{klm}(r,\theta,\phi)$ с одним и тем же k и поэтому являются собственными функциями оператора k^2 .

5. В качестве исходной системы функций для построения двухточечных функций можно брать и другую полную ортонормированную систему, например, вытянутые сфероидальные функции. Однако $f_{k\ell m}(r, \theta, \phi)$ изучены лучше других, в частности, для них известны суммы вида (2.10). Функции с $m \neq 0$ уже обращаются в нуль на оси Z , и задача сводится к построению матрицы U с двумя входами (двумерной). Хотя в случае вытянутых сфероидальных функций точки ($\pm d$) могут быть сделаны начальными точками координат ($\xi = 1$, соз $\eta = \pm 1$), но их значения и в этих точках надо находить по таблицам (как и значения ј $_{\theta}$ (kd)).

6. Пусть $\vec{d} = \{d, \theta_d, \phi_d\}$ и $-\vec{d} = \{d, \pi - \theta_d, \pi + \phi_d\}$. Функции, обращающиеся в нуль в этих двух точках (кроме первых двух), можно построить точно так же, как и в случае $\vec{d} = \{d, 0, 0\}$, если взять в качестве исходных

10

1. Сначала рассмотрим двухточечные суперпозиции магнитных мультиполей. В точках (+ d) отличны от нуля только

$$\vec{A}_{k,L,\pm 1}^{(m)}(\vec{d}) = \ddagger \sqrt{\frac{2L+1}{8\pi}} j_{L}^{(kd)} \vec{\xi}_{\pm 1} \equiv a_{k,L,\pm 1}^{(m)}(\vec{d}) \vec{\xi}_{\pm 1}, \quad (3.5)$$

$$\vec{A}_{k,L,\pm 1}^{(m)}(\vec{-d}) = (-1)^{L} \vec{A}_{k,L,\pm 1}^{(m)}(\vec{d}).$$

Поэтому при M=0 и | M | > 1 матрицу U(m) можно брать как единичную. При M = ± 1

$$\stackrel{\rightarrow}{F} \stackrel{(m)}{\underset{k, Z, \pm 1}{\overset{(r, \theta, \phi)}{\overset{=}{\overset{\sum}}}} \sum_{L} \stackrel{\rightarrow}{\underset{k, L, \pm 1}{\overset{(r, \theta, \phi)}{\overset{(r, \theta, \phi)}{\overset{$$

 $\vec{A}_{k,L,+1}^{(m)}$ ($\vec{-d}$) и $\vec{A}_{k,L,-1}^{(m)}$ ($\vec{-d}$) параллельны $\vec{\xi}_{+1}$ и $\vec{\xi}_{-1}$, задача матрицы U-так повернуть векторы { $a_{L,+1}^{(m)}$ (\vec{d}) } и { $a_{L,-1}^{(m)}$ (\vec{d}) }, составленные из скалярных величин a, фигурирующих в (3.5), чтобы только по две проекции у повернутых векторов оказались не равными нулю. Заметим, что $a_{L,-1}^{(m)}$ от $a_{L,+1}^{(m)}$ отличается только знаком, см. (3.5), поэтому U(-1,m) = U(1,m) = U(m). Матрицу U(m) строим так же, как в § 2. В качестве элементов первых двух столбцов берем:

$$U_{L1}(m) = N_{1}^{(m)} \left[a_{L,1}^{(m)} \left(d \right) + a_{L,1}^{(m)} \left(-d \right) \right], \qquad (3.7)$$

(m)
3 Десь N₂ =
$$\sqrt{2}$$
 N₋, a N^{(m)-2} = N⁻²/2 - j²₀ (ν d)/ π ,

 $U_{(m)} = N^{(m)} \begin{bmatrix} a^{(m)} & \stackrel{\rightarrow}{d} & a^{(m)} & \stackrel{\rightarrow}{d} \end{bmatrix}$

см. (2.10)

В точках (± d) отличны от нуля только

$$\vec{F}_{2,\pm 1}^{(m)}(\vec{d}) = \frac{1}{2N_{1}^{(m)}} \vec{\xi}_{\pm 1} = \vec{F}_{1,\pm 1}^{(m)}(\vec{-d}), \qquad (3.8)$$

$$\vec{F}_{2,\pm 1}^{(m)}(\vec{d}) = \frac{1}{2N_{2}^{(m)}} \vec{\xi}_{\pm 1} = -\vec{F}_{2,\pm 1}^{(m)}(\vec{-d}).$$

2. Электрические двухточечные функции. В точках (±d) не равны нулю только

$$\vec{A}_{k \ L, \pm 1}^{(\bullet)}(\vec{d}) = \sqrt{\frac{1}{8\pi(2L+1)}} \left[(L+1)_{j \ L-1}(kd) - L_{j \ L}(kd) \right] \vec{\xi}_{\pm 1} = \\ = a_{k \ L, \pm 1}^{(\bullet)}(\vec{d}) \vec{\xi}_{\pm 1}; \qquad (3.10)$$

$$\vec{A}_{k \ L \ M}^{(\bullet)}(\vec{-d}) = (-1)^{L+1} \vec{A}_{k \ L \ M}^{(\bullet)}(\vec{d}), \quad M = 0, \pm 1.$$

Опять при |M| > 1 матрицы U(M,e) можно считать единичными. Первые столбцы матриц U(0,e) и U(1,e)=U(-1,e) стоятся точно так же, как и у U(m) , но из величин $a {(e) \ (\pm \vec{d})}_{kLo} = u a {(e) \ (\pm \vec{d})}_{kL,\pm 1} (\pm \vec{d})$, соответственно. Выпишем значения $\vec{F}(e)$ с Z = 1,2 в точках $(\pm \vec{d})$:

$$\vec{F}_{10}^{(\bullet)}(\vec{d}) = \frac{1}{2N_{1}^{0(\bullet)}} \vec{\xi}_{0} = \vec{F}_{10}^{(\bullet)}(-\vec{d}), \qquad (3.11)$$

$$\vec{F}_{1,\pm 1}^{(\bullet)} (\vec{d}) = \frac{1}{2N_{1}^{1(\bullet)}} \vec{\xi}_{\pm 1} = \vec{F}_{1,\pm 1}^{(\bullet)} (\vec{d}),$$
(3.12)

$$\vec{F}_{20}^{(e)}(\vec{d}) = \frac{1}{2N^{0(e)}} \vec{F}_{0} = -\vec{F}_{20}^{(e)}(-\vec{d}), \qquad (3.13)$$

$$\vec{F}_{2,\pm 1}^{(o)} (\vec{d}) = \frac{1}{2N_{2}^{1(o)}} \vec{\xi}_{\pm 1}^{*} = -\vec{F}_{2,\pm 1}^{(o)} (\vec{-d}).$$
(3.14)

3. Обозревая (3.8) и (3.11)-(3.14), замечаем, что у нас получилось больше функций, неравных нулю в точках $(\pm \vec{d})$, чем нужно. Для разложения произвольного векторного поля достаточно, чтобы в этих точках не обращались в нуль шесть функций (в скалярном случае достаточно было двух). У нас получилось, что в точках $(\pm \vec{d})$ по $\vec{\xi}_{0}$ направлено как раз два вектора: $\vec{F}_{10}^{(e)}$ и $\vec{F}_{20}^{(e)}$. А по $\vec{\xi}_{+1}$ направлено четыре: $\vec{F}_{1,1}^{(m)}$, $\vec{F}_{2,1}^{(m)}$ и $\vec{F}_{2,1}^{(e)}$. Оказывается, что из $\vec{F}_{21}^{(m)}$ и $\vec{F}_{21}^{(e)}$ можно образовать две суперпозиции:

$$\vec{a}_{21}^{(-)}(r,\theta,\phi) = a_{z} \vec{F}_{21}^{(m)}(r,\theta,\phi) + \beta_{z} \vec{F}_{21}^{(o)}(r,\theta,\phi),$$

$$\vec{a}_{21}^{(+)}(r,\theta,\phi) = \gamma_{z} \vec{F}_{21}^{(m)}(r,\theta,\phi) + \delta_{z} \vec{F}_{21}^{(o)}(r,\theta,\phi),$$

$$(3.15)$$

такие, что 1) $\vec{a}_{21}^{(-)}$ будет равно нулю в точках $(+\vec{d})$; 2) вместе с тем функции $\vec{a}^{(-)}$ и $\vec{a}^{(+)}$ будут нормированы, как и $\vec{F}^{(m)}$ и $\vec{F}^{(e)}$. Для этого коэффициенты суперпозиции в (3.15) достаточно выбрать такими:

$$\alpha_{z} = \delta_{z} = N_{z}^{1(m)} / \sqrt{(N_{z}^{1(m)})^{2} + (N_{z}^{1(e)})^{2}};$$

- $\beta_{z'} = \gamma_{z} = N_{z}^{1(0)} / \sqrt{(N_{z}^{1(m)})^{2} + (N_{z}^{1(e)})^{2}}.$

Аналогичную суперпозицию надо образовать и для M = -1. Заметим; что в (3.15) можно считать, что либо Z принимает только два значения Z = 1 и Z = 2, либо все значения.

Таким образом, получена такая полная ортонормированная система векторных двухточечных поперечных функций $\stackrel{a}{a}_{kZM}(r, \theta, \phi)$ для случая, когда $\stackrel{d}{d}$ направлено по оси Z. При |M| > 1 они совпадают с электрическими и магнитными мультиполями (3.1) и (3.2). При M = 0они равны $\stackrel{a}{A}_{kLo}^{(m)}$ и $\stackrel{f}{k_{ZO}} = \sum_{L} \stackrel{a}{A}_{kLo}^{(e)} U_{LZ}(0,e)$. При M = 0они равны $\stackrel{a}{a}_{Z,\pm 1}^{(-)}(r, \theta, \phi)$ и $\stackrel{a}{a}_{Z,\pm 1}^{(+)}(r, \theta, \phi)$. Из них в точках $(\stackrel{+}{\pm}\stackrel{d}{d})$ не равны нулю только $\stackrel{f}{F}_{10}^{(e)}$, $\stackrel{f}{F}_{CO}^{(e)}$ (см.(3.11) и (3.13)) и

$$\stackrel{+}{a}_{1,\pm 1}^{(+)}(\vec{d}) = \frac{\left[\binom{N_{1}}{1}^{2} + \binom{N_{1}}{1}^{2} + \binom{N_{1}}{1}^{2}\right]^{\frac{N}{2}}}{2N_{1}^{1(m)}N_{1}^{1(m)}} \stackrel{+}{\xi}_{\pm i} = \stackrel{+}{a}_{1,\pm 1}^{(+)}(-\vec{d}), \qquad (3.16)$$

$$\overset{(+)}{a}_{2,\pm 1} (\vec{d}) = \frac{\lfloor (N_2) + (N_2) \rfloor}{2N_2^{1(m)}N_2} \overset{(-)}{\xi}_{\pm 1} = -\overset{(+)}{a}_{2,\pm 1} (-\overset{-}{d}).$$

В заключение авторы пользуются случаем выразить благодарность Н.Я.Виленкину за обсуждение работы. Один из авторов (М.Ш.) благодарит В.Б.Беляева и Б.Н.Захарьева за обсуждение вопросов приложения двухточечных функций.

Литература

- 1. M.Born, J.Oppenheimer. Ann.d.Phys.,84, 457 (1927);
 - R. de L.Kronig. Z.f. Phys., 50, 347 (1928).

2. А.С.Давыдов. Квантовая механика. \$116, ГИФМЛ, Москва, 1963.

3.Л.И.Пономарев. Квантовомеханическая задача 3-х тел, взаимодействующих по закону Кулона. Препринт ОИЯИ, Р-4-3011, Дубиа, 1966.

4. L.Eyges. Journ. Math. Phys., 6, 1320 (1965).

5. N.G. van Kampen. Dan.Mat.Fys.Medd., 26. No 15 (1951).

6. Ф.М.Морс и Г.Ф.Фешбах. Методы теоретической физики, II, ИЛ, Москва, 1960.

7. C.Flammer, Spheroidal wave functions. Stanford, California, 1957.

(Имеется перевод: К.Фламмер. Таблицы волновых сфероидальных функций, ВЦ АН СССР, Москва, 1962).

8. В.И.Смирнов. Курс высшей метематики, т.v, гл. у, \$2, п.164. ГИФМЛ, Москва, 1959.

9. Г.Н.Ватсон. Теория Бесселевых функций, ч. 1, гл. V. п. 5.51. ИЛ, Москва, 1949.

10. Н.Я.Виленкин. Специальные функции и теория представлений групп. "Наука", Москва, 1965.

11. Е.Вигнер. Теория групп, гл. 3, ИЛ, Москва, 1961.

12. A.R.Edmonds. CERN 55-26, Geneva, 1955.

(Имеется перевод: А.Эдмондс. Угловые моменты в квантовой механике; в сб. "Деформация атомных ядер", ИЛ, Мооква, 1958).

В. Гайтлер. Квантовая теория излучения, гл. 1, 8 6, ИЛ, Москва, 1956.
 М. Роуз. Поля мультиполей. 8 12, ИЛ, Москва, 1957.

Рукопись поступила в издательский отдел 29 мая 1967 г.