341 de X-934 ъединенный институт ЯДЕРНЫХ ССЛЕДОВАНИЙ бна 1201000000 Managana

1967.

MININ

иборлтория теоретической (

P4 - 3178

11/10-67

М.А. Жусупов, В.В. Карапетян, Р.А. Эрамжян

уровни положительной четности в N¹⁵

P4 - 3178

М.А. Жусупов, В.В. Карапетян, Р.А. Эрамжян

4895 , yo.

٠.

уровни положительной четности в N^{15}

Направлено в "Изв. АН СССР"

объедниеннай клоппут ядерных выскедовнямя БИБЛИЮТЕКА

В последнее время большое внимание уделяется расчету спектра уровней аномальной четности на основе частично-дырочного формализма. Эта схема была успешно применена при исследовании ядер с заполненными оболочками - ¹² С, ¹⁶ О, ⁴⁰ Са и т.д. Большой интерес представляет распространение данной схемы на ядра с незаполненными оболочками, в частности ¹⁵ N и ¹⁵ O. В этом случае, несмотря на возрастающие технические трудности, все же оказывается возможным последовательное применение указанного метода без дополнительных упрошающих предположений. Впервые такой расчет был выполнен Халбертом и Френ-/1/ чем в рамках оболочечной модели с промежуточной связью. Рассчитанный ими спектр уровней ¹⁵ N и ¹⁵ О и приведенные нуклонные ширины оказались в удовлетворительном согласии с экспериментальными данными. Однако в послед-/2-11/ нее время появился целый ряд новых работ , уточняющих спектр уровней, β-переходов и т.д. характеристики электромагнитных переходов, вероятности В связи с этим возникла необходимость дальнейшего изучения свойств ядер ¹⁵ N и ¹⁵ O, которое и предпринято в настоящей работе.

1. Спектр уровней и волновые функции ядер 15 N и 10

Для построения волновых функций положительной четности ядер ¹⁵ N и ¹⁵ O в качестве базиса использовались состояния типа две дырки – одна частица ($p^{-2}2s$) и ($p^{-2}1d$) и состояние ($1s^{-1}$). Нулевое приближение /12/ строилось по экспериментальным данным об уровнях соседних ядер и по данным квазиупругого выбивания протонов (p, 2p) на ¹⁶ O. Ложные состояния /13/, соответствующие возбуждению центра тяжести ядра, были исключены путем диагонализации оператора \vec{R}^2 .

Промежуточная связь осуществлялась добавлением к гамильтониану нулевого приближения взаимодействий частица-дырка V_{рb} и двух дырок V_{bb}:

 $V = V_{ph} + V_{hh} .$

(1)

При V_{ph}=0 получается приближение слабой связи. Правда, это не совсем обычная слабая связь, так как из-за смешивания конфигураций при исключении ложных состояний в волновой функции будут присутствовать как состояния ¹⁴ N с T = 0, так и с T = 1. Радиальная зависимость в (1) бралась в виде по-

¹ N с T = 0, так и с T = 1. Радиальная зависимость в (Г) оралась в выдетнотенциала Гаусса (exp ($-r^2/b^2$)). Амплитуда взаимодействия V₀ варьвровалась от 0 до -50 Мэв. Расчет был выполнен с разными вариантами обменных сил, взятыми из работы ^{/14/}. Параметры сил приведены в табл. 1. Радиальные волновые функции брались осцилляторными; $r_0/b = 1$ и $r_0 = 1,7 \cdot 10^{-13}$ см.

Расчет показал, что положение уровней с T = 1/2 слабо зависит от обменного варианта. Различие между вариантами может быть вполне скомпенсировано небольшим изменением амплитуды парного взаимодействия. Зависимость от V₀ -наиболее сильная. На рис. 1 показана зависимость положения первых четырех уровней с T = ½ от амплитуды V₀ для обменного варианта Розенфельда (вариант 1). Из сопоставления с экспериментальными данными следует, что оптимальной величиной является V₀ порядка - 50 Мэв.

Положение уровней с T = 3/2, наоборот, очень чувствительно к обменному варианту, но слабо зависит от амплитуды V₀. Последнее наглядно показано на примере уровня $J = \frac{1}{2}^{+}$, T = 3/2 с E = 11,61 Мэв (рис. 1). В вариантах, приведенных в табл. 2, наилучшее согласие получено для обменных сил Розенфельда ($F_{Teop.} = 12,0$ Мэв; $E_{9KCI.} = 11,61$ Мэв). В варианте II положение этого уровня завышено на 1 Мэв, а в варианте II – на 3 Мэв. · Это, по-видимому, связано с тем, что и в ядре ¹⁴ N, входящем в ¹⁵ N как остов, наблюдается подобная картина для уровней с T = 1. Зависимость положения низших уровней ядра ¹⁴ N с T = 0 и T = 1 от обменных вариантов I и III показана на рис. 2. Как видно из рисунка 2, положение уровней с T = 1 оказывается более чувствительным к варианта. Положение уровней с T = 1 оказывается более чувствительным к варианта. Положение зо связано с тем, что в четных легких ядрах для получения правильного относительного расстояния между уровнями с Т = 0 и Т = 1 требуется большая доля пространственно- обменных сил Майорана^{/15/}. В варианте II, и особенно в III, это условие не выполнено. Таким образом, оптимальным является вариант Розеифельда.

Спектр уровня ядра ¹⁸ N, рассчитанный с учетом сил Резенфельда при $V_0 = -50$ Мэв, приведен на рис. З. Для сравнения там же приведен экспериментальный спектр. Уровни отрицательной четности на рисунке опущены. Как и в работе ^{/1/}, однозначно удается сопоставить с экспериментальными данными первые семь уровней, уровень J = 1/2⁺, T = 3/2 при E = 11,6 Мэв, а также уровень J = 5/2⁺, T = 3/2, аналог которого обнаружен ^{/16/} в ядре ¹⁸С.

Далее экспериментальному уровню J = 7/2, k = 9.83 Мэв, по-видимому, сеетветствует уровень $J = 7/2^{+}$ при $F_{\text{теор.}} = 10.9$ Мэв. Креме того, можно попытаться привязать к экспериментальному уровню $J = (1/2,3/2^{+})$ с E = 9.05 Мэв уровень $J = 1/2^{+}$, T = 1/2, $E_{\text{теор.}} = 12,15$ Мэв. Из рис.3 видно, что выше 9 Мэв экспериментально известно большое число уровней, тогда как теоретический спектр в этой области гораздо беднее. По-видимому, это связано с тем, что в этой области уже начинают проявляться уровни с бонее сложной ириродой, в частности, типа $p^{-4}(2s,1d)^{3}$. Учет подобиых состояний обогатит теоретический спектр. Как следует из работы $^{/17/}$, а также из наших предварительных оценок, уровни такой природы располагаются начиная с 7 Мэв. По-видимому, только после учета таких состояний удастся получить согласие теории с экспериментом в этой области.

Волновые функции низших уровней приведены в приложении. Для базисных функций приняты стандартные обозначения: p^{-2²Ti+1,28t¹} L_νt:^{2T+1,28t¹} L. Отметим, что волновые функции уровней с T = 1/2 в промежуточной связи весьма далеки от функций в слабой связи, тогда как для уровней с T = 3/2 наблюпается обратная картина.

2. β-распад

Хорошо взвестно, что оболочечная модель с промежуточной связью успешно описывает характеристики разрешенных β -переходов большинства ядер р -оболочки¹⁸. Имеющиеся немногочисленные отклонения связаны со спецификой переходов и объясняются в рамках той же модели. Поэтому весьма важно исследовать β -распад ¹⁸ С на различные состояния ¹⁸ N с тем, чтобы выяснить, насколько реалистичны полученные функции. Результаты расчета log r f β -распад ¹⁵ С приведены в табл. 2.

Как и в работе $^{/1/}$, величина logr f перехода на уровень $J = 1/2^+$, E = 5,299 оказалась завышенной при оптимальной величине амплитуды парного взаимодействия. Согласия теории с экспериментом можно достичь лишь при меньших (0 < V₀ < 30 Мэв) значениях V₀, однако при этом рассчитанный энергетический спектр будет противоречить экспериментальному. Вполне возможно, что расхождение связано с теми же причинами, которые присущи в β -распаду 14 С $\rightarrow {}^{14}$ N; а именно, с той частью матричного элемента

 β -распада, которая связана с остовом A = 14. А для получения экспериментального времени жизни β -распада ¹⁴ C \rightarrow ¹⁴ N необходимо привлечение более тонких деталей структуры этих ядер, таких, как учет вклада высших конфигураций ^{/19/} или тензорных сил^{/20/}. По-видимому, такие расчеты представляют интерес и для ядер A = 15. Что касается переходов на второе и третье состояния с J , T = 1/2⁺, 1/2, то значения log r f находятся в удовлетворительном согласии с экспериментом при V₀ = -50 Мэв. Правда, большая экспериментальная ошибка не позволяет сделать вывод, насколько хорошо найденные волновые функции описывают эти состояния. Аналогичная ситуация наблюдается и в случае переходов на уровни J = 3/2⁺, T = 1/2. Правда; непонятным является расхождение нашего расчета с результатом работы ^{/10/} для случая J = 3/2⁺, E = 7,30 Мэв.

3. Радиационные переходы

В последнее время появилось большое число экспериментальных работ, в которых исследованы характеристики электромагнитных переходов между связанными состояниями ядер ¹⁵ N и ¹⁶0. Расчет характеристик радиационных переходов также позволяет получить информацию о структуре уровней. С этой целью были вычислены ширины Е1 и М1 переходов, а также отношения вероятностей парциальных переходов.

а) ЕІ переходы на основное состояние $p_{\frac{1}{2}}^{-1}$. Ширины этих переходов весьма чувствительны к величине амплитуды парного взаимодействия, и, как видно из рис. 4, иногда отличаются на два порядка по сравнению с тем случаем, когда взаимодействие выключено ($V_0 = 0$).

6) ЕІ переходы на состояние р_{3/2}. Вероятность таких переходов мала

по сравнению с вероятностью переходов в основное состояние. Исключение составляет переход с уровня 8,312 Мэв в¹⁸ N к Е =7,550 Мэв в¹⁸0. Малая величина отношения затрудняет надежность сравнения теории с экспериментом.

в) Сравнение рассчитанных ширин переходов с экспериментальными проведено в табл. З. К сожалению, в настоящее время экспериментальные данные весьма неполны, особенно это касается абсолютных значений ширин. Поэтому это сильно затрудняет интерпретацию результатов.

4. Спектр фотонукловов в ядре 0¹⁶ с учетом переходов на уровни положительной четности

Спектр продуктов фоторасщепления ядер, снятый с корошим разрешением. имеет ясно выраженную тонкую структуру. Расчеты, выполненные в нас'южее время в рамках частично-дырочного формализма, правильно передают общий ход спектра, но не его структуру. Это связано как с тем, что дипольные состояния разбрасываются по большему числу состояний, а частично-дырочные возбуждения составляют лишь "каркас" резонанса, так и с тем, что распад образовавшихся состояний идет не только по "дырочному" каналу, но и на уровни более сложной природы. Последовательный учет этих двух факторов очень сложен, но для простейшего случая - фоторасщепления 10 0 -, по-видимому, вполне осуществим. Однахо мы ограничимся более простой задачей: не выходя за рамки частичнодырочного возбуждения рассчитать спектр продуктов распада 10 ва дырочные уровни и на уровни положительной четности ядер ¹⁵ N и ¹⁵ О. Последние переходы соответствуют вылету внутреннего Р -нуклона, не участвующего непосредственно в возбуждения ядра при поглощении у -кванта . Учет этих переходов должен привести к СМЯГЧЕНИЮ СПЕКТРА, Т.К. САМИ УРОВНИ ЛЕЖАТ ДОВОЛЬно высоко. Результаты расчета приведены в табл. 5.

Из таблицы видно, что действительно возникает дополнительная структура в спектре, связанная с учетом таких переходов, однако существенного изменения не произошло. По-видимому,более существенно учесть такие переходы в ядрах с незаполненными оболочками

В заключение авторы выражают благодарность В.В. Балашову за полезные обсуждения.

6

Литература

1. E.C. Halbert, J.B. French. Phys. Rev., <u>82</u>, 809 (1951).

- 2. E.K. Warburton, J.Wolness, D.E. Alburger. Phys. Rev., 140, B1202(1965).
- 3. T.K. Alexander, A.E. Litherland, C. Broude. Canad. Journ. Phys., 43, 2310(1965).
- 4. O.Hausser, R.F. Gill, Y.S. Lopes, H.Y.Rose. Nuclear Phys., 84, 683(1966)
- 5. D.Pelte, B.Povh, W.Scholz. Nucl. Phys., 78, 241 (1966).
- 6. E.K. Warburton, Y.W. Olness. Phys. Rev., 147, 698 (1966).
- 7. A. Gallmann, P. Fintz, Y. B.Nelson, D.E.Alburger. Phys. Rev., 147, 753 (1966).
- 8. K.P. Lieb. Nucl. Phys., 85, 461 (1966).
- 9. A.E. Evans, B. Brown, Y.B. Marion. Phys. Rev., 149, 863 (1966).
- 10. D.F. Alburger, K.W. Yones. Phys. Rev., 149, 743 (1966).
- 11. S.Gorodetzky, R.M.Freeman, A.Gailmann, F.Haas.Phys.Rev.149,801(1966).
- 12. В.В. Балашов, В.Г. Шевченко. Н.П. Юдин. Nucl. Phys., <u>27</u>, 323 (1961).
- 13. Y.P.Elliott, T.H.R. Scyrme. Proc. Roy. Soc., A232, 561 (1955).
- V.Gillet, N. Vin h Mau. Phys. Letters, <u>1</u>, 26 (1962); Nucl. Phys., 54, 321 (1964).
- 15. F. Hund. Zeit. Phys., 105, 202 (1937).
- 16. F.Ajzenberg-Selove, T.Lauritsen, Nucl. Phys. II, I (1959).
- 17. I. Unna, I. Talmi, Phys. Rev., 112, 452 (1958).
- 18. S. Coben, D. Kurath. Nucl. Phys., 73, 1 (1965).
- 19. E. Baranger, S. Meshkov. Phys. Rev. Lett., 1, 30 (1958).

8

- 20. Y.P.Elliott. Phil. Mag., <u>8</u>, 503 (1956).
- 21. Y.S.Lopes, O.Hausser, H.Y.Rose, A.R.Polete, M.F.Thomas. Nucl. Phys., 76, 223(1966).
- В.В. Балашов, Р.А. Эрамжян. Тезисы докладов к VI Всесоюэной межвузовской конференции по теории элементарных частиц. Ужгород, стр. 80, 1965.
- 23. В.В. Балашов, Л. Майлинг, Л.А. Рамазавова, К.В. Шитикова, Е.Л.Ядровский. Известия АН СССР, <u>29</u>, 1178 (1965).

Рукопись поступила в издательский отдел 22 февраля 1967 г.

9

 $1 - J = \frac{1}{2}, \quad T = \frac{1}{2}; \quad 2 - J = \frac{3}{2}, \quad T = \frac{1}{2};$ $3 - J = \frac{5}{2}, \quad T = \frac{1}{2}; \quad 4 - J = \frac{7}{2}, \quad T = \frac{1}{2};$ $5 - J = \frac{1}{2}, \quad T = \frac{3}{2}.$

Рис. 2. Зависимость положения низших уровней ядра ¹⁴ N с T = O и T = I от обменных вариантов: а -вариант I , b -вариант II.

10

.

.

Рис. 4. Зависимость ширин Е1 переходов на основное состояние ядра ¹⁸ N от амплитуды парного взаимодействия V₀.

Таблида 1

Варженты обменных сил, использованные при расчете энергетического спектра

	W	M	в	Н
I	-0,13	0,93	0,46	-0,26
п	0,10	0,70	0,20	0
III	0,35	0,35	-0,10	0,40

Таблица. 2 Зависимость величин forrf β-распада идра ¹⁸С от амплитуды парного взавиодействия V₀. Экспериментальные данные взяты из работы/10/

J [#] , T	F (Mar)					
	13 (11/02)	V ₀ =-50 м _{эв}	V ₀ ≖-40 м _{эв}	V0=-30 Mab	$V_0 = 0$	Эксперимент
1/2+ ,1/2	5,30	4,76	4,53	4,36	3,60	4.I
1/2+,1/2	8,31	4,66	4,30	3,96	3.60	4.8 ± 0.3
1/2+ ,1/2	9,05	4,02	4,02	4,10	5.29	3.7 ± 0.3
3/2+ ,1/2	7,30	4,83	4,70	4.57	3.99	>6.1
3/2 † ,İ/2	8,57	5,34	5,04	4.89	9.65	> 4.0

Таблица З

Ширины раджадновных переходов между связалными состояннями ядер¹⁵N и¹⁵О. Экспериментальные данные ваты: а-из работы^{/3/}, в -из^{/8/}, с -из^{/9/}, а остальные -из^{/2/}

					Г (Эв)			$\Gamma_i / \Sigma \Gamma_i$	в 🖇
Ei	$\sigma_i^{\mathbf{r}}, T_i$	𝕵, 𝑘, 𝑘,	Ej	Теория	Эксперимент		Теория	Эксперим	98T
				(N' ⁵)	N ¹⁵	015	("")	N ¹⁵	015
5,299	1/2*,1/2	1/2-,1/2	0	0,055	0,0153 ± 0,006 ^a	>0,0022 ^a	100	100	100
7,154	5/2+,1/2	5/2 ⁺ , I/2	5,27	0,078	0,0057 ^B		100	100	100
		1/2-,1/2	0	I,362			99,6	98 ± I	100
		5/2 † , I/2	5,27	0,004		[lati	<6
7,30	3/2 † ,I/2	1/2 ⁺ ,1/2	5 ,299	0,000		1	,	J	<6
		3/2 , 1/2	6,32	0 ,000				< 0,25	< 7
7,563	7/2 ⁺ , I/2	5/2+,1/2	5,27	0,016	0,0038 ^B		100	100	100
		1/2 , 1/2	0	0,195			83,0	78 ± 3	33 ± 0,3
		1/2 ⁺ ,1/2	5,299	0,032			13,8	II ± 2	17 [±] I
8,512	1/2+,1/2	3/2-,1/2	6,32	0 ,00 I			0,2	8,8± 2	57 [±] I
		3/2+ , 3/2	7,30	0,007			3,0	2,2± 0,4	22,7 ± I
		1/27, 1/2	0	0,821		0,531°	70,67	32 ± 4	55
		5/2 ⁺ , I/2	5,27	0,339		0 ,405^c	29,33	65 ± 4	40
8,57	3/2+,1/2	I/2 ⁺ , I/2	5,299	0,000			0,00	< 12	
		3/27, 1/2	6,32	9,000		0,021°	0,00	3 ± 1	4
		1/2, 1/2	0	I,790			71,0	92 ± 3	
		1/2+, 1/2	5,29	0,712			28,2	3,8± I	67
9,052	1/2+,1/2	3/2", 1/2	6,32	0,004			0,2	3 ± 2	33
		3/2+, 1/2	7,30	0,013			0,6	I,2± 0,4	
10,4	9/2*,1/2	7/2*, 1/2	7,56	0,205					
11,61	1/2+,3/2	1/27, 1/2	0	39,2	26,3				

14

Таблица 4

Завистмость радиационных ширии основных Е1 в М1 переходов с уровля J = 3/2⁺, T = 1/2, E = 8,75 Мэв от амплитуды париого взаимодействия V₀. 1.00.00

	E	Г _(эв) ,	Г _(эв) _{теор.} (N ⁴⁵)		′ΣГ _і в	%	
Ĵ4, T4	(Мэв)	V_=-40 Мав	V_=-50 мав	Теорыя	(N ¹⁵)	Экспериме	87
		Ů	Ŭ	К₀ =-40 Мэв	V ₀ ≖-50Мэв	N ¹⁵	015
I/2 ⁻ , I/2	0	0,0365	0,820	13	71	32 ± 4	55
5/2+ , 1/2	5,27	0,241	0,339	87	29	65 ± 4	40

Таблица 5 Каяалы распада дипольных частично-дырочных Ј-1⁷, Т-1 состояний ядра¹⁶0.

E gran IIO a Man	Уровни ядра ¹⁵ N и ¹⁵ 0.					
Е ядра — С В Мав	P 1/2	P ^{-I} 3/2	Дублет Е=8,3 Мэв	Остальные уровня		
25,8	23,4 %	72,8 %	I,3 %	2,5 %		
23,4	32,6 %	65,7 %	1,7 %	· 0		

I *. I		Е (Мэв)		3+, I	Е (мэв)		
2 2	6,03	9,3	12,12	2 2	7,I	8,65	
13 5, \$: 22,5	0,481	-0,107	-0,529	13 5, d:22 D	-0,133	-0,609	
31 S, s: 22 S	0,557	-0,197	-0,103	31 S, d:22 D	-0,122	-0,255	
$^{13}D, d: ^{22}S$	-0,195	0,053	0,196	¹³ D, \$ ^{:22} D	0,665	0,058	
$^{31}D. d: ^{22}S$	-0,199	0,060	0,031	$^{13}D, d^{:22}D$	-0,230	0,384	
5-1:22,5	-0,090	0,029	0,072	³¹ D, 5 ^{:22} D	0,398	0,021	
$^{13}D, d^{22}P$	0,141	0,012	0,080	31 D, d:22 D	-0,107	0,075	
³¹ D, d: ²² P	0,143	0,002	0,169	^{II} P, $d^{:22} \mathcal{D}$	-0,057	-0,052	
^{II} ρ, g: ²² ρ	0,199	0,166	0,041	³³ ρ, d ^{:22} D	-0,120	0,086	
II ρ , $d: 22\rho$	0,005	0,002	-0,167	$^{13}\mathcal{D}$, \mathcal{L}^{22} P	0 ,0 90	-0,073	
33 P, s: 22 p	0,431	-0,036	.0,630	^{3I} D d ^{:22} P	0,069	0,038	
33 P, d: 22 P	0,159	0,002	0,383	^{II} ρ, g ^{:22} ρ	0,203	0,00 6	
13 S, d: 24D	-0,010	-0,048	0,146	^{II} P, d ^{:22} P	-0,024	0,264	
$^{13}\mathcal{D}, s: ^{24}\mathcal{D}$	0,194	0,946	-0,088	³³ ρ, s ^{:22} ρ	0,205	-0,056	
$1^{3}\mathcal{D}, d^{2^{4}}\mathcal{D}$	-0,013	-0,093	-0,147	³³ P, d ^{:22} P	0,093	-0,102	
³³ ρ, d: ²⁴ D	-0 ,01 0	0,001	-0,017	¹³ <i>S</i> , <i>s</i> ^{:24} <i>S</i>	-0,113	-0,043	
13 D, d: 24 p	0 ,008 ·	0,020	0,079	¹³ D, d ^{: 24} S	-0,005	0,118	
$^{33}P, s: {}^{24}P$	0,213	-0,087	0,013	¹³ S, $d^{:24} D$	-0,015	-0,272	
33P, d: 24p	0,024	-0,009	0,009	$^{13}\mathcal{D}, s^{:24}\mathcal{D}$	0,396	0,004	
				$^{13}\mathcal{D}, d^{:24}\mathcal{D}$	-0,080	0,352	
				$^{33}P, d^{:24}D$	0,008	0,055	
				¹³ D, d ^{:24} P	0,037	-0,227	
				³³ P, s ^{:24} P	-0,011	-0,007	
				³³ P, d ²⁴ P	-0,003	-0,054	
				$^{13}D, d^{24}F$	0,004	-0,173	
				$^{33}P, d^{24}F$	-0,024	-0,072	
	1	1			1	1	

ПРИЛОЖЕНИЕ:	Волновые	функлин	низших	уровне	й положительной	HOTHOCT
	ядра ¹⁶ N	(функли	и даны	вŚĹ	-свезе).	

5 ⁺ , I	K ()	Азв)	7 *. I	· B	(Мөв)
2 2	5,0	8 , II	2 2	5,9	10,9
¹³ 5,d: ²² D	0,321	-0,271	135, L: 24D	-0,139	0,285
³¹ S, d ^{:22} D	0,529	-0,327	^{I3} D, S ^{: 24} D	0,000	-0,006
^{I3} D, s: ²² D	-0,042	-0,004	^{I3} D,d ^{:24} D	0,105	-0,157
^{13}D , $d^{22}D$	0,030	0,257	¹³ D,d: ²² F	-0,282	0,297
³¹ D, s ^{, 22} D	-0,040	0,008	¹³ D, d ^{:24} F	-0,253	0,185
³¹ D, d: ²² D	0,012	0,122	¹³ D, d: ²² G	0,603	0,541
II P, $d^{:22} D$	-0,118	-0,091	¹³ D, d: ²⁴ G	0,344	0,234
³³ Р, d ⁻²² Д	-0,278	0,066	³¹ D, d:22F	-0,261	0,434
¹³ S, d ^{:24} D	0,062	-0,128	³¹ D,d ^{:22} G	0,328	0,188
¹³ D, S ^{:24} D	-0,021	-0,027	IIP,d:22F	0,255	-0,133
13 D, d: ²⁴ D	0,058	0,330	³³ P,d:24,D	0,024	-0,038
³³ P, J: ²⁴ D	-0,127	0,098	³³ P,d: ²² F	0,317	-0,398
¹³ D,d ^{:24} P	-0,017	-0,127	³³ P,d: ²⁴ F	0,048	-0,154
³³ ρ, s [:] 24 ρ	0,009	-0,003			
33p,d:24p	0,101	-0,106			
¹³ D,d ^{:22} F	-0,289	-0,550			
³¹ D,d: ²² F	-0,152	-0,200			
IIP,d:22F	0,155	0,006			1
33P, d:22F	0,542	0,011			
^{I3} D,d ^{:24} F	-0,157	-0,446			
³³ P, d:24F	0,175	-0,054			
¹³ D, d: ²⁴ G	0,082	0,136			

ot T	Е (Мэв)	T ⁺ - 3	Е (Мав)	5*. 3	Е (мев)
$\frac{3}{2}$, $\frac{1}{2}$	10,4	2' 2	12,0	2. 2	12,38
¹³ D, d: ²⁴ F ¹³ D, d: ²² G ¹³ D, d: ²⁴ G ³¹ D, d: ²² G ³³ ρ, d: ²⁴ F	-0,142 0,561 0,386 0,705 -0,139	31 S, S:42 S 31 D, d:42 S 31 D, d:42 P 33 p, S:42 p 33 p, S:44 P 33 p, d:42 p 33 p, d:44 p 33 p, d:44 D	0,742 0,105 0,027 0,259 0,605 0,038 0,044 0,006	31 s, s: 42 s 31 d, s: 42 d 31 d, d: 42 d 33 p, d: 42 d 33 p, d: 42 d 33 p, d: 44 p 33 p, d: 44 d 33 p, d: 42 f 31 d, d: 42 f 31 d, d: 42 f 33 p, d: 44 f	0,743 -0,063 -0,271 -0,070 0,040 0,334 -0,254 0,282 0,080 0,319