ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

B-486

1477/2-79

С.И.Виницкий. Ф.Р.Вукайлович. Л.И.Пономарев

АДИАБАТИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ

В ЗАДАЧЕ ТРЕХ ТЕЛ

С КУЛОНОВСКИМ ВЗАИМОДЕЙСТВИЕМ

II. Эффективное двухуровневое приближение

23/10-79

P4 - 12018

P4 - 12018

С.И.Виницкий, Ф.Р.Вукайлович.* Л.И.Пономарев

АДИАБАТИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ

В ЗАДАЧЕ ТРЕХ ТЕЛ

- С КУЛОНОВСКИМ ВЗАИМОДЕЙСТВИЕМ
- **П.** Эффективное двухуровневое приближение

Направлено в J. Phys. B

	Contraction of the second second second
967.67	a Tananyi (
GPP 18-	T. TRANSCO
list a stra	C. M.

^{*} Институт физики "Борис Кидрич", Белград, Югославия.

Виницкий С.И., Вукайлович Ф.Р., Пономарев Л.И. P4 - 12018

Адиабатическое представление в задаче трех тел с кулоновским взаимодействием. II. Эффективное двухуровневое приближение

Предложено каноническое операторное преобразование бесконечномерной системы интегродифференциальных уравнений, представляющих движение системы трех тел в адиабатическом базисе, которое позволяет свести исходную задачу к решению конечного числа дифференциальных уравнений. В качестве примера приведена система двух связанных дифференциальных уравнений, которая представляет исходную бесконечномерную систему с точностью ~(2M)⁻², где М⁻¹ ≈ m c /M 0 - отношение массы отрицательно заряженной частицы с к приведенной массе положительно заряженных частиц а и b. Показано, что предложенное преобразование устраняет известные трудности постановки граничных условий в адиабатическом базисе. Обсуждается физический смысл преобразования и полученных решений.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Vinitsky S.I., Vukajlovic F.R., Ponomarev L.I.

P4 - 12018

1

Adjabatic Representation of the Three-Body Problem with the Coulomb Interaction. II. Effective Two-Level Approximation

A canonical transformation of an infinite set of differential equations describing the motion of the three-body system in the adiabatic basis is suggested. This transformation allows one to reduce the initial problem to the solution of a finite set of differential equations. As an example, a system of two bound differential equations is constructed. It represents the initial infinite set of equations with the accuracy $0!(2M)^{-2}$, where $M^{-1} = m_c/M_0$ is the ratio of the mass of the negative charged particle c to the reduced mass of two positive charged particles a and b. It is shown that the transformation suggested removes the difficulties in formulating the boundary conditions in adiabatic basis. The physical meaning of the transformation and solution obtained is discussed.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubno 1978

I. Введение

Использование адиабатического базиса в задаче трех тел с кулоновским взаимодействием позволяет свести исходное уравнение Шредингера для системы трех заряженных частиц (а, в, с) с массами (Ma > Me. Mc.) к системе обыкновенных интегродисференциальных уравнений (в единицах $e = h = m_a = 1$, $m_a^{-1} = M_a^{-1} + M_a^{-1}$)/1,2/: $\left\{\widehat{I}\left(\frac{d^{2}}{dR^{2}}+2ME_{n\tau}\right)-U_{ii}(R)\right\}J_{i}(R)=\sum_{i\neq i}U_{ij}(R)J_{j}(R),$ $\chi_{j} = \begin{pmatrix} \chi_{ja} \\ \chi_{j\ell} \end{pmatrix}, \quad U_{ij} = \begin{pmatrix} U_{ia,ja} & U_{ia,j\ell} \\ U_{i\ell,ja} & U_{i\ell,j\ell} \end{pmatrix}, \quad \hat{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \delta_{ij}$ (I)

 $M = M_o/m_a$, $M_o^{-1} = M_a^{-1} + M_o^{-1}$. Здесь ($n\tau$) – полный набор квантовых чисел задачи трех тел, характеризующий движение (и) отрицательно заряженной частицы С и относительное движение (С) ядер а и в ; R - ресстояние между одноименно заряженными частицами а и в ; знак включает в себя суммирование по дискретному и интегрироватенциалов $U(R) = \{U_{ij}(R)\}$ имеет вид (все обозначения см. $R^{2-4/}$) $U(R) = \frac{J(J+1)-2m^2}{R^2}\hat{I} + 2MW(R) + H(R) + \frac{dQ(R)}{dR} + B(R) + 2Q(R)\frac{d}{dR},$

 $H(R) = H^{(0)}(R) + \varkappa H^{(1)}(R) =$

3

неверный импульс в каналах α и β , соответствующих процессам рассеяния $(a,c) + \beta$ и $\alpha + (\beta,c)$; конечность и дальнодействующий характер недиагональных потенциалов $U_{i,j}(R)$ при $R \to \infty$.

В предыдущей работе /2/ онло построено преобразование S(R)адмабатического базиса (i>, позволяющее восстановить правильные пределы диссоциации в каналах α и β . Дополнительное исследование показало, что для этой цели достаточно использовать асимптотически унитарное преобразование

$$\overline{S} = \lim_{R \to \infty} S(R),$$

$$R = \overline{S} X(R), \quad \overline{U}(R) = \overline{S} U(R) \overline{S}^{+},$$
(3)

которое обращает в нуль надиагональные матричные элементы $\overline{H}_{ij}^{(o)}(\infty)$ и $\overline{H}_{ij}^{(4)}(\infty)$, в результате чего матрица эффективных потенциалов в асимптотической области приобретает вид 2-4/

V

$$(2M)^{-1} \overline{U}_{ij}(\infty) = \begin{pmatrix} 1 & 0 \\ 0 & g \end{pmatrix} E_{ij}(\infty) \delta_{ij} + + (2M)^{-1} \begin{pmatrix} 1+z & 0 \\ 0 & -g(1-z) \end{pmatrix} 2Q_{ij}(\infty) (1-\delta_{ij}) \frac{d}{dR} = = \begin{pmatrix} 1 & 0 \\ 0 & g \end{pmatrix} E_{ij}(\infty) \delta_{ij} - i \begin{pmatrix} a & 0 \\ 0-\theta \end{pmatrix} \{P_{\mathbf{z}}(\infty)\}_{ij} (1-\delta_{ij}) \frac{d}{dR}, \qquad (4)$$

$$= \left\{ H^{(+)}(R) - H^{(*)}(R) \right\} + \mathscr{E} \left\{ H^{(-)}(R) - 2 H^{(*)}(R) \right\},$$
$$\mathscr{E} = \left(M_g - M_a \right) / \left(M_g + M_a \right), \qquad (2)$$

где

$$\begin{aligned} H_{ij}(R) + \frac{dQ_{ij}(R)}{dR} &= \langle i | \hat{\mathcal{G}}_{R}^{2} + \vec{\mathcal{L}}^{2} R^{-2} | i \rangle - (1 + i)^{2} H_{ij}^{(*)}(R), \\ H_{ij}^{(*)}(R) &= \frac{1}{2} \langle i | - \frac{1}{2} \Delta_{\vec{r}} | i \rangle, \quad Q_{ij}(R) &= -i \langle i | \hat{\mathcal{G}}_{R} | i \rangle, \\ B_{im,jm'}(R) &= -\chi_{mm'}^{3} B_{im,jm'}(R), \\ H_{ij}(R) &= H_{ji}(R), \quad Q_{ij}(R) &= -Q_{ji}(R), \quad b_{im,jm'}(R) &= b_{jm',im}(R), \\ \chi_{mm'}^{3} &= (1 + \delta_{mo} \delta_{m'j} + \delta_{m'o} \delta_{mj})^{\frac{1}{2}} [[(3 - m + i)(3 + m)]^{\frac{1}{2}} \delta_{m',m-1} + \{(3 + m + i)(3 - m)\}^{\frac{1}{2}} \delta_{m',m+1}] \\ b_{im,jm \mp 1}(R) &= R^{-2} \langle im | \mathcal{L}_{\pm} | j m \mp 1 \rangle, \\ \mathcal{G}_{R}^{2} &= -i \frac{\vec{R}}{R} (\nabla_{\vec{R}} + \frac{\pi}{2} \nabla_{\vec{r}}), \quad \vec{\mathcal{L}}^{2} &= -i \{(\vec{r} - \frac{\pi}{2} \vec{R}) \times \nabla_{\vec{r}}\}, \\ \vec{\mathcal{L}}^{2} &= \frac{1}{2} (\mathcal{L}_{+} \mathcal{L}_{-} + \mathcal{L}_{-} \mathcal{L}_{+}) + \mathcal{L}_{Z}^{2}, \end{aligned}$$

$$(2a)$$

 \vec{e}_{k} , \vec{e}_{0} , \vec{e}_{0} – сферические орть вектора \vec{k} . Как известно, непосредственная попытка согласовать физические граничные условия задачи трех тел с асимптотикой решений системы (I) наталкивается на определенные трудности, а именно: неверный предел диссоциации системы (a, b, c) при ее развале на подсистемы (a, c) + b и a + (b, c) (см. рисунок);

5

$$\begin{split} \chi &= m_{\ell}/m_{a} = \left(1 - \frac{2}{M}\right)^{-1}, \ m_{a}^{-1} = M_{a}^{-1} + M_{c}^{-1}, \ m_{\ell}^{-1} = M_{\ell}^{-1} + M_{c}^{-1}, \\ \alpha &= \frac{1+2}{2M} = \frac{M_{c}}{M_{a} + M_{c}} = \frac{m_{a}}{M_{a}}, \ \beta &= \gamma \frac{1-2}{2M} = \frac{M_{c}}{M_{\ell} + M_{c}} = \frac{M_{\ell}}{M_{\ell}}, \\ 2Q_{ij}(\infty) &= -i \left\{ P_{z}(\infty) \right\}_{ij} = \lim_{R \to \infty} \langle i | -\frac{2}{2z} | i \rangle = \left\{ E_{i}(\infty) - E_{j}(\infty) \right\} \langle i | z | j \rangle. (4a) \end{split}$$

В данной работе построено преобразование T(R), которое с точностью $O\{(2M)^{-2}\}$ диагонализует матрицу потенциалов $\overline{U}(R)$ во всей области изменения R, т.е. сводит ее к системе двух уравнений (i = ia, ib) (в дальнейшем, если это не оговорено особо, мы везде используем единицы $e = \hbar = m_a = 1$)

$$\left\{ (2M)^{-1} \mathcal{M}_{ii}^{-1}(R) \frac{d^2}{dR^2} + E_{nt} \hat{\mathbf{I}} - \widetilde{U}_{ii}(R) \right\} \widetilde{\mathcal{I}}_i(R) = 0, \qquad (5)$$

$$\widetilde{\chi}(R) = T(R)\,\overline{\chi}(R), \quad \widetilde{U}(R) = T(R)\,(2M)^{-1}\,\overline{U}(R)\,T^{-1}(R)\,, \quad (5a)$$

причем с точностью $O\{(2M)^{-k}\}$

гле

$$\widetilde{U}_{ij}(R) = \begin{pmatrix} \widetilde{U}_{ia,ja}(R) & \widetilde{U}_{ia,jb}(R) \\ \widetilde{U}_{ib,ja}(R) & \widetilde{U}_{ib,jb}(R) \end{pmatrix} \delta_{ij} .$$
(56)

В асимптотической области $R \rightarrow \infty$ имеют место предельные соотношения

$$\widetilde{Q}_{ii}(\infty) = 0,$$

$$\widetilde{U}_{ii}(\infty) = \begin{pmatrix} 1 & 0 \\ 0 & \gamma \end{pmatrix} E_i(\infty) = \begin{pmatrix} E_{ia} & 0 \\ 0 & E_{ib} \end{pmatrix}, \quad (6)$$

где в единицах $e = t_1 = M_c = 1$

$$E_{ia} = -m_a/2n^2$$
, $E_{is} = \gamma E_{ia} = -m_s/2n^2$,

а \mathcal{N} - главное квантовое число состояния $|i\rangle$ изолированных атомов (a,c) и (ℓ,c). Одновременно с этим в матрице $\widetilde{U}(R)$ исчезают недиагональные дальнодействующие потенциалн $\widetilde{U}_{,}(R) \sim R^{-4}$ которые присутствуют в матрице $\overline{U}(R)$, а члены $\sim R^{-2}$ корректируются таким образом, что восстанавливается правильное выражение для центробежного члена в обоих каналах, α и \mathscr{E} .

Структура матрицы *м*_{ii} (R) такова, что при R→∞

$$M\begin{pmatrix} \mathcal{M}_{ia,ia}(R) & \mathcal{M}_{ia,i6}(R) \\ \mathcal{M}_{i6,ia}(R) & \mathcal{M}_{i6,i6}(R) \end{pmatrix} \xrightarrow{}_{R \to \infty} \begin{pmatrix} \mathcal{M}_{a} & O \\ O & \mathcal{M}_{6} \end{pmatrix},$$
(7)

гдө

 $\mathcal{M}_{a}^{-1} = m_{a} \left\{ \begin{pmatrix} M_{c} + M_{a} \end{pmatrix}^{-1} + M_{g}^{-1} \end{pmatrix}, \qquad \mathcal{M}_{g}^{-1} = m_{a} \left\{ M_{a}^{-1} + \begin{pmatrix} M_{c} + M_{g} \end{pmatrix}^{-1} \right\}$ суть приведенные массы систем (a,c) + ℓ и a + (ℓ ,c) соответственно. Из соотношений (6) и (7) следует, что преобразование T(R) в асимптотической области $R \to \infty$ восстанавливает правильные импульсы в каналах а и ℓ :

$$k_{a}^{2} = 2 \mathcal{M}_{a} \mathcal{E}_{a}, \qquad k_{e}^{2} = 2 \mathcal{M}_{e} \mathcal{E}_{e},$$
$$\mathcal{E}_{a} = \mathcal{E}_{n\tau} - \mathcal{E}_{ia}, \qquad \mathcal{E}_{e} = \mathcal{E}_{n\tau} - \mathcal{E}_{ie}. \qquad (8)$$

Систему уравнений (5) будем называть эффективным двухуровневым приближением задачи трех тел в адиабатическом представлении.

Преобразование T'(k) может быть построено с любой степенью точности по параметру $(2M)^{-1}$. Однако при практической его реализации разумно эграничиться вторым порядком теории возмущений. В этом случае преобразование T = T'(k) реализуется в виде последовательности двух преобразований:

$$T = T^{(2)} T^{(1)} = e^{i \bar{\Lambda}^{(2)}} e^{i \bar{\Lambda}^{(4)}}, \qquad (9)$$

каждое из которых содержит параметр малости $(2M)^{-1}$, а генераторы $\bar{\Lambda}^{(n)}$ определяются из условий диагональности преобразованного потенциала $\widetilde{U}_{ii}(R)$ в соответствующем порядке теории возмущений.

Преобразования подобного типа использовались еще Ван Флеком/6/ при рассмотрении Л - удвоения в спектре двухатомных молекул, Тхаррасом⁷⁷ при построении потенциала взаимодействия, зависящего от скорости, Иоргенсеном и Педерсеном⁸⁸ в задачах квантовой химии, Гартенхаузом и Шварцем⁹⁷, Хироокой и Сунака-вой⁷⁰⁰, Крайчиком и Фолди⁷¹ и многими другими авторами для выделения движения центра масс составных систем.

Преобразование (9) является операторным и по смыслу близко к преобразованию Фолди-Вотхойзена /5/, с помощью которого уравнение Еирака можно привести к двухкомпонентной форме. Отмеченную аналогию можно продолжить достаточно далеко, принимая во внимание соответствие величин: $\vec{z} \rightarrow \vec{p}$, $\beta \rightarrow E$ где \vec{z} и β известные матрицы Дирака.

В пределе $R \to \infty$ преобразование (9) принимает вид матричной "трансляционной экспоненты"

$$T_{ij}(\infty) = \lim_{R \to \infty} T_{ij}(R) = \left\{ e^{i \overline{\Lambda}^{(j)}} \right\}_{ij} = \left(e^{\overline{\alpha} \nabla_{\overline{R}}} O - e^{-\overline{\beta} \nabla_{\overline{R}}} \right)_{ij}, (10)$$

где $\vec{a} = a \vec{r}_a$, $\vec{b} = \delta^{-1} \vec{b} \vec{r}_e$, а величины a и \vec{b} определены формулами (4а) и представляют собой величину сдвига из ядер а и в вцентры масс атомов (а, с) и (в, с). Преобразование обратное (IO), рассмотрено в работе Матвеенко и Ловаша/12/.

Исторически первой попыткой исправить асимптотику ациабатических решений было введение "трансляционной экспоненты" Бейтсом и Мак Кэрролом^{/13}. Этот подход в дальнейшем развивали Бейтси Хольт, Бейтс и Спревак^{/14}, Шнейдерман^{/15}, Торсон^{/16} и др.; Чен и др.¹⁷ вводили трансляционную экспоненту на эснове эйко-нала в технике проекционных операторов Фешбаха^{/18}, а Шмид^{/19} обсуждал ее связь с унитарными преобразованиями.

Другой подход был предложен Паком и Хиршфельдером/20/ под HASBAHNEM "the best adiabatic approximation". B HACTORUGE BPGмя развиваются его различные варианты: "the post adiabatic approximation" Клара и Φ aнo/21/, "the non-adiabatic pseudopotential" Хантера и Бишопа/22/, "a diagonalisation tregtment of the electron translation effect" Албата и Груена^{23/} (идея которого предложена Розенталем^{24/}) и др. Основная идея этих подходов состоит в факторизации волновой функции системы трех тел и диагонализации исходной системы потенциалов.

Полход. предлагаемый в данной работе, объединяет в себе ИДЭЮ "the best adiabatic approximation" С ИДССЙ ВВСЛЕНИЯ "трансляционной экспоненты" на основе преобразования (9). Показано, что с помощью одного этого преобразования можно решить обе залачи одновременно: диагонализовать матрицу потенциалов <u></u>

(*R*) и восстановить правильные импульсы k. в каналах реакции.

2. Диагонализация системы уравнений

Систему уравнений (I) после преобразования (3), восстанавливающего правильные пределы диссоциации в каналах о и в представим в виде

$$\left\{ \hat{I} \frac{d^{2}}{dR^{2}} + 2M \left(E_{n\tau} \hat{I} - U_{ii} \right) \right\} \chi_{i}^{(o)} = \sum_{j \neq i} u_{ij} \chi_{j}^{(o)}, \qquad (II)$$

где введены обозначения:

$$\begin{split} \chi_{j}^{(*)} &= \overline{\chi_{j}}(R), \\ U_{ii} &= (2M)^{-1} \overline{U}_{ii}(R) = V_{ii} + (2M)^{-1} \left\{ \frac{dQ_{ii}}{dR} + 2Q_{ii} \frac{d}{dR} \right\}, \\ u_{ij} &= \overline{U}_{ij}(R) = \overline{v}_{ij} + \frac{dq_{ij}}{dR} + 2q_{ij} \frac{d}{dR}, \\ V_{ii} &= \overline{E}_{i}(R) + \frac{1}{R} + (2M)^{-1} \left\{ \frac{J(J+1) - 2M^{2}}{R^{2}} \hat{I} + \overline{H}_{ii}(R) \right\}, \\ Q_{ii} &= \overline{Q}_{ii}(R), \ \overline{v}_{ij} = \overline{H}_{ij}(R) + \overline{B}_{ij}(R), \ q_{ij} = \overline{Q}_{ij}(R). \end{split}$$
(12)

Пре

$$\vec{\chi}^{(1)} = e^{i\vec{\Lambda}^{(1)}} \chi^{(0)}$$
(13)

удовлетворяет системе уравнений:

$$\begin{cases} \hat{I} \frac{d^{2}}{dR^{2}} + 2M \left(E_{n\tau} \hat{I} - \overline{U}_{ii}^{(4)} \right) \} \overline{X}_{i}^{(4)} = \sum_{j \neq i} \overline{u}_{ij}^{(4)} \overline{X}_{j}^{(4)}, \quad (14) \end{cases}$$

$$THE C TOHHOCTED O \{ (2M)^{-2} \} = 0 \qquad \overline{\Lambda}^{(4)}$$

$$\overline{U}_{ii}^{(4)} = U_{ii} + i (2M)^{-4} [\overline{\Lambda}^{(4)}, u]_{ii} + \frac{i^{2}}{2} [\overline{\Lambda}^{(4)}, [\overline{\Lambda}^{(4)}, U]]_{ii}, \quad (\overline{u}_{ij}^{(4)} = u_{ij} + i [\overline{\Lambda}^{(4)}, 2MU]_{ij} + \frac{i^{2}}{2} [\overline{\Lambda}^{(4)}, [\overline{\Lambda}^{(4)}, 2MU]]_{ij} + i [\overline{\Lambda}^{(4)}, u]_{ij} - i [\overline{\Lambda}^{(4)}, \frac{d^{2}}{dR^{2}}]_{ij}.$$

Чтобы исключить недиагональные члены $\sim (2M)^{-1}$ в потенциалах (14а) достаточно полокить^{#)}

$$i\left[\bar{\Lambda}^{(1)}, U\right]_{ij} = -(2M)^{-1}u_{ij},$$
 (15)

где, как обычно, $\bar{\Lambda}_{ij}^{(1)}$, U_{ii} и \mathcal{U}_{ij} – двумерные матрицы вида (Ia). Однако решить непосредственно это операторное уравнение не представляется возможным, и мы найдем $\bar{\Lambda}^{(1)}$ методом последовательных приближений. Для этого преобразование $T^{(1)}$ представим в виде произведения двух преобразований:

$$T^{(4)} = e^{i\bar{\Lambda}^{(4)}} = e^{i\Lambda^{(2)}}e^{i\Lambda^{(4)}}.$$
 (16)

Генератор $\Lambda^{(2)}$ определим из системы уравнений, которая следует из соотношения

$$i \left[\Lambda^{(1)}, \mathbf{V} \right]_{ij} = - (2M)^{-1} u_{ij}, \qquad (17)$$

которое в развернутой записи имеет вид

$$\begin{pmatrix} \Lambda_{ia,ja}^{(4)} & \Lambda_{ia,j\ell}^{(4)} \\ \Lambda_{i\ell,ja}^{(4)} & \Lambda_{i\ell,j\ell}^{(4)} \end{pmatrix} \begin{pmatrix} V_{ja,ja} & V_{ja,j\ell} \\ V_{j\ell,ja} & V_{j\ell,j\ell} \end{pmatrix} - \begin{pmatrix} V_{ia,ia} & V_{ia,i\ell} \\ V_{i\ell,ia} & V_{i\ell,i\ell} \end{pmatrix} \begin{pmatrix} \Lambda_{ia,ja}^{(4)} & \Lambda_{ia,j\ell}^{(4)} \\ \Lambda_{i\ell,ja}^{(4)} & \Lambda_{i\ell,j\ell}^{(4)} \end{pmatrix} = = i \left(2M \right)^{-1} \begin{pmatrix} u_{ia,ja} & u_{ia,j\ell} \\ u_{i\ell,ja} & u_{i\ell,j\ell} \end{pmatrix} .$$
(18)

Приводя его к виду, в котором все операторы $\Lambda^{(3)}_{ij}$ стоят справа от потенциалов $V_{i,i}$, и отбрасывая все возникающие при этом приведении коммутаторы, придем к следующему уравнению для определения $\Lambda^{(3)}_{ij}$:

$$i \sum_{\beta=1}^{4} \prod_{\alpha\beta}^{-1} \Lambda_{\beta}^{(1)} = (2M)^{-1} u_{\alpha}, \qquad (19)$$

#) Такое определение генератора $\bar{\Lambda}_{ij}^{(4)}$ соответствует частичному учету вкладов третьего порядка в матрице потенциалов $\overline{U}_{ii}^{(4)}$. в котором все величины представлены в четырехкомпонентном виде, причем последовательности индексов $\alpha, \beta = 1, 2, 3, 4$ (при фиксированных *i* и *j*) соответствует последовательность (*ia*, *ja*), (*ie*, *ja*), (*ia*, *jb*), (*ib*, *jb*). Матрица Γ^{-1} имеет вид

$$\left(\Gamma^{-s}\right)_{\alpha\beta}^{ij} \equiv \left(\Gamma^{-s}\right)_{\alpha\beta}^{ij} = \begin{pmatrix} V_{ia,ia} - V_{ja,ja} & V_{ia,ib} - V_{jb,ja} & O \\ V_{ib,ia} & V_{ib,ib} - V_{ja,ja} & O & -V_{jb,ja} \\ -V_{ja,jb} & O & V_{ia,ia} - V_{jb,jb} & V_{ia,ib} \\ O & -V_{ja,jb} & V_{ib,ia} & V_{ib,ib} - V_{jb,jb} \end{pmatrix} . (20)$$

Решая систему уравнений (19), получим:

$$i \Lambda_{\alpha}^{(1)} = (2M)^{-1} \sum_{\beta=1}^{2} \prod_{\alpha \beta} u_{\beta} = (2M)^{-1} (\Gamma \cdot u)_{\alpha}, \quad (2I)$$

где

$$\Gamma\Gamma^{-1} = \begin{pmatrix} \hat{1} & 0 \\ 0 & \hat{1} \end{pmatrix}, \quad \left\{ \Lambda^{(1)} \right\}_{\alpha}^{ij} = \begin{pmatrix} \Lambda^{ia,ja} \\ \Lambda^{(2)}_{ie,ja} \\ \Lambda^{(3)}_{ie,j\ell} \\ \Lambda^{(3)}_{ie,j\ell} \\ \Lambda^{(3)}_{ie,j\ell} \end{pmatrix} = \begin{pmatrix} \Lambda^{(1)}_{ia,ja} & \Lambda^{(2)}_{ia,j\ell} \\ \Lambda^{(3)}_{ie,ja} & \Lambda^{(3)}_{ie,j\ell} \\ \Lambda^{(4)}_{ie,ja} & \Lambda^{(4)}_{ie,j\ell} \end{pmatrix} . (22)$$

Замена генератора Λ^{-1} на генератор $\Lambda^{(1)}$ в правой части равенств (14а) приводит с точностью О {(2M)⁻²} к следующим выражениям для эффективных потенциелов:

$$U_{ii}^{(4)} = U_{ii} + \frac{i}{2} (2M)^{-4} [\Lambda^{(4)}, u]_{ii} + \frac{i}{2} [\Lambda^{(4)}, (\lambda^{(4)}V)]_{ii},$$

$$u_{ij}^{(4)} = i (\lambda^{(4)} 2MV)_{ij} + \frac{i}{2} [\Lambda^{(4)}, u]_{ij} + \frac{i^2}{2} [\Lambda^{(4)}, (\lambda^{(4)} 2MV)]_{ij} + [\Lambda^{(4)}, \frac{dQ}{dR} + 2Q\frac{d}{dR}]_{ij} - i [\Lambda^{(4)}, \frac{d^2}{dR^2}]_{ij},$$
(23)

где $\lambda^{(1)}$ - дифференциальная часть генератора $\Lambda^{(2)}$

$$i \lambda_{d}^{(1)} = (2M)^{-1} \sum_{\beta=1}^{3} \prod_{\alpha \beta} 2q_{\beta} \frac{d}{dR} = (2M)^{-1} (\Gamma \cdot 2q)_{\alpha} \frac{d}{dR} .$$
 (24)

10

Преобразование, соответствующее генератору $\Lambda^{(2)}$, приводит к следующему уравнению для функции

$$\chi^{(2)} = e^{i\Lambda^{(2)}} e^{i\Lambda^{(3)}} \chi^{(0)}, \qquad (25)$$

$$\left\{\hat{I}\frac{d^{2}}{dR^{2}} + 2M\left(E_{nz}\hat{I} - U_{ii}^{(2)}\right)\right\}\chi_{i}^{(2)} = \sum_{j\neq i} U_{ij}^{(2)}\chi_{j}^{(2)}, \quad (26)$$

$$U_{ii}^{(2)} = U_{ii}^{(4)} + i \left(2M\right)^{-1} \left[\Lambda^{(2)}, u^{(4)}\right]_{ii} + \frac{i^2}{2} \left[\Lambda^{(3)}, \left[\Lambda^{(2)}, U^{(4)}\right]\right]_{ii}, \\ u_{ij}^{(2)} = u_{ij}^{(4)} + i \left[\Lambda^{(2)}, 2MU^{(4)}\right]_{ij} + \frac{i^2}{2} \left[\Lambda^{(2)}, \left[\Lambda^{(2)}, 2MU^{(4)}\right]\right]_{ij} + i \left[\Lambda^{(2)}, 2MU^{(4)}\right]_{ij} + \frac{i^2}{2} \left[\Lambda^{(2)}, \left[\Lambda^{(2)}, 2MU^{(4)}\right]\right]_{ij} + i \left[\Lambda^{(2)}, \frac{dQ}{dR} + 2Q\frac{d}{dR}\right]_{ij} - i \left[\Lambda^{(2)}, \frac{d^2}{dR^2}\right]_{ij} (26a)$$

Генератор Л определяется из уравнения

$$i \left[\Lambda^{(2)}, \mathbb{V} \right]_{ij} = -i \left(\lambda^{(3)} \cdot \mathbb{V} \right)_{ij}, \qquad (27)$$

решая которое, получим с учетом определений (20), (22):

 $i \Lambda_{d}^{(2)} = i \sum_{\beta=4}^{4} \prod_{i\beta} (\lambda^{(4)} V)_{\beta} = i (\prod (\lambda^{(4)} V))_{d}. (28)$ Takoň bhoop rehepatopa $\Lambda^{(2)}$ исключает член $i (\lambda^{(4)} 2 M V)_{ij}$. В потенциалах $\mathcal{U}_{ij}^{(4)}$, появившийся вследствие замены $\overline{\Lambda}^{(4)} \rightarrow \Lambda^{(4)}$ в выражениях (I4a). Функции $\mathcal{X}_{i}^{(2)}$ и потенциалы $U_{ii}^{(2)}$ и $\mathcal{U}_{ij}^{(2)}$ лишь членами порядка $\sim (2M)^{-3}$ отличаются от функций $\mathcal{X}^{(4)}$ и потенциалов $\overline{U}_{ii}^{(4)}$ и $\overline{\mathcal{U}}_{ij}^{(4)}$ в уравнении (I4). Их явный вид следует из соотношений (26a) и (27): $U_{ii}^{(2)} = U_{ii} + \frac{i}{2} (2M)^{-4} [\Lambda^{(4)}, u]_{ii} + \frac{i^2}{2} [\Lambda^{(4)} + \Lambda^{(2)}, (\lambda^{(4)} V)]_{ij} + i [\Lambda^{(4)} + \Lambda^{(2)}, u]_{ij} + \frac{i^2}{2} [\Lambda^{(4)} + \Lambda^{(2)}, (\lambda^{(4)} V)]_{ij}$ Преобразование $T^{(2)}$, диагонализирующее матрицу $\mathcal{U}_{ij}^{(2)}$ с точностью $O\{(2M)^{-2}\}$, можно построить с помощью трех генераторов $\Lambda^{(n)}$, n = 3,4,5: $\overline{\Lambda}^{(2)}$ $i \Lambda^{(5)} = i \Lambda^{(4)} \circ i \Lambda^{(3)}$

$$T^{(2)} = e^{i\Lambda} = e^{i\Lambda} e^{i\Phi} e^{i\Phi} \cdot (30)$$

Отбрасывая согласно принятому условию члены О {(2M)⁻³} для функции

$$\chi^{(5)} = T^{(2)} \chi^{(2)}, \qquad (31)$$

получим следующее уравнение:

$$\left\{\hat{I}\frac{d^{2}}{dR^{2}}+2M(E_{nz}\hat{I}-U_{ii}^{(5)})\right\}\chi_{i}^{(5)}=0.$$
 (32)

Преобразование (30) изменяет в диагональных потенциалах $U_{ii}^{(2)}$ лишь члены $\sim (2M)^{-3}$, что находится за пределами принятой точности. Таким образом, с точностью 0 { $(2M)^{-2}$ } справедливы равенства

$$\widetilde{U}_{ii} = U_{ii}^{(5)} = U_{ii}^{(2)}, \quad u_{ij}^{(5)} = 0, \quad \widetilde{X}_i = X_i^{(5)}. \quad (33)$$

Принимая во внимание соотношения (16) и (30), можно убедиться, что с той же степенью точности уравнения (32) и (5) эквивалентны.

Подставляя в выражение (29) для потенциалов $U_{cc}^{(2)}$ явный вид генератороа $\Lambda^{(4)}$, $\Lambda^{(2)}$ и $\lambda^{(4)}$, придем к уравнению

$$\left\{ (2M)^{-1} \mathcal{M}_{ii}^{-1}(R) \frac{d^2}{dR} + E_{nt} \hat{I} - \widetilde{U}_{ii}(R) \right\} \widehat{\mathcal{I}}_{i}(R) = 0 , \qquad (5)$$

где матрицы $\mathcal{M}_{cc}(\mathcal{R})$ и $\widetilde{U}_{cc}(\mathcal{R})$ определены формулами

$$\mathcal{M}_{ii}^{-1}(R) = \hat{I} - 2(2M)^{-1} \sum_{j \neq i} \left\{ (\Gamma \cdot q)_{ij} q_{ji} - q_{ij}(\Gamma \cdot q)_{ji} \right\}_{(34)}$$

$$\mathcal{M}_{ii}(R) \mathcal{M}_{ii}^{-1}(R) = \hat{I} ,$$

$$\widetilde{U}_{ii}(R) = \widetilde{V}_{ii}(R) + (2M)^{-1} 2\widetilde{Q}_{ii}(R) \frac{d}{dR} ,$$

$$\widetilde{\mathbf{u}}_{ij} = \mathbf{v}_{ij} + q_{ij}' , \quad q_{ij}' = \frac{dq_{ij}}{dR} ,$$

$$\begin{split} \widetilde{V}_{ii}(R) &= \overline{V}_{ii}(R) + (2M)^{-1} \frac{d\overline{Q}_{ii}(R)}{dR} + \\ &+ \frac{1}{2}(2M)^{-2} \sum_{j} \left[(\Gamma \cdot \widetilde{\mathbf{u}})_{ij} \left\{ \widetilde{\mathbf{u}} + 2((\Gamma \cdot q) \cdot V') \right\}_{ji} - \left\{ \widetilde{\mathbf{u}} + 2((\Gamma \cdot q) \cdot V') \right\}_{ij} (\Gamma \cdot \widetilde{\mathbf{u}})_{ji}^{+} \\ &+ 2(\Gamma \cdot q)_{ij} \left\{ \widetilde{\mathbf{u}} + 2((\Gamma \cdot q) \cdot V') \right\}_{ji}^{\prime} - 2q_{ij}(\Gamma \cdot \widetilde{\mathbf{u}})_{ji}^{\prime} + \\ &+ 4 \left\{ (\Gamma \cdot ((\Gamma \cdot q) \cdot V'))_{ij} ((\Gamma \cdot q) \cdot V')_{ji} - ((\Gamma \cdot q) \cdot V')_{ij} (\Gamma \cdot ((\Gamma \cdot q) \cdot V'))_{ji} \right], \\ \widetilde{Q}_{ii}(R) &= \overline{Q}_{ii}(R) - (2M)^{-1} \sum_{j} \left[(\Gamma \cdot q)_{ij} q_{ji}^{\prime} - q_{ij}(\Gamma \cdot q)_{ji} + \\ &+ \frac{1}{2} \left\{ (\Gamma \cdot q)_{ij} \widetilde{u}_{ji} - \widetilde{u}_{ij} (\Gamma \cdot q)_{ji} + (\Gamma \cdot \widetilde{\mathbf{u}})_{ij} q_{jii} - q_{ij}(\Gamma \cdot \widetilde{\mathbf{u}})_{ji} \right\} + \\ &+ (\Gamma \cdot q)_{ij} ((\Gamma \cdot q) \cdot V')_{ji} - ((\Gamma \cdot q) \cdot V')_{ij} (\Gamma \cdot q)_{ji} \right]. \end{split}$$

Произведения в круглых скобках ($\lceil q \rangle$, ($\lceil \widetilde{u} \rangle$) и т.д. следует понимать в смысле определения (21), а переход ($\lceil q \rangle_{u} \rightarrow (\lceil q \rangle)_{i}$ и т.д. (22) от четырехвекторов к матрицам 2x2 осуществляется по изложенным выше правилам соответствия. Символ \sum_{i} включает в себя суммирование по дискретному и интегрирование по непрерывному спектрам задачи двух центров:

$$\sum_{j} = \sum_{m=0}^{\infty} \sum_{n_{2}=0}^{\infty} \left\{ \sum_{n_{d}=0}^{\infty} + \sum_{\substack{s=1 \\ s=1}}^{k_{s}} \int_{k_{s-1}}^{k_{s}} dk \right\},$$
 (37)

где n_1, n_2, m - параболические квантовые числа состояния изолированных атомов (a, c) и (ℓ, c) , а интеграл по непрерывному спектру представлен в виде суммы, как в работах 25, 26/

З. Граничные условия

При i = n = 1, т.е. при описании системы трех тел, находящейся в основном состоянии по движению частицы C, система двух уравнений (5) относительно функций \mathcal{J}_{1a} в \mathcal{J}_{1a} с потенциалами (34)-(36) представляет собой эффективное двухуровневое приближение задачи трех тел в адиабатическом представлении с точностью 0 {(2M)⁻²}. Она получается как результат проектирования системы интегродифференциальных уравнений (I) в два наинизших состояния. Покажем теперь, что решения \widetilde{X}_{14} и \widetilde{X}_{16} системы уравнений (5) в отличие от решений \overline{X}_{1} системы (1) удовлетворяют правильным граничным условиям задачи рассеяния.

Прежде всего, из определений (I2), (20) и формул (4), (4а) следуют асимптотические равенства

$$\begin{aligned}
\nabla_{ii}(\infty) &= \begin{pmatrix} 1 & 0 \\ 0 & \chi \end{pmatrix} E_i, \quad E_i \equiv E_i(\infty), \quad \nabla_{ij}(\infty) = 0, \\
(2M)^{-1} 2q_{ij}^{\alpha\beta} &= \begin{pmatrix} a & 0 \\ 0 & -6 \end{pmatrix} \langle i | -\frac{3}{22} | i \rangle = \begin{pmatrix} a & 0 \\ 0 & -6 \end{pmatrix} 2q_{ij}(\infty) = \begin{pmatrix} a & 0 \\ 0 & -6 \end{pmatrix} \langle i | z | j \rangle, \\
& \Gamma_{ij} &= \begin{pmatrix} (E_i - E_j)^{-1} & 0 & 0 & 0 \\ 0 & (\chi E_i - E_j)^{-1} & 0 & 0 \\ 0 & 0 & (E_i - \chi E_j)^{-4} & 0 \\ 0 & 0 & \chi^{-4} (E_i - E_j)^{-4} \end{pmatrix}, \quad (38)
\end{aligned}$$

откуда в соответствии с равенством (34) следует соотношение:

$$\mathcal{M}_{ii}^{-1}(\infty) = \hat{I} - 2M \begin{pmatrix} \alpha^2 & 0 \\ 0 & \gamma^{-1} \beta^2 \end{pmatrix} 4 \sum_{j} \frac{q_{ij}(\infty) q_{ji}(\infty)}{E_i - E_j} ,$$

$$i \Lambda_{ij}^{(1)}(\infty) = \begin{pmatrix} \alpha & 0 \\ 0 - \gamma^{-1} \beta \end{pmatrix} \langle i | \vec{z} | j \rangle (1 - \delta_{ij}) \frac{d}{dR} .$$
(39)

$$\frac{4}{4} \sum_{j} \frac{q_{ij}(\infty) q_{ji}(\infty)}{E_i - E_j} = \sum_{j} \langle i | \frac{\gamma}{\gamma_z} | j \rangle \langle j | z | i \rangle = \frac{4}{2}, \quad (40)$$

которое справедливо при использовании полного набора (j>, т.е. при суммировании по всему дискретному и интегрировании по непрерывному спектрам задачи двух центров, при $R \rightarrow \infty$ окончательно получим:

$$M^{-1}\mathcal{M}_{ii}^{-1}(\infty) = \begin{pmatrix} M^{-1} - (m_{a}/M_{a})^{2} & O \\ O & M^{-1} - \gamma^{-1}(m_{\ell}/M_{\ell})^{2} \end{pmatrix} = \begin{pmatrix} \mathcal{M}_{a}^{-1} & O \\ O & \mathcal{M}_{\ell}^{-1} \end{pmatrix}.$$
 (41)

Таким образом, в пределе $R \rightarrow \infty$ преобразование (5а) восстанавливает в уравнении (5) правильные импульсы (8) в каналах реакции α и β :

$$2M_{\mu_{ii}}(\infty) \left\{ E_{n\tau} \hat{I} - \widetilde{U}_{ii}(\infty) \right\} =$$

$$= 2 \left(\mathcal{M}_{a} \quad 0 \\ 0 \quad \mathcal{M}_{g} \right) \left(E_{n\tau} - E_{ia} \quad 0 \\ 0 \quad E_{n\tau} - E_{ig} \right) = \left(\begin{array}{c} k_{ia}^{2} & 0 \\ 0 & k_{ig}^{2} \end{array} \right). \quad (42)$$

Подчеркнем, что этот результат, полученный во втором порядке теории возмущений по параметру $(2M)^{-1}$, в действительности является точным, поскольку все члены $\sim (2M)^{-3}$ и выше, возникающие в потезциалах $\widetilde{U}_{ii}(R)$ от генераторов $\Lambda^{(3)}$, $\Lambda^{(v)}$, $\Lambda^{(5)}$ и т.д. обращаются в нуль в асимптотической области $R \to \infty$ и приводят лишь к изменению функции $\widetilde{X}_i(R)$.

На первый взгляд этот результат может показаться удивительным даже при использовании полноти набора *ij* > , однако атом водорода представляет собой систему, для которой можно строить точные решения²⁹ по теории возмущений.

Отметим, что с помощью операции суммирования типе (40) в работе Теллера и Сахлина^{/30/} при рассмотрении атомя водорода в адиабатическом представлении суммарная масса атома $M_p + m_e$, соответствующая движению атома как целого, была восстановлена лишь с точностью $O\left\{\left(m_e/M_p\right)^2\right\}$. Точную массу таким способом им не удалось получить, прекольку предварительно на была сформирована приведенная масса m_e . В работе^{/31/} для решения той же задачи^{/30/} было предложено преобрезование $\left\{exp\left(-i\vec{s}\vec{K}\right)\right\}_{ij}$,где \vec{K} – импульс центра масс егома водорода, аналогичное преобразованию $T(\infty)$ в виде (11) для качала \vec{e} .

Понажем тепарь, что одновременно о восстановлением правильных импульсов в каналах а и в преобразование (5а) исправляет также приведенную массу M при центробекном потенциале $\{ J(J+1) - 2m^2 \} / 2MR^2$. Для этого выпишем яванй вид членов ~ R^{-1} и ~ R^{-2} в потенциалах $\mathcal{V}_{G}(R)$ при R > 1, который следует из результатов работ (2-4, 28):

$$\begin{aligned} \mathcal{U}_{ij}^{as} &= \mathcal{V}_{ij}^{as} + (2M)^{-1} \mathcal{L} q_{ij}^{as} \frac{d}{dR} , \quad q_{ij}^{as} &= \begin{pmatrix} 1+x & 0\\ 0 & -\gamma(1-x) \end{pmatrix} q_{ij}^{(\infty)} , \\ \mathcal{V}_{ij}^{as} &= R^{-1} \begin{pmatrix} 1+x & 0\\ 0 & -\gamma(1-x) \end{pmatrix} \Big\{ h_{ij}^{(-)}(\infty) + B_{ij}^{(-)}(\infty) \Big\} + O(R^{-2}) , \\ \mathcal{V}_{ii}^{as} &= \begin{pmatrix} 1 & 0\\ 0 & \gamma \end{pmatrix} E_{i} + (2M)^{-1} R^{-2} \Big\{ [J(J+1) - 2M^{2}] \hat{I} + h_{ii}^{(+)}(\infty) \Big\} + O(R^{-3}) . \end{aligned}$$

Здесь введены обозначения /4,28/

где ℓ и J — орбитальный момент легкой частицы c и полный момент системы трех тел соответственно, ρ_{\pm} — компоненты импульса частицы c, а $\{i > -$ решения задачи двух центров при $\ell \to \infty$. С учетом соотношений

$$\vec{l}^{*2} = \frac{1}{2} (l_{+} l_{-} + l_{-} l_{+}) + l_{z}^{2} ,$$

$$\vec{J}^{*2} = \frac{1}{2} (J_{+} J_{-} + J_{-} J_{+}) + J_{z}^{2} ,$$

$$l_{z}^{2} = J_{z}^{2} = m^{2} ,$$

$$P_{\pm} = \pm i P_{x} - P_{y}$$
(45)

и правил сумм

$$\sum_{j} \langle i | P_{\mathbf{x}} | j \rangle \langle j | \mathbf{x} | i \rangle = \sum_{j} \langle i | P_{\mathbf{y}} | j \rangle \langle j | \mathbf{y} | i \rangle = -\frac{i}{2},$$

$$\langle i | P_{\mathbf{x}} | j \rangle = i(E_{i} - E_{j}) \langle i | \mathbf{r}_{\mathbf{x}} | j \rangle, \quad \mathbf{r}_{\mathbf{x}} = \pm i \mathbf{x} - \mathcal{Y},$$

$$\sum_{j} \frac{\langle i | P_{\mathbf{x}} | j \rangle \langle j | P_{\mathbf{x}} | i \rangle}{E_{i} - E_{j}} = \sum_{j} \frac{\langle i | P_{\mathbf{x}} | j \rangle \langle j | P_{\mathbf{x}} | i \rangle}{E_{i} - E_{j}} = -1 \quad (46)$$

из выражения (35), используя соотношения (43)-(46), для потенциала $\widetilde{V}_{ii}(R)$ с точностью $O(R^{-2})$ получим при $R \gg 1$

$$\begin{split} \widetilde{V}_{ii}(R) &= \begin{pmatrix} 1 & 0 \\ 0 & \gamma \end{pmatrix} E_i + (2M)^{-1} R^{-2} \left\{ \begin{bmatrix} J(J+1) - 2m^2 \end{bmatrix} \widehat{I} + \langle i | \vec{\ell}^{*2} | i \rangle \right\} - \\ &- \frac{1}{2} R^{-2} \begin{pmatrix} a^2 & 0 \\ 0 & \gamma^{-1} \theta^2 \end{pmatrix} \langle i | \vec{J}^2 + \vec{\ell}^2 - 2m^2 | i \rangle + O(R^{-3}) = \\ &= \begin{pmatrix} E_{ia} & 0 \\ 0 & E_{ig} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} M_a^{-1} & 0 \\ 0 & M_g^{-1} \end{pmatrix} \left\{ J(J+1) - 2m^2 + \langle i | \vec{\ell}^2 | i \rangle \right\} R^{-2} . \end{split}$$

Таким образом, в результате преобразования (9) в каждом из каналов а и в реакции при центробежном барьере восстаневливаются правильные приведенные массы Ма и Ме CHCTOM $(a,c) + \beta$ I $a + (\beta, c)$ соответственно. Величина $\langle i | l^2 | i \rangle \neq l(l+1)$, поскольку адиабатический базис $|i\rangle$ при К -> 00 переходит в волновые функции изолированного атома водорода в параболических координатах/4/.

При проектировании на основное состояние $\dot{c} = I$. для которого $\ell = m = 0$, используя формулы (41), (42) и (47), получим для уравнения (5) асимптотику, соответствующую физическим граничным условиям задачи рассеяния при R >> 1:

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \left(\frac{d^2}{dR^2} - \frac{J(J+1)}{R^2} \right) + \begin{pmatrix} k_{3a}^2 & 0 \\ 0 & k_{3e}^2 \end{pmatrix} \right\} \begin{pmatrix} J_{3a} \\ J_{3e} \end{pmatrix} = 0.$$
(48)

Отметим, что в рассматриваемом эффективном двухуровневом приближении (5) кориолисово взаимодействие 2 $\vec{J}\vec{\ell}$ R⁻² отсутствует по построению, поскольку оно соответствует переходам $m \rightarrow m \pm 1$ для описания которых необходимо минимум четыре состояния/17,24/. Однако члены $\sim (2M)^{-2} (\vec{J}\vec{e})^2 R^{-9}$ не исчезают и дают вклад в потенциал $\tilde{V}_{cc}(R)$ (35). В реальных расчетах с точностью О {(2M)^{-2}} нет необходи-

мости формировать предварительную массу Ме в канале в о помощью преобразования 5 (3), поскольку с этой точностью она уже содержится в преобразовании 7 (9) по построению. В этом случае $\overline{S} = \hat{I}$, $\mathcal{S} = 1$ и согласно работе^{/2/} и определениям (4), (6), (12) получим

$$\begin{aligned}
\mathcal{V}_{ij}(\infty) &= \begin{pmatrix} 0 & 0 \\ 0 & -4\varkappa H_{i\ell,j\ell}^{(*)}(\infty) \end{pmatrix}, \\
\mathcal{V}_{ij}(\infty) &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} E_{i\alpha} + (2M)^{-1} \mathcal{V}_{ii}(\infty) = \begin{pmatrix} 1 & 0 \\ 0 & 1 + \frac{\varkappa}{M} \end{pmatrix} E_{i\alpha}, (49)
\end{aligned}$$

поскольку $H_{ii}^{(*)}(\infty) = -\frac{1}{2}E_i$ /4/. Согласно формулам (20), (34), (35) имеем

$$\overline{\nabla}_{ii}(\infty) = \begin{pmatrix} E_{ia} & 0 \\ 0 & E_{id}^{(2)} \end{pmatrix},$$

$$E_{id}^{(2)} = \overline{\nabla}_{ii}(\infty) + (2M)^{-2} 16x^{2} \left(1 + \frac{x}{M}\right)^{-1} \sum_{j} \frac{H_{ij}^{(*)}(\infty) H_{ji}^{(*)}(\infty)}{E_{i} - E_{j}} + (50)$$

Последняя сумма вычислена в работе 32/ и равна 4 Е. . Принимая во внимание соотношение $E_{is} = (1 - \frac{x}{2})^{-1} E_{ia}$ и определения (4а), получим

$$E_{i\theta}^{(2)} = E_{i\theta} \left\{ 1 + \frac{\varkappa}{M} + \left(\frac{\varkappa}{M}\right)^2 \left(1 + \frac{\varkappa}{M}\right)^{-1} \right\} \left(1 - \frac{\varkappa}{M}\right), \quad (5I)$$
where cherver, where $E_{i\theta}^{(2)}$ is transformed as $(\varkappa/M)^3$ commensations.

откуда следует, что Е с истинной энергией Eil изолированного атома (l, c). Для величины $\mathcal{M}_{ii}^{-1}(\infty)$

соответственно получим:

гле масса

$$\mathcal{M}_{\ell}^{(2)} \approx \mathcal{M}_{\ell} + \frac{\mathcal{Z}^{2}(1-\mathcal{Z})^{2}}{4M^{3}}$$

Таким образом, одно преобразование (9) без предварительного преобразования (3) восстанавливает физические граничные условия (48) с точностью ~ M⁻³.

4. Физический смысл решений

Преобразование T(R) относится к классу канонических преобразований, для которых вопросы определения средних значений от операторов представляют самостоятельный интерес. В дальнейшем обсуждении мы будем основываться на отмеченной ранее аналогии между рассматриваемым преобразованием и преобразованием Фолди-Вотхойзена/5/.

Решения уравнения (5) нормированы условием

$$\langle \widetilde{X}_{i} | \widetilde{X}_{i} \rangle = \sum_{(\mathbf{s}, \mathbf{r})=(\mathbf{a}, \mathbf{f})^{\circ}} \int_{0}^{\infty} d\mathbf{k} \, \widetilde{X}_{i\mathbf{s}}(\mathbf{R}) \, \widetilde{X}_{i\mathbf{y}}(\mathbf{R}) \, . \tag{53}$$

Оператор

$$\hat{R} = \begin{pmatrix} \vec{R} & 0\\ 0 & \vec{R} \end{pmatrix}_{ij}, \qquad (54)$$

который в старом представлении соответствует координате в новом представлении преобразуется в оператор

$$\hat{R}' = T(R) \hat{R} T^{-1}(R) .$$
(55)

Однако в новом представлении физически измеримым значениям координаты соответствует не оператор $\hat{\mathcal{R}}'$, а так называемый оператор $\hat{\mathcal{R}}'_{m}$ "mean position" /5/, который по форме совпадает с оператором координаты $\hat{\mathcal{R}}$ в старом представлении и среднее значение \mathcal{R}'_{m} которого определяется выражением

$$R'_{m} = \langle \widetilde{X} | \widehat{R} | \widetilde{X} \rangle = \int_{0}^{\infty} dR \ \widetilde{X}^{\dagger}(R) \ \widehat{R} \ \widetilde{X}(R) \ . \tag{56}$$

Вид оператора "mean position" в старом представлении получается обратным преобразованием

$$\hat{R}_{m} = T^{-1}(R) \hat{R}'_{m} T(R) = T^{-1}(R) \hat{R} T(R) = \hat{R} + \delta \hat{R}.$$
(57)

Он состоит из двух частей: оператор \hat{R} представляет среднее движение вектора \hat{R} в процессе столкновения, а оператор $\delta \hat{R}$ описывает "дрожание" концов этого вектора на расстояниях ~ a. и ~ δ соответственно, т.е. в областях порядка размеров ~(ma/Ma) и ~ (mg/Mg). Эта делокализация вектора \hat{R} аналогична "дрожанию" ("Zitterbewegung") релятивистского электрона в теории Дирака на расстояниях порядка его комптоновской длины волны 5'. В новом представлении делокелизация вектора \hat{R} заключена не в операторе $\hat{R'}_{m} = \hat{R}_{2}$ а в волновых функциях $\hat{J}(R)$.

При конечных \hat{R} смысл преобразования T(R) состоит в сдвиге на некоторый вектор, величина которого не определена, поскольку оператор \hat{SR} недиагонален. В асимптотической области $R \to \infty$, где оператор $\mathcal{T}^{-1}(\infty)$ представляет собой матричную "трансляционную экспоненту" (IO), он преобразует оператор \hat{R} в оператор T^{2}

$$\hat{R}_{m} = T^{-1}(\infty) \hat{R} T(\infty) = \begin{pmatrix} \vec{R}_{a} & 0\\ 0 & \vec{R}_{g} \end{pmatrix}_{ij}, \quad (58)$$

$$\vec{P} = \vec{R} - \vec{a}, \quad T = \vec{R} + \vec{k}$$

где $K_a = K - \alpha$ и $K_{\ell} = K + 6$ представляют собой расстояния между центрами масс атомов (a,c) и (ℓ,c) и ядрами ℓ и α соответственно (см. рисунок).

По аналогии с определением (56) в новом представлении можно построить средние значения операторов момента J'_{m} и ℓ'_{m} , тока j'_{m} и т.д., как средние значения от операторов \hat{J} $\hat{\ell}$, \hat{j} и т.д. в исходном представлении по волновым функциям $\hat{\chi}(\kappa)$ в новом представлении. Из предыдущего следует, что преобразование T(R) меняет лишь форму функция^{*}, не затрагивая ее аргумента:

 $\widetilde{\mathcal{J}}(R) = \mathcal{T}(R)$ $\widetilde{\mathcal{I}}(R)$. При этом аргумент функции преобразуется с помощью соратного оператора, в силу чего справедливы равенства $R_{-} = \langle \widetilde{X} | \widehat{R}_{m} | \widetilde{X} \rangle = \langle \widetilde{X} | \widehat{R} | \widetilde{X} \rangle = \hat{R}'_{m}$

т.е. средние значения операторов "mean position" в старом и новом предстовлениях совпадают между собой.

Отметим, что асимптотическое преобразование, предложенное в работе Чена и др. 17, содержит не только преобразование формн функций, но также и смену их аргументов. В наших обозначениях его можно представить в виде

$$\overline{\chi}(R) = \lim_{R \to \infty} T^{-1}(R) T(\widehat{R}_m) \widetilde{\chi}(\widehat{R}_m),$$

или

$$\begin{pmatrix} \vec{X}_{ia}(R) \\ \vec{X}_{if}(R) \end{pmatrix} = \begin{pmatrix} e^{-\vec{a}^{\dagger} \nabla_{\vec{k}}} & O \\ O & e^{\vec{a} \nabla_{\vec{k}}} \end{pmatrix}_{ij} \begin{pmatrix} \vec{X}_{ja}(R) \\ \vec{X}_{jb}(R) \end{pmatrix} = \begin{pmatrix} e^{\vec{a} \nabla_{\vec{k}}} & O \\ O & e^{\vec{b} \nabla_{\vec{k}}} \end{pmatrix}_{ik} \begin{pmatrix} e^{\vec{a} \nabla_{\vec{k}}} & O \\ O & e^{\vec{b} \nabla_{\vec{k}}} \end{pmatrix}_{ik} \begin{pmatrix} e^{\vec{a} \nabla_{\vec{k}}} & O \\ O & e^{\vec{b} \nabla_{\vec{k}}} \end{pmatrix}_{ik} \begin{pmatrix} \vec{X}_{i}(R_{a}) \\ \vec{Y}_{jb}(R_{b}) \end{pmatrix}$$

5. Численный пример

В качестве иллюстрации изложенной схемы вычислим с ес помощью уровии энергии и -мезомолекул изотопов водорода $\rho_{f'}$, ddu, ttu, pdu, ptu, dtu в состоянии с полным моментом J = o а также энергию связанного состояния $e^+e^-e^+$ В случае разных масс ядор ($M_a = M_{e'}, x = o$) не требует-

В случае равных масс ядер ($M_a = M_{\ell}, x = 0$) не требуется преднарительного преобразования (3) \overline{S} , а все эффективные потенциалы симметричны относительно замены лидоксов $a \leftrightarrow \ell$. В этом случае при нерекоде от фузиций X_{1a} и X_{1e} к функциям

$$\widetilde{X}_{1g} = \frac{\widetilde{X}_{1a} + \widetilde{X}_{1\ell}}{\sqrt{2}} \qquad H \qquad \widetilde{X}_{1u} = \frac{-\widetilde{Y}_{1a} + \widetilde{X}_{1\ell}}{\sqrt{2}}$$
(59)

система (5) распадается на два независимых уравнения с потенциалами $\widetilde{U}_{ig,ig}(R)$ и $\widetilde{U}_{iu,iu}(R)$, причем связанное состояние существует только в потенциале $\widetilde{U}_{ig,ig}(R)$. Таким образом в случае равных масс ядер задача трех тел с точностью $0 \{(2M)^{-2}\}$ сводится к решению одномерного уравнения Шредингера.

х) Такая интерпретация преобразования, аналогичного *Т(∞)*, обсуждалась дешпанде и Маханти^{/31} при рассмотрении атома водорода в еднабатическом представлении.

В таблице I приведены матрицы потенциалов $\widetilde{V}_{11}(R)$ и $\widetilde{Q}_{11}(R)$ зффективного двухуровневого приближения для мезомолекулы ρ_{PA} в основном состоянии n=1 по движению μ -мезона. Для сравнения приведены также исходные потенциалы $V_{11}(R)$ (в рассматриваемом случае $Q_{11}(R) = O$).

(в рассматриваемом случае $Q_{j1}(R) = O$). При построении $\sqrt{J_{j1}(R)}$, $Q_{j1}(R)$ и M(R) по формулам (34), (35), (12) использованы термы $E_j(R)$ и матричные элементы $\mathcal{V}_{j1}(R)$ и $\mathcal{Q}_{j1}(R)$, связывающие основное состояние i = 1 задачи двух центров (т.е. пару \mathcal{I}_{j1} и \mathcal{I}_{4}) с 2х20 возбужденными состояниями, что соответствует учету первых четырех оболочек n = 1, 2, 3, 4 по классификации изолированных атомов^{/3,4/}. Кроме того, в сумме (37) был учтен также интеграл по непрерывному спектру задачи двух центров, учитывающий связь с состояниями | $k n_2 m >$ для значений $m = 0, 1; n_2 = 0, 1, 2, 3;$ $k = 0, 2(0, 1) I(0, 2) 2(1) IO'^{3/}$. Все термы и матричные элементы (как для дискретного, так и для непрерывного спектров) вычислены с шагом R = 0, I(0, 1) 20 и абсолютной точностью не хуже чем $\sim 10^{-5}$, а их асимптотика найдена в работах^{/4, 28/}.

Эффективные потенциалы $U_{ij}(\kappa)$ (Ia) системы (I) построены по формулам

$$\begin{pmatrix} U_{ia,ja} & U_{ia,j\ell} \\ U_{i\ell,ja} & U_{i\ell,j\ell} \end{pmatrix} = A \begin{pmatrix} U_{is,js} & U_{is,ja} \\ U_{ia,js} & U_{i\ell,ja} \end{pmatrix} A^{-1},$$

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix},$$
(60)

 $U_{is,ja} = \langle is | \hat{U} | ja \rangle$ и т.д., а индекси *s* и а характеризуют симметричное и антисимметричное решения задачи двух центров по отношению к операции отражения $\overline{s} \to \overline{s}, 2 \to -2$, $\Psi \to -\Psi$ для каждого набора пареболических квантовых чисел $j = [n_1 n_2 m]$ /4,28/. Такое определение (60) отличается от принятого в предыдущих работах/2,337 заменами $g \to s$ и $u \to a$.

Из табляцы I непосредственно видно, что преобразованные потенциаль $\widetilde{U}_{11}(R)$ (35) в области взаимодействия I < R < IO отличаются от исходных $U_{21}(R)$ (2) на величину ~ 10^{-2} - 10^{-3} , т.е. на величину ~ $(2M)^{-2}$.

При R = 15, I величина $\mathcal{M}_{3a,4a}^{-1} = 0,9565$, что отличается от асимптотического значения $\mathcal{M}_{4a,4a}^{-1} (\infty) = \mathcal{M}_{0}/\mathcal{M}_{a} = 0,9494$. Отмеченное отличие объясняется тем, что в вычислениях использована лишь часть полного адиабатического набора 1 > 0, кроме того, тем, что при R = 15 еще не достигается асимптотическое значение $\mathcal{M}_{4a,4a} (\infty)$. Однако величина отличия составляет $\sim 10^{-3} \approx (2M)^{-3}$, т.е. находится за пределами принятой точности $0 f(2M)^{-2}$.

При построении матрицы Γ^{-1} (20) потенциалы V_{jj} для $j \neq 1$ были переопределены следующим образом:

$$V_{jj} = E_{j}(R) + \frac{1}{R} + (2M)^{-1} \left\{ \frac{J(J+1) - 2m^{2}}{R^{2}} \hat{I} + H_{jj}(R) \right\} (1+d), \quad (6I)$$

где \mathcal{A} - некоторов положительное число, которов варьировалось в пределах 0, I < \mathcal{A} < 2,0.

Такая процедура была использована для сглаживания потенциалов $\widetilde{V}_{11}(R)$ при R < 1. Она подобна способу, который был использован Вольневичем и Поллом^{/34} для регуляризации вычислений во втором порядке теории возмущений и в некотором смысле напоминает регуляризацию Тихонова^{/35}, используемую для подавления высших гармоник при суммировании ряда Фурье.

Выбор численного значения \ll в указанных пределах изменял вычисленное значение энергии связи \bigwedge -мезомолекул на величину \sim 0,01 эВ, а для системы $e^+e^-e^+$ - на величину \sim 0,001 эВ, что находится за пределами принятой точности. При желании можно провести экстраполяцию к значению $\propto = 0^{/34'}$.

В таблице 2 представлены значения $\tilde{\mathcal{E}}_{jv}$ энергий связи мезомолекул и системы $e^+e^-e^+$, вычисленные из системы уравнений (5) с помощью алгоритма³⁶, основанного на непрерывном аналоге метода Ньютона. Для сравнения приведены также значения \mathcal{E}_{jv} , вычисленные из полной исходной системы уравнений (1), а также значения $\mathcal{E}_{jv}^{(o)}$, найденные в двухуровневом приближении этой системы (i = j = 1), и результаты вариационных расчетов. Легко видеть, что в случае мезомолекул отличие между значениями $\tilde{\mathcal{E}}_{jv}$ и \mathcal{E}_{jv} не превышает ~ 0, I зВ, в то время как отличие между \mathcal{E}_{jv} и \mathcal{E}_{jv} по крайней мере на порядок больше. Во всех случаях отличие $\tilde{\mathcal{E}}_{jv}$ и \mathcal{E}_{jv} ного состояния атомов (a,c) и (b,c). Отметим, что в случае равных масс формальная замена $M \rightarrow \mathcal{M}_{a}$ в системе уравнений (I) без изменения потенциалов $\overline{U}(R)$ позволяет получить уже в двухуровневом приближении (*i=1*) неожиданно хорошие результаты как для энергии связи, так и для сечений рассеяния в системе трех тел^{/38/}.

6. Эффективное многоуровневое приближение

В задачах рассеяния при энергиях столкновения $\mathcal{E}_{,}$ больших, чем энергия возбуждения $\mathcal{E} = \mathcal{E}_{n} - \mathcal{E}_{i}$ второго уровня n = 2изолированного атома водорода, необходимо решать систему уравнений (5) размерности большей чем два. Для построения эффективных потенциалов (35) в этом случае необходимо, кроме V_{44} , Q_{44} , V_{4j} и q_{4j} , использовать также все потенциалы V_{45} , V_{55} , V_{55} , V_{55} , Q_{54} , q_{55} и т.д. Наметим общую схему построения таких потенциалов, ограничившись для определенности случаем росьми уравнений (s, t = 2, 3, 4), что соответствует учету всех состояний второй оболочки изолированного атома водорода, т.е. состояний $s = [n_{3} n_{2} m]$: 2 = [100], 3 = [010],4 = [001].

В этом случае, кроме матриц $\Gamma_{\alpha\beta} = \Gamma_{\alpha\beta}^{1}$, $\Gamma_{\alpha\beta}^{j1}$ с $j \neq s$, которые вычисляются, как обично (20), необходимо ввести матрицы $\Gamma_{\alpha\beta}^{sj}$ и $\Gamma_{\alpha\beta}^{js}$ при $s\neq j$ по следующим правилам:

а. Переопределяются потенциалы V15 и и15 :

$$\nabla^{44} = V_{44}, \quad \nabla^{55} = V_{55}, \quad \nabla^{5t} = v_{5t}, \\
 \nabla^{45} = u_{45} - u_{45}^{as}, \quad u^{45} = u_{45}^{as}, \\
 \nabla^{54} = u_{54} - u_{54}^{as}, \quad u^{54} = u_{51}^{as},$$
(62)

где \mathcal{U}_{ij} определены формулами (43). Остальные потенциалы вычисляются обычным образом (12) с той лишь разницей, что инлексы состояний пишутся наверху.

дексы состояний пишутся наверху. б. Генераторы (22) { $\Lambda^{(s)}$ } = Λ^{sj} находятся из уравнения

$$L\left[\Lambda,V\right]^{s_{j}} - (2M)^{-s_{j}},$$

или в развернутой записи;

$$\begin{pmatrix} \Lambda^{2j} \\ \Lambda^{j} \\ \Lambda^{j} \\ \Lambda^{j} \\ \Lambda^{4j} \end{pmatrix} V^{jj} - \begin{pmatrix} V^{22} & V^{23} & V^{2Y} \\ V^{32} & V^{33} & V^{3Y} \\ V^{2} & V^{Y3} & V^{YY} \end{pmatrix} \begin{pmatrix} \Lambda^{2j} \\ \Lambda^{3j} \\ \Lambda^{yj} \\ \Lambda^{yj} \end{pmatrix}^{2j} = i(2M)^{-1} \begin{pmatrix} u^{2j} \\ u^{3j} \\ u^{yj} \end{pmatrix}^{i},$$
(63)
ГДЕ $\Lambda^{sj}, V^{st}, V^{jj}$ и $u^{sj} - \text{обычные матрицы размер-
ности 2x2. Аналогично (I9) представим равенство (63) в виде
 $i \sum_{\substack{t=2\\ t=2}}^{4} \sum_{\substack{\beta=1\\ \beta=1}}^{4} \left\{ \Gamma^{-1} \right\}_{\substack{\alpha\beta}}^{stj} \Lambda^{tj} = (2M)^{-1} u^{sj}_{a},$ (64)
ОТКУДА НАЙДЕМ ВЫРАЖЕНИЕ ДЛЯ $\Lambda^{sj}_{a}:$
 $i \Lambda^{sj}_{a} = (2M)^{-1} \sum_{\substack{t=2\\ t=2}}^{4} \sum_{\substack{\beta=1\\ t=2}}^{4} \prod_{\substack{\beta=1\\ t=2}}^{stj} u^{stj}_{\beta} u^{j}_{\beta} = (2M)^{-1} \left\{ (\Gamma \cdot u)_{a} \right\}_{j}^{sj}.$ (65)
Матрица $\Gamma^{stj}_{a\beta}$ имеет вид
 $\left\{ \Gamma^{-1} \right\}_{\substack{\alpha\beta}}^{stj} = \begin{pmatrix} (\Gamma^{-1})_{\substack{\alpha\beta}}^{2j} V^{23}_{\substack{\alpha\beta}} V^{2Y}_{\substack{\alpha\beta}} \\ V^{y2}_{\substack{\alpha\beta}} (\Gamma^{-1})_{\substack{\alpha\beta}}^{sj} V^{3Y}_{\substack{\alpha\beta}} \\ V^{y2}_{\substack{\alpha\beta}} (\Gamma^{-1})_{\substack{\alpha\beta}}^{sj} (\Gamma^{-1})_{\substack{\alpha\beta}}^{sj} \end{pmatrix},$ (66)
Причем каждая из матриц $(\Gamma^{-1})_{\substack{\alpha\beta}}^{sj}$ имеет вид (20), а $V^{st}_{\alpha\beta}$$

$$\nabla_{\alpha\beta}^{st} = \begin{pmatrix} \nabla^{st} & O \\ O & \nabla^{st} \end{pmatrix}, \qquad (67)$$

где Vst - обычная матрица 2x2 (Ia).

Матрицы Газ строятся по формулам (66), (67) транспонированием всех индексов:

$$\left\{ \Gamma^{-1} \right\}_{\alpha\beta}^{stj} \longrightarrow \left\{ \Gamma^{-1} \right\}_{\beta\alpha}^{jts}$$

Система уравнений (5) примет теперь вид:

$$\sum_{j=1}^{4} \left\{ (2M)^{-1} \mathcal{M}_{ij}^{-1}(R) \frac{d^2}{dR^2} + E_{n\tau} \hat{I} \delta_{ij} - \tilde{U}_{ij}(R) \right\} \tilde{J}_{j}(R) = 0, \quad (68)$$

гдё потенциалы строятся по формулам (34)-(36) с учетом определений (62)-(67)и с заменой (Г·и) $\rightarrow \{(Г·и)_{d}\}^{s_{d}}$ и т.п. Принятое определение (62) потенциалов обеспечивает, с одной стороны, физическую асимптотику

$$\sum_{t=2}^{4} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \left(\frac{d^2}{dR^2} - \frac{J(J+1) - 2m^2 + \langle s | \vec{\ell}^2 - 2\vec{\ell} \vec{J} | t \rangle}{R^2} \right) + \begin{pmatrix} k_{ia}^2 & 0 \\ 0 & k_{id}^2 \end{pmatrix} \right\} \begin{pmatrix} \tilde{Y}_{ia} \\ \tilde{Y}_{id} \end{pmatrix} = 0,$$

$$i = 1, 2, 3, 4, \quad (s, t) = 2, 3, 4, \qquad (69)$$

а С другой — сильную связь каналов в области реакций и короткодействующий характер эффективных потенциалов.

Изложенный способ построения генераторов $\Lambda^{(1)}$ в $\Lambda^{(2)}$ ((21)и(28)) диагонализует потенциалы $\overline{U}_{ij}(R)$ системы (I) по всем квантовым числам $i = [n_1 n_2 m]$ задачи двух центров. Поэтому матричный элемент кориолисова взаимодействия $\langle im | 2 \ e \ J | jm \pm 1 > R^{-2}$ при $i \neq_j$ отсутствует в преобразованных потенциалах $\widetilde{U}_{ij}(R)$ системы (68). Возможны, однако, другие способы построения генераторов, которые сохраняют сильную связь каналов, соэтветствующих состояниям $|im > II | jm \pm 1 > R^{-2}$ при $2 \ e \ J R^{-2}$. В этом случае оператор центробежного барьера примет вид

$$J(J+1) - 2m^2 + \langle i | \vec{e}^2 | i \rangle - \langle im | 2 \vec{e} \vec{J} | j m^{\pm} 1 \rangle$$

что соэтветствует усреднению $\langle im | \vec{L}^2 | jm \pm 1 \rangle$ оператора орбитального момента $\vec{L} = \vec{J} - \vec{e}$ относительного движения ядер по адиабатическому базису.

7. Заключение

В данной работе предложен и реализован последовательный метод преобразования бесконечномерной системы интегродифференциальных уравнений адиабатического метода, позволяющий поставить физические граничные условия для задачи трех тел, решаемой в адиабатическом базисе. Эффективное двухуровневое приближение адиабатического представления задачи трех тел, построенное в данной работе, сводит квантовомеханическую задачу трех тел к решению системы двух обыкновенных дифференциальных уравнений. Полученная система эквивалентна исходной задаче с точностью О {(2M)⁻²}, в то время как стандартное двухуровневое приближение адиабатического метода представляет исходную задачу трех тел лишь с точностью О {(2M)⁻¹}.

Построенная система уравнений может быть эффективно использована для решения широкого класса задач атомной и мезоатомной физики, в частности, для нахождения энергий связи системы трех тел и для вычисления сечений рассеяния. Выполненине нами численные расчеты подтверждают это заключение. Обобщение изложенного метода на многоуровневый случай позволяет изучать возбуждение атомов при столкновении с ядрами, пороговые и спиновые эффекты в таких реакциях и т.д.

Основная идея изложенного подхода состоит в преобразовании потенциалов исходной системы уравнений с целью согласовать асимптотику ее решений с физическими граничными условиями задачи рассеяния. Альтернативный /12,39/ подход состоит в том, чтобы известные физические граничные условия с помощью асимптотических преобразований согласовать с асимптотикой решений исходной системы уравнений. Такой подход позволяет снять ограничение ~ (2M)⁻³ по точности и мы рассмотрим его в последующих работах.

В заключение авторы благодарят К.Н.Данилову, В.С.Мележика, И.В.Пузинина, Т.П.Пузинину, Л.Н.Сомова, Н.Ф.Трускову, М.П.Файфмана за разностороннюю помощь и Ю.Н.Демкова и И.В.Комарова за полезние обсуждения.

CHCTEME $(2M)^{-4}$ v	- ٤ ⁽⁰⁾	- ~.	- E3V	
A+A-E+ 1/2 0			-	- Esu
	0,I86	0,301	0,295	0,326 ^{a)}
PP/ 0,IOI2I 0	247,3I	253,00	252,79	253,09 ^B)
dd/4 0,05333 0	322,69	325,00	324,99	324,27 ^B)
dd/M 0,05333 I	33 , I4	35 , 7I	35,67	32,76 ^B)
t t M 0,03625 0	361,56	362,91	362,88	361,4 ^{c)}
tt 0,03625 I	81,61	83,76	83,67	75, 2 ^{C)}
pd/x 0,07997 0	215,68	221,69	221,48	221,28 ⁸⁾
pt/4 0,07239 0	207,28	214,23	213,85	213,0 ^{C)}
dt M 0,04527 0	317,04	319,13	319,07	318,07 ^B)
dt/x 0,04527 I	32,20	34,90	34,70	32,95 ^{B)}

Таблица I

иотенциали эффективного двухуровневого приближения системи уравнений (5) мезомолекули ррм с J = 0					
R	$\mathcal{M}_{1a,1a}^{-1}(R)$	$\mu_{1a,16}^{-1}(R)$	$\widetilde{Q}_{1a,1a}(R)$	Q _{19,16} (R)	
.I	.9986E+00	I405E-02	.1889E-0I	.1947E-01	
I.I	.9770E+00	1974E-02	.I305E-0I	8584E-02	
2.1	.9829E+00	1225B-01	988IE-03	.587IE-02	
3.I	.9734E+00	1005E-01	66475-03	.1040E-01	
4.I	.9628E+00	II84E-0I	.3365E-02	.9733E-02	
5.I	.9545E+00	I474E-0I	.1228E-02	.5823E-02	
6.I	•9506E+00	 I404E-0I	25378-02	.1533B-02	
7.I	.9500B+00	1060E-01	4I70E-02	3474B-03	
8.I	•9506E+00	6315E-02	41478-02	I058B-02	
9 . I	.9518E+00	2615E-02	3122E-02	I365E-02	
IO.I	.9530E+00	8744E-04	1856E-02	II5IE-02	
II.I	•9539E+00	.12 24 E-02	 7449E03	⊷. 8005E-03	
12.1	•9545B+00	.1560E-02	.1995E-04	5873E-03	
13.1	.955IE+00	.1323E-02	.4183E-03	6574E-03	
I4.I	•9557E+00	.8365E-03	.5184E-03	8082E-03	
15.1	•9565E+00	.8388 E-03	•4328E-03	8388E-03	
R	$\widetilde{V}_{Ia,Ia}(R)$	$V_{ia,ia}(R)$	$\widetilde{V}_{1a,16}(R)$	$V_{sa,il}(R)$	
.I	.I797E+03	.1909E+03	II89E+03	I076E+03	
I.I	.4332E+0I	. 467I+0I	4606E+0I	4912E+0I	
2.1	.9945E+00	•9994 E +00	2120E+01	2125E+01	
3.I	.19 79E+00	.2012E+00	9777E+00	9830E+00	
4.I	.1293E-01	.I364E-0I	4546E+00	457IE+00	
5.I	180IE-0I	1750B-01	20475+00	2055E+00	
6.I	I524E-OI	1479E-01	8782E-0I	8803E-0I	
7.I	9329E-02	9128E-02	3586E-0I	36I3E-OI	
8.I	5474E-02	545IE-02	1405E-01	I436E-OI	
9 . I	3295E-02	338IE-02	52728-02	5576E-02	
10.1	2214E-02	2202E-02	- . 1940B-02	2125E-02	
II.I	I330E-02	1497E-0 2	7803E-03	 7967E-03	
TO T		TOTOD OO	004672 00	- 20/38-03	
16.1	- . 9556 B-0 3	10558-02	29405-03		
12.1 I3.I	9556B-03 6737E-03	1055E-02 765IE-03	2946B-03	1071E-03	
I3.I I4.I	9556E-03 6737E-03 462IE-03	1055E-02 765IE-03 5686E-03	2946E-03 1506E-03 8107E-04	1071E-03 3842E-04	

28

29

.

c) Carter B.P., Phys. Rev., 141, 863, 1966.

- I. Born M., Gött. Nachr. <u>1</u>, 1951; Born M. and Huang K., Dynamical theory of Crystal Lattices; The Clarendon Press, Oxford, England, 1954.
- 2. Виницкий С.И., Пономарев Л.И., ОИЯИ, Р4-11332, 1978.
- 3. Ponomarev L.I., Puzynina T.P., Truskova N.F., J. Phys. B: Atom and Molec. Phys., 1978, <u>11</u>,1375; Ponomarev L.I., Puzynina T.P. and Somov L.N., J. Phys. B: Atom and Molec. Phys., 1977, <u>10</u>, 1335.
- 4. Faifman M.P., Ponomarev L.I. and Vinitsky S.I., J. Phys. B: Atom and Molec. Phys., 1976, <u>9</u>, 2255; Комаров И.В., Пономарев Л.И., Славянов С.Ю. Сфероидальные и кулоновские сфероидальные функции. Наука, М., 1976.
- 5. Foldy L.L. and Wouthouysen S.A., Phys. Rev., 1950, 78, 29.
- 6. Van Vleck J.H., Phys. Rev., 1929, 33, 467.
- 7. Tharrats J., Gerceau O. and Rojo O., J. Math. Phys., 1965, <u>6</u>, 1315.
- 8. Jorgensen F. and Pedersen T., Molec. Phys., 1974; <u>27</u>, 33, 1974, <u>27</u>, 959; Jorgensen F., Pedersen T. and Chedin A., Molec. Phys., 1975, <u>30</u>,1377;

Jorgensen F., Molec. Phys., 1975, <u>29</u>, 1137; Pedersen T., Molec. Phys., 1976, <u>32</u>, 407.

- 9. Gartenhaus S. and Schwatrz C., Phys. Rev., 1957, 108, 482.
- IO. Hirooka M. and Sunakawa S., Progr. Theor. Phys., 1974,52,131.
- II. Krajcik R.A. and Foldy L.L., Phys. Rev. D., 1974, 10, 1777.
- I2. Matveenko A.V., and Lovas I., Nucl. Phys., 1978, A299,333.
- I3.Bates D.R. and R.McCarroll., Proc. Roy. Soc., 1958, <u>A245</u>, 175.

- I4. Bates D.R. and Holt A.R., Proc. Roy Soc., 1965, <u>A292</u>, 168; Bates D.R. and Sprevak D., J. Phys. B: Atom and Molec. Phys., 1971, <u>4</u>, 147.
- I5. Schneiderman S.B. and Russek A., Phys. Rev., 1969, <u>181</u>,
 311, See also Smith K. in "Scattering Theory" ed. by
 A.D.Barut, London, England, Gordon and Breach, 1969.
- I6. Torson W.R., J. Chem. Phys., 1965, <u>42</u>, 3878, 1969, <u>50</u>, 1702.
- I7. Chen J.C.Y., Ponce V.H. and Watson K.M., J. Phys. B: Atom and Molec. Phys., 1973, <u>6</u>, 965.
- 18. Feshbach H. Ann. Phys., 1958, 5, 357; 1962, 19, 287.
- 19. Schmid G.B., Phys. Rev. A, 1977, 15,1459.
- 20. Pack R.T. and Hirschfelder J.O., J. Chem. Phys., 1970, 52, 521.
- 2I. Klar H. and Fano U., Phys. Rev. Lett., 1976, <u>37</u>, 1132;
 Klar H. Phys. Rev. A., 1977, <u>15</u>, 1452;
 Klar H. and Klar M., Phys. Rev. A, 1978, <u>17</u>, 1007.
- 22. Hunter G., Int. J. quant. Chem., 1975, <u>9</u>, 237; Bishop D. and Hunter G., Molec. Phys., 1975, <u>30</u>, 1433;
 - Wolniewicz L. and Czub J., Molec. Phys., 1978, 36, 128.
- 23. Albat R. and Gruen N., J. Phys. B.: Atom and Molec. Phys., 1976, <u>9</u>, L463.
- 24. Rosenthal H., Phys. Rev. Lett., 1971, 27, 635.
- 25. Fues E., Ann. d. Phys., 1926, 81, 281;

Зоммерфельд А., Строение атома и спектры. Часть П., стр. 108, ТТЛ, М., 1956.

26. Farrel J.P., Vincent C.M. and Austern N., Ann. Phys., 1976, 96, 333.

- 27. Бете Г., Солинтер Э., Квантовая механика атомов с одним и двумя электронами, ФМЛ, М., 1960.
- Виницкий С.И., Пономарев Л.И., ЯФ, 1974, <u>20</u>, 576;
 Виницкий С.И., Пономарев Л.И., Файфман М.П., ОИЯИ Р4-9312, Дубна, 1975.
- 29. Wigner R.P., Phys. Rev., 1954, <u>94</u>, 77;
 Trees R.E., Phys. Rev., 1956, <u>102</u>, 1553;
 Dalgarno A. Proc. Phys. Soc., 1956, <u>A69</u>, 784;
 Gray B.F., J. Chem. Phys., 1962, <u>36</u>, 1801; 1971, <u>55</u>, 2848;
 Gray B.F. and Gonda I.J., Chem. Phys. 1975, <u>62</u>, 3007;
 J. Chem. Soc. Farad. Trans. (II), (G.B.), 1975, <u>11</u>, 2016.
- 30. Teller E. and Sahlin H.L. In "PhysicalChemistry". Vol. V, ed. H.Eyring New York, Academic Press, 1970.
- 3I. Deshpande V.K. and Mahanty J., Amer. J. Phys., 1969, <u>37</u>, 823.
- 32. Матвеенко А.В., Пономарев Л.И., ТМФ, 1972, 12, 64.
- ЗЗ. Виницкий С.И., Пономарев Л.И., ЖЭТФ,1977, <u>72</u>, 1670;
 Виницкий С.И., Пономарев Л.И., Пузынин И.В., Пузынина Т.П., Сомов Л.И., в сб.: "Мезоны в веществе", стр. 187.
 ДІ-10908, Дубна, 1977.
- 34. Wolniewicz L. and Poll J.D. J.Mol.Spectroscopy, 1978, 71, 47.
- 35. Калиткин Н.Н., Численные методы, стр. 58, Наука, М., 1978; Тихонов А.Н., ДАН СССР, 1964, <u>156</u>, 268.
- 36. И.В.Пузинин, Т.П.Пузинина, в сб.: "Algoritms and Programs", KFKI-34, 93, Budapest, 1974.
- 37. Cohen E.R., Taylor B.N., J. Phys.Chem.Ref.Data, 1973, 2, 663.

38. Пономарев Л.И., Сомов Л.И., Файфман М.Р., ОИЯИ Р4-II446, Дубна, 1978.

39. Elbaz E. Riv. Nuovo Cim., 1975, 5, 561.

Рукопись поступила в издательский отдел 10 ноября 1978 года.