ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

and the state of the

АБФРАТФРИЯ ТЕФРЕТИЧЕККОЙ ФИЗИК

M-197

Дубна

P4 · 3329

Л.А. Малов, В.Г. Соловьев, И.Д. Христов

1967, 7. 6, 6. 6, 0.1186-1196

ПАРНЫЕ КОРРЕЛЯЦИИ СВЕРХПРОВОДЯЩЕГО ТИПА ДЛЯ ЯДЕР В ОБЛАСТИ 100 < A < 256

1967,

Л.А. Малов, В.Г. Соловьев, И.Д. Христов

· ~ / 1+05

ПАРНЫЕ КОРРЕЛЯЦИИ СВЕРХПРОВОДЯЩЕГО ТИПА ДЛЯ ЯДЕР В ОБЛАСТИ 100 < A < 256

Направлено в ЯФ

При проведении вычислений, связанных с парными корреляциями нуклонов сверхпроводящего типа, принимаются во внимание в сферических ядрах уровни среднего поля, соответствующие последней незаполненной оболочке, а в деформированных ядрах- существенно большее число уровней. Это приводит к различным зиачениям констант парного взаимодействия G_N (нейтронная система) и G_Z (протонная система) для сферических и деформированных ядер. Возникает вопрос - можно ли парные корреляции во всех ядрах в области 100 < A < 256 описать с одними и теми же значениями G_ZA и G_NA (при одинаковом количестве принимаемых во внимание уровней среднего поля) или же для каждой группы ядер следует использовать свои значения этих констант.

В настоящей работе рассчитаны парные энергии и из сравнения их с экспериментальными значениями, полученными из разностей масс ядер, найдены величины G_N и G_Z. Приведены схемы одночастичных уровней, рассчитанные с модифицированным потенциалом Нильссона, а также корреляционные функции и химические потенциалы для основных состояний нечетных и четно-четных ядер.

При изучении свойств средних и тяжелых ядер широко используются схемы одночастичных уровней среднего поля потенциала Нильссона^{/1/}, приведенные в ^{/2/}. Ввиду того, что эти схемы не дают правильных квантовых чисел аля основных состояний некоторых нечетных ядер, то в ^{/3/} и ряде других работ проведены дополнительные по сравнению с ^{/2/} сдвиги отдельных уровней и подоболочек. Собственные волновые функции и собственные значения гамильтониана среднего поля необходимы для вычисления энергий и структуры возбужденных состояний ядер. Если при расчетах сверхтекучих характеристик ядер существенна плотность одночастичных уровней вблизи поверхности Ферми, то при вычислении однофононных возбужденных состояний большое значение имеют волновые функции и энергии для большого числа одночастичных уровней ^{/4, 5/}. Положение одночастичных уровней среднего поля особенно сильно влияет на

расчеты (с учетом взаимодействия квазичастии с фононами) сравнительно сильно возбужденных состояний в нечетных деформированных ядрах ^{/6,7/}. Поэтому необходимо провести уточнение схем одночастичных уровней среднего поля

Недавно в $^{/8/}$ была проведена модификация потенциала Нильссона путем введения дополнительного члена, пропорционального $<1^2 > = \frac{N(N+3)}{2}$, т.е. пропорционального квадрату оператора момента, усредненного по состояниям с данным N . Учет этого добавочного члена позволил построить схему одночастичных уровней для ядер в области актинидов с одними и теми же параметрами μ и \mathcal{R} для всех N и уменьшить, по сравнению с $^{/2/}$, количество сдвигов отдельных подоболочек и число параметров для ядер в области 150 < A < 190. Значения параметров потенциала Нильссона, приведенные в таблице 1, близки к данным в $^{/8/}$. Они выбраны так, чтобы получить наилучшее описание основных состояний нечетных N и нечетных Z деформированных ядер.

На рис. 1-4 приведены схемы одночастичных уровней. Каждое состояние характеризуется значениями прекции К спина на ось симметрии ядра и четностью π , а также асимптотическими квантовыми числами N $n_{\pm} \Lambda$ (N - полное число осцилляторных квантов, n_{\pm} - число осцилляторных квантов вдоль оси симметрии ядра, Λ - проекция углового момента на ось симметрии ядра). Энергии одночастичных состояний даны в единицах $\hbar \omega_0 = 41 A^{-1/3}$, параметр деформации $\epsilon \approx \delta + 1/6 \delta^2$. Необходимость приведения этих схем связана с тем, что они несколько лучше, чем схемы в $^{/2/}$, представляют уровни среднего поля и являются значительно более полными.

На рис. 1 не поместились состояния с Z < 28 ; положение этих подоболочек при $\epsilon = 0$ следующее: $f_{7/2} - 4, 2 \ theta \omega_0$, $d_{3/2} - 3, 7 \ theta \omega_0$, $s_{1/2} - 3, 5 \ theta \omega_0$, $u \ d_{5/2} - 3, 37 \ theta \omega_0$, Положение подоболочек с N < 50, дополняющих рис. 2, является следующим: $g_{9/2} - 5, 1 \ theta \omega_0$, $p_{1/2} - 4, 78 \ theta \omega_0$, $f_{5/2} - 4, 7 \ theta \omega_0$, $p_{3/2} - 4, 6 \ theta \omega_0$, $f_{7/2} - 4, 24 \ theta \omega_0$. Все расчеты для сферических ядер проведены по схемам, данным на рис. 1 и 2, при $\epsilon = 0$ за исключением в нейтронной системе подоболочек $f_{15/2}$ и $i_{13/2}$, первая из которых повышена на 0,25 $\ theta \omega_0$, а вторая – на 0,1 $\ theta \omega_0$.

Вышеприведенные схемы одночастичных уровней могут служить основой при проведении различных расчетов, оценок и при интерпретации экспериментальных данных. В некоторых вычислениях, вероятно, придется проводить дополнительные смещения как подоболочек, так и отдельных уровней. Особенно

большие изменения в положении подоболочек проводятся при вычислении уровней сферических ядер (см., например, ^{/9-12/}). Эти схемы могут оказаться также полезными для проведения сравнения с одночастичными уровнями потенциала Вудса-Саксона (см., например, ^{13,14,15/}).

Взаимодействия, приводящие к парным корреляциям сверхпроводящего типа, определяются двумя константами: G_N для нейтронной системы и G_Z - для протонной. Расчеты для протонной и нейтронной систем проводятся независимо. Значения этих констант получают из сравнения величии парных энергий, рассчитанных по формуле (для нейтронной системы)

$$P_{N} = \frac{1}{4} \{ 3 \& (Z, N-1) \} + \& (Z, N+1) - 3 \& (Z, N) - \& (Z, N-2) \}$$
(1)

со значениями Р_N, полученными из экспериментальных данных по массам ядер. Здесь б(Z,N) – энергии ядер, вычисленные по формулам теории парных корреляций ⁽¹⁶⁾ или экспериментальные значения масс ядер, взятые из ⁽¹⁷⁾. Рассматриваемые ядра разбиты на области в зависимости от равновесной деформации є ядер в основных состояниях (см. Таблицу 2).

Результаты сравнения рассчитанных значений парных энергий с полученными из экспериментальных данных по разностям масс ядер приведены на рис.5,6. Расчеты парных энергий выполнены для ядер в области 150 < A < 256 со следующими значениями констант:

$$G = \frac{23}{A} \quad M \ni B, \qquad (2)$$
$$G = \frac{27}{A} \quad M \ni B.$$

Расчеты в области 100 < A < 150 выполнены с константами

$$G_{N} = \frac{20}{A} \quad M \ni B, \quad (3)$$

$$C_{z} = \frac{23}{A} \quad M \ni B,$$

т.е. в области средних ядер константы уменьшаются и происходит сближение значений констант G_N и G_Z . Уменьшение констант G_N и G_Z по сравнению с расчетами в /18,18/ связано с тем, что в настоящих расчетах суммирование проводилось по 42-43 уровням среднего поля вместо 36 в /18,18/. Можно улучшить согласие теории с экспериментом, если значения констант варьировать в интервалах: в области 150 < A < 256

$$G_{N} = \frac{22,5 \pm 0,5}{A} M_{\Im B}$$
, $G_{Z} = \frac{26,5 \pm 0,5}{A} M_{\Im B}$, (2)

в области 100 < A < 150

$$G_N = \frac{19,5\pm0,5}{A} M_{\Im B}$$
, $G_Z = \frac{22,5\pm0,5}{A} M_{\Im B}$. (3)

В переходных областях ядер, где равновесные деформации меняются от ядра к ядру, энергия, связанная с перестройкой структуры одного ядра по сравнению с другим (см., например, ^{/19/}), входит в парную энергию, если расчет проводить по формуле (1). В таких случаях лучше пользоваться формулой

$$P_{N} = \frac{1}{2} \left\{ 2 \tilde{\varepsilon} (Z, N-1) - \tilde{\varepsilon} (Z, N) - \tilde{\varepsilon} (Z, N-2) \right\}.$$
(4)

При расчетах по (4) наблюдается уменьшение парных энергий у ядер, имеющих магические эначения N или Z .

Из сравнения, проведенного на рис. 5,6, видно, что получено удовлетворительное согласие между расчетными и экспериментальными значениями парных энергий. Возможность описания парных энергий с одними и теми же значениями констант G_NA и G_ZA в области ядер 150 < A < 256, состоящей из деформированных и сферических изотопов, позволяет подтвердить вывод, что приближение G = const является достаточно хорошим. Кроме того, это обстоятельство создает более надежную основу для расчета характеристик ядер переходных от деформированных к сферическим внутри области 150 < A < 256.

На основе формул теории парных корреляций сверхпроводящего типа (см., например, ^{/16,18/})рассчитаны корреляционные функции и химические потенциалы для основных состояний четно-четных и нечетных А ядер в области 100 < A<256. В расчетах использованы уровни среднего поля, данные на рис. 1-4, и значения G_N и G_Z, определенные (2') и (3'). Результаты расчета пред-

ставлены в виде таблиц 2 и 3, где приведены корреляционные функции С(Z+1) и химические потенциалы λ (Z+1) систем, состоящих из четного числа протонов, и вычисленных с учетом эффекта блокировки С(Z) и λ (Z) для основных состояний систем, состоящих из нечетного числа протонов, и равновесные деформа ции є соответствующих ядер. Величины корреляционных функций С(Z+1). C(Z) (C(N+1), C(N)) для деформированных ядер, приведенные в таблицах 2 и 3, согласуются с величинами, полученными в /3,4,5,20/. Что касается величин корреляционных функций для сферических ядер, то тут существует довольно большой разнобой. В ряде работ, например, в /12/ получено, что корреляционные функции для определенного значения N или Z сильно меняются при переходе от одной схемы одночастичных уровней к другой. Полученные нами значения корреляционных функций для сферических ядер являются наибольшими по сравнению с другими работами: они наиболее близки к корреляционным функциям, приведенным в /10/. Нам кажется, что в ряде работ были взяты заниженные значения констант G_N и G₂, что привело к слишком малым величинам корреляционных функций.

Значения корреляционных функций медленно растут с уменьшением А . Они обращаются в нуль для ядер с числом нейтронов или протонов, равным магическим числам. Вследствии эффекта блокировки корреляционные функции для основных состояний нечетных систем меньше корреляционных функций систем, состоящих из четного числа нуклонов. Для сферических ядер (кроме близких к магическим) это уменьшение составляет (10-15) %, для деформированных ядер - (15 - 30) %. Слишком большое уменьшение С(N) по сравнению с С(N+1) , которое наблюдается в отдельных случаях, связано с неточностью использованного математического метода.

Если корреляционные функции в большинстве случаев мало меняются при переходе от одного ядра к другому, то уменьшение полной энергии нейтронной (протонной) системы из-за парных корреляций, т.е. величина $\mathscr{E}(G=0)-\mathscr{E}(G_N)$ зависит от изменений A , особенно в области сферических ядер. Она меняется от нуля до двух-трех Мэв вблизи магических чисел, увеличивается до двух Мэв для ядер переходной области и до (4-5) Мэв при N=70-74. В области деформированных ядер величина $\mathscr{E}(G=0)-\mathscr{E}(G_N)$ флюктунрует около соответствующих величин C(N+1) (или C(Z+1)). В среднем опускание полной энергии из-за парных корреляций в сферических ядрах больше, чем в деформированных.

Данные в настоящей работе схемы одночастичных уровней, величины кор реляционных функций и химических потенциалов могут быть легко использованы для проведения оценок многих физических процессов, происходящих в сферических и деформированных ядрах.

В заключение выражаем глубокую благодарность В.В.Пашкевичу за помощь при проведении численных расчетов.

Литература

- 1. S.G. Nilsson, Mat. Fys. Medd. Vid. Selsk. 29, n.19 (1955).
- 2. B.R. Mottelson, S.G. Nilsson, Mat. Fys. Skr. Dan. Vid. Selsk. 1, n.8 (1959).
- В.Г. Соловьев, Известия АН СССР, сер.физ. 25, 1198 (1961)
 V.G. Soloviev, Mat. Fys. Skr. Dan. Vid. Selsk., 1, n. 11 (1961).
- 4. V.G. Soloviev, Atomic Energy Review, 3, 117 (1965).

5. К.М.Железнова, А.А.Корнейчук, В.Г.Соловьев, П.Фогель, Г.Юнгклаусен, Препринт ОИЯИ Д-2157 (1965).

- 6. V.G. Soloviev, P. Vogel, Nucl. Phys., A 92, 449 (1967).
- В.Г.Соловьев, П.Фогель, Г.Юнгклаусен, Известия АН СССР, сер.физ., 31, 570 (1967).
- 7. Л.А. Малов, В.Г.Соловьев, Ядерная физика 5, 566 (1967).
- 8. C. Gustafson, I.L. Lamm, B. Nilsson, S. G. Nilsson,
- 9. L.S.Kisslinger, R.A.Sorensen, Mat. Fys. Medd. Dan. Vid. Selsk. 32, n.9 (1960).
- 10. L.S. Kisslinger, R.A. Sorensen, Rev. Mod. Phys. 35, 853 (1963).
- 11. V. Gillet, A. M. Green, E. A. Sanderson, Phys. Lett. 11, 44 (1964).
- 12. C. J. Veje, Mat. Fys. Medd. Dan. Vid. Selsk. 35, n. 1 (1966).
- 13. П.Э.Немировский, В.А. Чепурнов, Ядерная физика 3, 998 (1966).
- 14. A. Faessler, R. K. Sheline, Phys. Rev. 148, 1003 (1966).
- 15. Ф.А.Гареев, С.П.Иванова, Б.Н.Калинкин, Р4-2976, Дубна, 1966.
- 16. В.Г.Соловьев, Влияние парных корреляций сверхпроводящего типа на свойства атомных ядер, Атомиздат, 1963.
- 17. J.H.E.Mattauch, W.Thiele, A.H.Wapstra, Nucl. Phys. 67, 1 (1965).

В.Г.Соловьев, В сб. Структура сложных ядер, Атомиздат, 1966.
 Р.А. Демирханов, В.В.Дорохов, В.Г.Соловьев, Ядерная физика, 2,20 (1965).
 S.G.Nilsson, O. Prior, Mat. Fys. Medd. Dan. Vid. Selsk. 32, n. 16 (1960).

Рукопись поступила в издательский отдел 16 мая 1967 г.

Таблица І.

Параметры потенциала Нильссона

		Н	Протоны					
N	32	м	Сдвиг подоболочек (вед. Ќ.)	Область ядер	N	x	м	Область ядер
3	0.0637	0.35	1		2	0.0637	0	
4	0.0637	0.35	d 3/2, +0.10		3	0.0637	0.60	
5	0.0637	0.42			4	0.0637	0.60	44€Z≤ 88
6 ^{#)}	0.0660	0.30	9/2, +0.18	58≤ <i>N</i> ≤136	5	0.0637	0.60	
7	0.0660	0.30			6	0.0637	0.30	
4	0.0660	0.30			3	0.0577	0.65	
5	0.0660	0.30			4	0.0577	0.65	
6	0.0660	0.30			5	0.0577	0.65	
7	0.0660	0.30		138≤ <i>N</i> ≤ 156	6	0.0577	0.65	90€Z≤102
8	0,0660	0.30			7	0.0577	0.65	

ж) Для подоболочки

 \dot{L} I3/2 взяты следующие параметры: \mathcal{X} = 0.0637 ;

 $\mu = 0.42$.

Таблица 2.

Корреляционные функции и химические

потенциалы для нейтронных систем.

		G(N+1)	X(N-1)	C(N),	XIN			C(N+J),	$\lambda(N+1),$	C(N),	X(N)
N	З	ь Мэв	в ед. ћа.	s M3B	s e.a. tiwo	N	ε	в Мэв	вед. Кш.	s Nob	в ед. ћш.
57		I.3I	5.627	I.06	5.599	III		0.90	6.933	0.72	6.90I
59		1.37	5.670	I.15	5.648	II3		0.89	6.977	0.73	6.953
61		I.34	5.715	I.I3	5.698	II5	0.20	0.84	7.024	0.70	7.003
63		I.38	5.757	I.19	5.747	II7		0.77	7.085	0.55	7.072
65		I.39	5.800	I.18	5.776	II9		0.84	7.149	0.48	7.106
67		I.3I	5.836	I.I4	5.809	I2I		0.70	7.035	0.63	7.013
69	0	I.34	5.873	I.18	5.850	123		0.46	7.084	0.35	7.069
71		I.33	5.908	I.19	5.888	125		0	7.148	0	7.068
73		I.28	5.943	I.I7	5.924	127		.0.58	7.470	0	7.456
75		I.20	5.977	I.IU	5.960	129	0	0.76	7.500	0.54	7.488
77		I.05	6.013	0.97	5.997	131		0.88	7.529	0.71	7.518
79		0.81	6.052	0.75	6.028	133		0.95	7.557	0.82	7.548
81		0	6.098	0	6.07I	135		I.00	7.584	0.89	7.577
83		0.79	6.433	0	6.416	137		0.83	7.320	0.73	7.306
85		I.OI	6.468	0.72	6.455	139		0.77	7.357	0.66	7.334
87		I.16	6.502	0.94	6.49I	141		0.69	7.400	0.57	7.382
89		I.15	6.400	I.00	6.383	I43		0.62	7.453	0.40	7.430
91		I.12	6.443	0.96	6.419	I45		0,60	7.5II	0.32	7.477
93		I.07	6.488	0.92	6.463	147		0.62	7.564	0.40	7.534
95		I.OI	6.537	0.84	6.516	I49	0.24	0.57	7.617	0.34	7.599
97		0.95	6.591	0.73	6.569	151		0.63	7.668	0.37	7.642
99		0.88	6.647	0.65	6.608	153		0.69	7.7II	0.50	7.685
IOI	0.27	0.86	6.704	0.64	6.679	155		0.73	7.747	0.59	7.731
103		0.82	6.764	0.55	6.738	157		0.76	7.782	0.63	7.763
105		0.81	6.827	0.53	6.788						
107		0.82	6.894	0.48	6.875						
109		0.94	6.952	0.63	6.908						

Таблица 3.

Корреляционные функции и химические

потенциалы для протонных систем.

		C(Z+1),	$\lambda(Z+4),$	Q(Z),	$\lambda(z),$			C(z+1),	$\lambda(z+1),$	C(Z),	$\lambda(z),$
Z	3	в Мэв	вед. ћй.	вИзв	8 ед. tw.,	Z	ε	Мэв	вед. ћи,	вМав	о сд. tw.
43		I.38	5.004	1.13	4.972	73		0.96	6.002	0.67	5.966
45		I.30	5.058	1.12	5.029	75	0.20	I.00	6.062	0.71	6.033
47		I.07	5.116	0.94	5.087	77		0.84	6.004	0.70	5.961
49		0	5.200	0	5.158	79		0.67	6.060	0.55	6.030
51		0.90	5.489	0	5.468	81		0	6.124	0	6.076
53	0	I.I3	5.530	0.82	5.514	83	0	0.69	6.385	0	6.363
55		I.17	5.576	0.95	5.563	85		0.86	6.425	0.62	6.407
57		I.I6	5.617	0.98	5.607	87		0.96	6.464	0.78	6.449
59		I.18	5.652	I.04	5.633	89		0.92	6.332	0.79	6.312
61		I.22	5.687	I.10	5.671	91		0.88	6.374	0.74	6.357
61		I.03	5.655	0.73	5.610	93		0.81	6.42I	0.67	6.393
63		I.04	5.720	0.76	5.690	95	0.24	0.77	6.473	0.60	6.452
65	0.27	1.03	5.788	0.72	5.76I	97		0.73	6.529	0.54	6.49I
67		I.09	5.857	0.69	5.821	99		0.69	6.590	0.46	6.572
69		0.98	5.925	0.65	5.892	IOI		0.72	6.652	0.42	6.615
71		0.99	5.985	0.71	5.955	103		0.76	6.706	0.55	6.678

Рис.2. Одночастичные уровни для нечетных N ядер в области 58 < N < 136.

Рис.3. Одночастичные уровни для нечетных Z ядер в области 90 \leq Z \leq 102

теория

Рис.6. Нейтронные и протонные парные энергии для области 190 < A < 254. Обозначения те же, что на рис.5.