

Объединенный институт ядерных исследований дубна

1784 2-80

21/4-80 P4 - 13028

Л.И.Пономарев, С.Ю.Славянов, Л.Н.Сомов

ЗАДАЧА ДВУХ ЦЕНТРОВ КВАНТОВОЙ МЕХАНИКИ. VIII. НЕАДИАБАТИЧЕСКИЕ МАТРИЧНЫЕ ЭЛЕМЕНТЫ, СВЯЗЫВАЮЩИЕ СОСТОЯНИЯ НЕПРЕРЫВНОГО СПЕКТРА

Направлено в "Journal of Physics, B"

I. Введение

Зедече трех тел с кулоновским взеимодействием в едиебетическом представлении сводится к решению бесконечной системы интегродифференциальных уравнений/I/, в которой эффективными потенциалами являются термы $E_j(R)$, соответствующие резличным состояниям I_d зедечи двух центров, и метричные элементы $Q_{ij}(R)$ и $H_{ij}(R)$, связывающие эти состояния. Термы и метричные элементы, связывающие состояния дискретного спектра, вычислены в работе/2/. Метричные элементы, связывающие состояния дискретного и непрерывного спектров, вычислены в работе/³.

В денной реботе вычислены сингулярные чести метричных элементов $H_{ss'}(k,k',R)$ и $Q_{ss'}(k,k',R)$, связывеющих состояния $|c\rangle = |ks\rangle$ и $|c'\rangle = |ks'\rangle$ непрерывного сцектре зедечи двух центров, е текже нейдене их есимптотике при $R \rightarrow 0$ и $R \rightarrow \infty$.

Волновые функции $\phi_c(\vec{z}; R) \equiv \phi_s(\vec{z}; k, R)$ непрерывного спектра задачи двух центров определяются как решения уравнения Шредингера

$$\hat{h}_{o} \, \varphi_{c}\left(\vec{z}; R\right) = E_{c}\left(k\right) \, \varphi_{c}\left(\vec{z}; R\right), \tag{I}$$

где $E_c(k) = k^2/2$ - энергия системы в состоянии $|c\rangle = |k s\rangle \equiv |k s p\rangle$ с импульсом k, набором $s = \{q,m\}$ сфероидальных квантовых чисел либо же набором $s = [n_2m]$ параболических квантовых чисел и четностью p = (g, u). Значение q определяется равенством $q = 2n_2 + m + 1 - \frac{p + (-)^m}{2}$, где $p = \pm 1$ для g - u u - состояний соответственно.

Гэмильтонизн h_{e} задачи о движении отрицательно заряженной частицы с с зарядом $Z_{e} = -1$ в поле двух фиксированных кулоновских центров a и b с положительными зарядами $Z_{a} = Z_{b} = 1$ имеет вид

$$\hat{h}_{o} = -\frac{1}{2}\Delta_{\vec{z}} - \frac{1}{Z_{a}} - \frac{1}{Z_{g}}, \qquad (2)$$

где Z_e и Z_e - расстояния частицы с от зарядов Z_e и Z_e , удаленных на расстояние R друг от друга, а \vec{z} - расстояние до частицы с от саредины отрезка R . Решения уравнения (I) удовлетворяют соотношению ортогональности:

$$\begin{split} \int d\vec{z} \, \phi_{c}^{*}(\vec{z};R) \, \phi_{c}^{'}(\vec{z};R) &= \delta_{mm'} \, \delta_{q,q'} \, \delta(k-k') \, \cdot \quad (3) \\ & \text{ Матричные элементы } \quad H_{ss'}(k,k',R) \, \text{м} \, Q_{ss'}(k,k',R) \, \text{равны:} \\ & H_{ss'}(k,k',R) &= \int d\vec{z} \, \left(\nabla_{R}^{*} + \frac{2\epsilon}{2} \nabla_{\vec{z}}^{*} \right) \phi_{s}^{*}(\vec{z};k,R) \left(\nabla_{R}^{*} + \frac{2\epsilon}{2} \nabla_{\vec{z}}^{*} \right) \phi_{s'}(\vec{z};k',R) \, , \\ & Q_{ss'}(k,k',R) &= - \frac{\vec{R}}{R} \int d\vec{z} \, \phi_{s}^{*}(\vec{z};k,R) \left(\nabla_{R}^{*} + \frac{2\epsilon}{2} \nabla_{\vec{z}}^{*} \right) \phi_{s'}(\vec{z};k',R) \, , \\ \end{split}$$

которые удобно представить в виде

$$H_{ss'} = H_{ss'}^{(+)} + 2e H_{ss'}^{(-)} + 2e^2 H_{ss'}^{(*)},$$

$$Q_{ss'} = Q_{ss'}^{(+)} + 2 Q_{ss'}^{(-)}, \qquad \mathcal{R} = \frac{M_e - M_a}{M_e + M_a}, \qquad (5)$$

где Ma и Me -массыядер с зарядами Za и Ze /I/.

2. Вычисление матричных элементов

Явный вид выражений для $H_{ss'}$ и $Q_{ss'}$ через однократные интегралы в сфероидальных координатах $\vec{z} = \{ \bar{s}, \bar{z}, \varphi \}$ приведен в работе^{/2/}. В этих координатах решения $P_s(\bar{z}; k, R)$ с заданным набором квантовых чисал *s* можно представить в виде

$$\varphi_{s}(\vec{z};k,R) = N_{qm}(k,R) \prod_{mq}(\bar{z};k,R) = m_{q}(z;k,R) \frac{1}{\sqrt{2\pi}} \begin{cases} c^{m} c^{m} e^{m} \phi, \\ c^{-im\phi}, \\ e^{-im\phi}. \end{cases}$$
(6)

Алгориты вычисления редиельных (РКСФ) $\prod_{mq} (\xi; k, R)$ и угловых (УКСФ) $\sum_{mq} (\xi; k, R)$ кулоновских сфероидельных функций непрерывного спектре подробно изложен в реботе^{/4/}. Оны определяются как регулярные решения зедеч Штурие-Лиувилля:

$$\frac{d}{d\xi}(\xi^{2}-1)\frac{d}{d\xi}\prod_{mq}(\xi;k,R) + \left[-\lambda_{mq}+c^{2}(\xi^{2}-1)+a\xi-\frac{m^{-}}{\xi^{2}-1}\right]\prod_{mq}(\xi;k,R)=0,$$
(7a)
$$\prod_{mq}(1;k,R)<\infty, \quad 1\leq\xi<\infty;$$

$$\prod_{mq}(\xi;k,R) = (c\xi)^{-1}\sin(c\xi+\frac{a}{2c}\ln 2c\xi-\frac{q+m}{2}\pi+\Delta_{mq})+$$

$$+O\left\{(c\xi)^{-2}\right\}$$
(7b)
$$(7c)$$

2

$$\frac{d}{d2}(1-2^{2})\frac{d}{d2} = mq(2;k,R) + \left[\lambda_{mq} + c^{2}(1-2^{2}) + b^{2}_{2} - \frac{m^{2}}{1-2^{2}}\right] = mq(2;k,R) = 0,$$

$$= mq(\pm 1;k,R) < \infty, -1 \le 2 \le 1, \qquad (7B)$$

где

$$a = R(Z_a + Z_g); \ b = R(Z_g - Z_a); \ c = \frac{kR}{2};$$

 $\lambda_{mq} = \lambda_{mq}(k, R)$ - константа разделения, определяемая при заданных m, q, Z_a, Z_e как собственное значение задачи Штурма-Лиувилля (7в); $\Delta_{mq} = \Delta_{mq}(k, R)$ - фаза радиального решения, асимптотическое поведение которой при $R \rightarrow 0$ и $R \rightarrow \infty$ подробно исследовано в работе^{/5/}.

Нормировка *М_{та}* (k, R) решения (6) вычислена в работе^{/4/} и равна:

$$N_{mq}(k,R) = k \left(\frac{2}{\pi}\right)^{\frac{1}{2}},$$
(8)

если УКСФ нормированы условием

$$\int_{-1}^{1} \Xi_{m_q}^{2}(z; k, R) dz = 1.$$
 (9)

Матричные элементы (4) могут быть представлены в виде

$$H_{ss'}(k,k',R) = H_{ss'}(k,R)\delta(k-k') + h_{ss'}(k,k',R),$$

$$Q_{ss'}(k,k',R) = Q_{ss'}(k,R)\delta(k-k') + q_{ss'}(k,k',R), \quad (10)$$

где $h_{ss'}(k, k', R)$ и $q_{ss'}(k, k', R)$ не содержат особенности при k = k'. В данной работе вычислены диагональные матричные элементы $H_{ss'}(k, R)$ и $Q_{ss'}(k, R)$. При решении задачи трех тел в адиабатическом представлении.⁷⁷, для которой матричные элементы (IO) служат эффективными потенциалами, величины $H_{ss'}(k,R)$ и $Q_{ss'}(k,R)$ являются ведущими и их необходимо учитывать в первую очередь.

Заменяя в интегралах (4) радиальную функцию $\Pi_{mq}(\mathbf{x}, \mathbf{k}, \mathbf{k})$ ее асимптотическим выражением (7б), учитывая условие нормировки (9), в также используя известную формулу

$$\int_{0}^{\infty} \cos\{(c-c')\xi\} d\xi = \pi \delta(c-c') = \frac{2\pi}{R} \delta(k-k'), \quad (II)$$

найдем выражение для $H_{ss'}(k, R)$ и $Q_{ss'}(k, R)$:

$$Q_{ss'}^{(+)}(k,R) = 0.$$
 (I28)

Матричные элементы $H_{ss'}^{(+)}(k, R)$ и $H_{ss'}^{(*)}(k, R)$ отличны от нуля только для состояний s и s' с одинаковой четностью p:

$$H_{ss}^{(+)}(k,R) = \int_{-1}^{1} \left(\frac{\partial \Xi_{mq}}{\partial R}\right)^{2} d\xi + R^{-2} \int_{-1}^{1} (1-\xi^{2}) \left(\frac{\partial \Xi_{mq}}{\partial \xi}\right)^{2} d\xi ,$$

$$H_{ss}^{(*)}(k,R) = \frac{k^{2}}{2} ,$$
(I26)

в матричные элементы $Q_{ss'}^{(-)}(k, R)$ и $H_{ss'}^{(-)}(k, R)$ отличны от нуля только для состояний S и s' с различной четностью ρ .

$$Q_{ss'}^{(*)}(k,R) = -\frac{k}{2} \sin \left(\Delta_{mq} - \Delta_{mq'} - \frac{q-q'}{2} \pi \right).$$

$$\cdot \int_{-1}^{1} \sum_{mq} (z_{j}k,R) \sum_{mq'} (z_{j}k,R) dz, \quad (I2B)$$

$$H_{ss'}^{(2)}(k,R) = \left\{ -\frac{k}{2} \sin\left(\Delta_{mq} - \Delta_{mq'} - \frac{q-q'}{2}\pi\right) \right\}.$$

$$\cdot \left[\int_{-1}^{1} \left(\prod_{mq} \frac{\partial \prod_{mq'}}{\partial R} - \frac{\partial \prod_{mq}}{\partial R} \prod_{mq'} \right) \frac{1}{2} d2 + \frac{1}{R} \int_{-1}^{1} \left(\prod_{mq} \frac{\partial \prod_{mq'}}{\partial 2} - \frac{\partial \prod_{mq'}}{\partial 2} \prod_{mq'} \right) \frac{1}{2} d2 \right] + \frac{k}{2} \frac{\partial}{\partial R} (\Delta_{mq} + \Delta_{mq'}) \cos\left(\Delta_{mq} - \Delta_{mq'} - \frac{q-q'}{2}\pi\right).$$

$$\cdot \int_{-1}^{1} \prod_{mq} \prod_{mq'} \frac{1}{2} d2 .$$

Легко видеть, что вычисление сингулярной части матричных элементов, связывающих состояния непрерывного спектра, сводится к вычислению интегралов по УКСФ. Алгоритм вычисления интегралов от УКСФ с точностью ~10⁻⁵ изложен в работе^{/4/}.

На рис. Іа и Іб приведены диагональные матричные элементы $H_{ss}^{(+)}(k, R)$ для состояний с квантовыми числами $s = \{oo\}$ и $s = \{10\}$ для значений k = 0,2; 0,4; 1; 5; 10.На рис. 23, 20 и 38, 30 представлены матричные элементы $Q_{ss'}^{(-)}(k, R)$ и $H_{ss'}^{(-)}(k, R)$ для пар состояний $s = [oog] = \{oo\}, [oou] = \{10\}$ [103] = $\{20\}$ и при значениях k = 0,2; 0,4; 1; 5; 10.

3. Асимптотике метричных элементов при R→O и R→∞

При С << 1 с помощью стандартной схемы теории возмущений можно получить для УКСФ разложения по степеням с² в виде/1/

$$\sum_{mq} (z; k, R) = P_{\ell}^{m}(z) \left[\frac{2\ell+1}{2} \cdot \frac{(\ell-m)!}{(\ell+m)!} \right]^{\frac{1}{2}} + O(c^{2}).$$
(13)

При с>>1, используя схему эталонного уравнения/1/ можно получить всимптотику УКСФ в области 2~0, вне которой УКСФ экспоненциально мады.

$$\Xi_{mq}(2;k,R) = c^{\frac{1}{4}} u_{q}(\sqrt{c} 2) (1 + O(c^{-3})), \quad (14)$$

где U₉(эс) - нормировенные волновые функции гермонического осцилляторе. Воспользовевшись эсимптотическим вырежением для фезы рассеяния^{/5/}

$$\Delta_{mq}(k,R) = \sigma_{e}(k) + O(c^{2}) \quad \text{при } c <<1,$$

$$\Delta_{mq}(k,R) = -\frac{Z_{a}+Z_{e}}{k^{2}} \ln \frac{kR}{2} + O(c^{-1}) \text{при } c >>1,$$
(15)

гдв $G_{\ell}(k)$ - кулоновская фаза рассеяния на притягивающем потенциале с зарядом $Z = Z_a + Z_{\ell}$, нетрудно получить асимптотику матричных элементов при $R \rightarrow 0$ и $R \rightarrow \infty$ (при конечных q, m и k; $\ell = q + m$). При $\underline{R} \rightarrow 0$ $H_{ss}^{(+)}(k, R) = \frac{\ell(\ell+1)}{R^2} + k^2 \cdot \frac{m^2}{2(2\ell-1)(2\ell+3)} + k^2O(c^2)$,

$$Q_{ss'}^{(-)}(k,R) = -\frac{k}{2} \cos\left(\sigma_{e} - \sigma_{e+1}\right) \left[\frac{(l+m+1)(l-m+1)}{(2l+1)(2l+3)}\right]^{\frac{1}{2}} + k \cdot O(c^{2}),$$

$$H_{ss'}^{(-)}(k,R) = \frac{2(l+1)}{R} Q_{ss'}^{(-)}(k,R) + k^2 O(c).$$

При
$$\underline{R \to \infty}$$

 $H_{ss}^{(+)}(k,R) = \frac{k}{4R}(2q+1) - \frac{3}{32R^2}[(2q+1)^2+5] + k^2 O(c^{-3}),$

7

$$Q_{ss'}^{(-)}(k,R) = -\frac{1}{2} \left\{ \frac{k(q+1)}{R} \right\}^{\frac{1}{2}} + k \cdot O(c^{-\frac{3}{2}}),$$

$$H_{ss'}^{(-)}(k,R) = k \cdot Q_{ss'}^{(-)}(k,R) + k^{2} \cdot O(c^{-\frac{3}{2}}).$$
(I60)

Приведенная асимптотика справедлива для пар состояний $|c\rangle = |ks\rangle = |kqm\rangle$ и $|c'\rangle = |ks'\rangle = |kq'm\rangle$, различающихся только четностью. Более общие формулы могут быть получены аналогично. Отметим, что асимптотика $H_{ss'}^{(-)}(k,R)$ при $R \rightarrow 0$ и $R \rightarrow \infty$ определяется только вторым слагаемым в выражении (12в).

Из эсимптотического видэ $H_{ss}^{(+)}(k, R)$ при $R \rightarrow O$ видно, что учет дизгонального матричного элементэ $H_{ss}^{(+)}(k, R)$ при численных расчетах в адиабатическом базисе весьма важен для получения правильной асимптотики волновой функции задачи трех тел при R << 1.

Отметим, что асимптотика рассматриваемых матричных элементов при $R \to \infty$ содержит дробные степени R, что существенно отличает ее от асимптотики матричных элементов, связывающих состояния дискретного спектра^{/6/} задачи двух центров, которая содержит лишь целые степени R, и от экспоненциально падающей асимптотики матричных элементов, связывающих состояния дискретного и непрерывного спектров^{/10/}.

4. Заключение

Вычисленные ведущие члены матричных элементов, связывающих состояния непрерывного спектра, вместе с матричными элементами, связывающими состояния дискретного спектра^{/2}, и матричными элементами, связывающими состояния дискретного и непрерывного спектров^{/3} задачи двух кулоновских центров, представляют собои практически полный набор эффективных потенциалов задачи трах тел в адиабатическом представлении. Как показывает специальное исследование^{/7}, они позволяют находить энергию связи трах тел с высокой точностью.

Вычисления несингулярных чэстей мэтричных элементов $h_{ss'}(k,k',R)$ и $q_{ss'}(k,k',R)$ связывающих состояния непрерывного спектра, представляет собой особую, и,по-видимому, довольно сложную вычислительную задачу.

При некоторых комбинациях значений k и R, при которых РКСФ совпадают с одноцентровой кулоновской функцией в сфероидальных координатах (₹, १) и разлагаются в сходящиеся ряды по кулоновским функциям^{/5,8,9/}, эта задача, по-видимому, может быть решена.

Таблица I

Матри	чный элемент	KOOTH	при	различных к и К			
R	0,4	I	2	5			
з,	-	-	0,08266 0,II459	0,34368 0,36459			
5,	-	0,0I920 0,03II3	0,07263 0,08125	0,22432 0,23125			
IO	-	0,01815 0,02031	0,04353 0,0453I				
15	0,00328 ^{a)} 0,00453 ^{d)}	0,0I375 0,0I458	0,03049 0,03125	-			
20	0,00320 0,00383	0,0I088 0,0II33	-	-			

а) Вычислено согласно алгоритму работы /3/.

б) Вычислено по асимптотической формуле (166).

Матри	чный элемент	Таблица <koolq<sup>(-)</koolq<sup>	2 k10> при разли	ичных k и R
RK	0,4	I	2	5
3	-	-	-0,38267 -0,40825	-0,64500 -0,64550
5	-	-0,18370 -0,22361	-0,30895 -0,31623	-0,49988 -0,50000
IO	-	-0,14800 -0,15811	-0,22252 -0,2236I	-
15	-0,05714a) -0,08165 ⁶)	-0,12534 -0,12910	-0,18219 -0,18257	
20	-0,05482 -0,07071	-0,10992 -0,11180	-0,15794 -0,15811	-

а) Вычислено согласно алгоритму работы /3/. б) Вычислено по асимптотической формуле (166).

		Ta	блица	a 3						
Матричный з	лемент <	kool	HAI	k10>	при	различных	k	И	R	

R	0,4	I	2	5
3	-	-	-0,78417 -0,81650	-3,11577 -3,22749
5	-	-0,24300 -0,2236I	-0,61189 -0,63246	-2,44893 2,50000
IO	-	-0,16055 -0,15811	-0,43774 -0,4472I	-
15	-0,04440 ^{a)} -0,03266 ^{d)}	-0,12862 -0,12910	-0,35967 -0,36515	-
20	-0,03534 -0,02828	-0,II09I -0,III80	-0,31257 -0,31623	-

а) Вичислено согласно алгоритму работы /3/. б) Вичислено по асимптотической формуле (166).

для состояний (c> = |ks> = |kgm> при значениях импульса k = 0,2; 0,4; I; 5; I0.

I.	K	омаров	И.В.,	Пономарев	Л.И.,	Славино	ов С.	.10. Cặc	роидальны	6
	И	кулоно	вские	сфероидал	ьные фу	ункции.	М.,	Наука,	1976.	

- Ponomarev L.I., Puzynina T.P. and Truskova N.F. J.Phys. B. Atom. Molec. Phys., 1978, 11, p. 3861.
- Ponomarev L.M., Puzynina T.P. and Somov L.N., J. Phys. B: Atom. Molec. Phys., 1977, 10, p. 1335.
- 4. Ponomarev L.I. and Somov L.M., J. Comp. Phys., 1976, 20, p. 183.
- Abramov D.I., Kazakov A.I., Ponomarev L.I., Slavjanov S.Yu. and Somov L.N., J. Phys. B: Atom. Molec. Phys., 1979, 12, p. 1761.
- Faifman M.P., Ponomarev L.I., Vinitsky S.I. J. Phys. B: Atom. and Molec. Phys., 1979, 9, p. 2255.
- Виницкий С.И., Мележик В.С., Пономарев Л.И., Пузынин И.В., Пузынина Т.П., Сомов Л.Н., Трускова Н.Ф. ОИЯИ Р4-13036, Дубна, 1980.
- 8. Абрамов Д.И., Комаров И.В. ТМФ, 1976, 29, с. 235.
- 9. Трускова Н.Ф. ОИЯИ Р2-11988, Дубна, 1978.
- IO. Абрамов Д.И., Славянов С.Ю., Сомов Л.Н., ОИЯИ, Р4-11729, Дубна, 1978.

Рукопись поступила в издательский отдел 26 декабря 1979 года.

14