СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

дубна

18/1x-78

P4 - 11583

К- 452 ЧОЧ2/2-78 В.Китипова, Г.Кырчев, Л.А.Малов

> О ВЛИЯНИИ АНГАРМОНИЧНОСТИ И ИЗОВЕКТОРНЫХ СИЛ НА СТРУКТУРУ НИЗКОЛЕЖАЩИХ СОСТОЯНИЙ С К^{*st*} = 0⁺,2⁺,0⁻,1⁻ В ЧЕТНО-ЧЕТНЫХ ДЕФОРМИРОВАННЫХ ЯДРАХ

P4 - 11583

В.Китипова, Г.Кырчев, Л.А.Малов

О ВЛИЯНИИ АНГАРМОНИЧНОСТИ И ИЗОВЕКТОРНЫХ СИЛ НА СТРУКТУРУ НИЗКОЛЕЖАЩИХ СОСТОЯНИЙ С К $^{\pi}$ = 0⁺,2⁺,0⁻,1⁻ В ЧЕТНО-ЧЕТНЫХ ДЕФОРМИРОВАННЫХ ЯДРАХ

О влиянии ангармоничности и изовекторных сил на структуру низколежащих состояний с Кⁿ =0⁺, 2⁺, О⁻, 1⁻ в четно-четных деформированных ядрах

Исследовано влияние ангармоничности и изовекторных сил иа вибрационные состояния ядер ¹⁵⁴ Sm, ¹⁶⁶ Er, ²²⁸ Th, ²³⁸U, ²⁴⁰ Pu. Даны оценки для увеличения приведенной вероятности электромагнитных переходов и, соответственно, коллективности для низколежащих состояний. Рассмотрено влияние обоих эффектов на структуру первых и вторых вибрационных состояний с Kⁿ =0⁺, 2⁺, 0⁻, 1⁻.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного кнститута ядерных исследований. Дубна 1978

Kitipova V., Kyrchev G., Malov L.A.

P4 - 11583

On the Influence of Anharmonicity and Isovector Forces on the Structure of Low-Lying States with $K^{\pi} = 0^+, 2^+, 0^-, 1^$ in Even-Even Deformed Nuclei

The influence of anharmonicity and isovector forces on vibrational states of 154 Sm, 168 Er, 228 Th, 238 U, 240 Pu nuclei is investigated. The estimates for increasing the reduced probability for electromagnetic transitions and, respectively, collectivities for low-lying states are made. The influence of both effects on the structure of the first and second vibrational states with $K^{\pi} = 0^{+}$, 2^{+} , 0^{-} , 1^{-} is considered.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1978

© 1978 Объединенный институт ядерных исследований Дубна

Множество экспериментальных фактов, касающихся спектра низколежащих состояний четно-четных сферических ядер, свидетельствует о нарушении простых закономерностей, следующих из модели гармонических колебаний. Обычно эти данные эксперимента интерпретируют, исходя из представления о взаимодействии колебательных и двухквазичастичных степеней свободы, т.е. в рамках квазичастично-фононной модели.

В деформированных четно-четных ядрах к настоящему времени нет столь однозначных указаний на связь вибрационных и квазичастичных ветвей возбуждений, имеются лишь первые данные о существовании двухфононных состояний ^{/1,2/}. Именно поэтому обычно нижние вибрационные состояния таких ядер рассчитываются в гармоническом приближении^{/3,4/}.

Теоретические исследования ангармонических эффектов^{*} в четно-четных деформированных ядрах были начаты давно^{/5/} В работах^{/6/} изучены общие закономерности изменения энергии и структуры нижайших возбужденных состояний при учете ангармоничности. Были использованы волновые функции, в которых к соответствующей однофононной компоненте добавлены двухфононные. Расчеты показали, что ангармонические эффекты невелики, но они увеличиваются по мере приближения к ядрам переходной области. В работах^{/7,8/} при изучении эффектов ангармоничности вместо потенциала

* Под ангармоничностью понимаются эффекты, генерируемые взаимодействием квазичастиц с фононами. Нильссона используется более реалистический потенциал Вудса-Саксона и несколько более сложная волновая функция, чем в $^{/6'}$. Было показано $^{/7,8'}$, для ядер из областей 150 < A < 190 и 228 < A < 240, что первые вибрационные состояния с К $^{\pi} \neq 0^+$ близки по структуре к однофононным. Ангармонические эффекты начинают четко проявляться в структуре вторых и более высоких состояний.

В расчетах, выполненных в^{/6-8/}, не учитывались изовекторные компоненты мультиполь-мультипольных взаимодействий. Известно, что состояния ядра с промежуточной и высокой энергией возбуждения, в частности, гигантские резонансы различных мультипольностей невозможно правильно описать без учета изовекторных сил.

В работах^{/6-8/}исследовалось влияние ангармоничности на структуру вибрационных состояний, однако не рассчитывались вероятности переходов с этих состояний.

Цель настоящей работы - изучение совместного влияния ангармоничности и изовекторных сил на энергию, структуру и вероятности переходов низколежащих состояний с $K^{\pi} = O^+, 2^+, O^-, 1^-$.

Для расчетов был использован гамильтониан, включающий среднее поле, силы, приводящие к парным корреляциям сверхпроводящего типа, а также квадрупольквадрупольные и октуполь-октупольные остаточные взаимодействия:

$$H = H_{av} + H_{pair} + H_Q . \qquad /1,$$

После проведения канонического преобразования Боголюбова и введения операторов фононов основную часть гамильтониана /1/ можно записать в виде:

\$,

.

$$H = H_{v} + H_{vq} = \sum_{g} \omega_{g} Q_{g}^{+} Q_{g} - \frac{1}{2} \sum_{g} \{ \sum_{ss}, \Gamma_{ss}^{g}, (n) \times [B(ss')(Q_{g}^{+} + Q_{g}) + h.c.] + \sum_{rr'} \Gamma_{rr'}^{g}, (p)[B(rr') \times [Cr']) \}$$

$$\times (Q_{g}^{+}+Q_{g}^{-}) + h.c.] + \frac{1}{2} \sum_{r} G_{r} [\sum_{\nu\nu'} V_{\nu\nu} U_{\nu'\nu'}, \sum_{\sigma} \sigma \times a_{\nu'\sigma'}^{+} a_{\nu'\sigma'}^{+} a_{\nu'\sigma'}^{+} + h.c.] r. \qquad /2/$$

Здесь $(s\sigma)$ - совокупность квантовых чисел, характеризующих нейтронные одночастичные состояния, $(r\sigma)$ характеризуют протонную систему, а $(\nu\sigma)$ - обе системы; $\sigma = \pm 1$; G_r - константа спаривания для нейтронной или протонной систем;

 $U_{\nu\nu}^{(\pm)} = U_{\nu}V_{\nu}, \pm U_{\nu}, V_{\nu}, \quad V_{\nu\nu}^{(\pm)} = U_{\nu}U_{\nu}, \pm V_{\nu}V_{\nu}, \quad /3/$

 Q^+ , Q_g - операторы рождения и уничтожения фонона $g^{\ g}$ с моментом и проекцией $q = \lambda \mu$, номером і и частотой ω_g .

$$\Gamma_{ss}^{g}(n) = \frac{V_{ss}^{(-)}}{2\sqrt{Y_{g}}} f^{q}(ss')$$

$$\Gamma_{rr}^{g}(p) = \frac{V_{rr}^{(-)}}{2\sqrt{Y_{g}}} y_{p}^{g} f^{q}(rr'),$$
(4/

где $f^{q}(\nu\nu')$ - одночастичный матричный элемент оператора мультипольности q; Y_{q} и y_{p}^{g} - характеристики фонона /см. /9/ /, а

$$B(ss') = \sum_{\sigma} a_{s\sigma}^{+} a_{s'\sigma} \cdot \frac{1}{5}$$

Второй и третий члены в /2/ связаны с взаимодействием квазичастиц с фононами. Поскольку второй член происходит из H_Q , то в него входят в неявном виде константы мультипольного взаимодействия $\kappa_p^{(\lambda)}$, $\kappa_n^{(\lambda)}$ и $\kappa_{np}^{(\lambda)}$. Если гамильтониан H_Q будет записан в изото-пически инвариантном виде /см.^{(3/}), то вместо $\kappa_{n}^{(\lambda)}$, $\kappa_{np}^{(\lambda)}$ в нем появятся константы $\kappa_1^{(\lambda)}$ и $\kappa_0^{(\lambda)}$.

которые выражаются через прежние константы следующим образом:

$$\kappa_{n}^{(\lambda)} = \kappa_{p}^{(\lambda)} = \kappa_{0}^{(\lambda)} + \kappa_{1}^{(\lambda)}$$

$$\kappa_{np}^{(\lambda)} = \kappa_{0}^{(\lambda)} - \kappa_{1}^{(\lambda)},$$
/6/

где $\kappa_0^{(\lambda)}$ называется изоскалярной константой мультипольного взаимодействия, а $\kappa_1^{(\lambda)}$ - изовекторной. Обычно при расчете нижайших состояний принимается $\kappa_1^{(\lambda)} = 0^{/7,8/7}$. т.е. остаточное взаимодействие предполагается чисто изоскалярным. Тогда

$$\kappa_{n}^{(\lambda)} = \kappa_{p}^{(\lambda)} = \kappa_{np}^{(\lambda)} \equiv \kappa^{(\lambda)}.$$
 /7/

В настоящей работе мы исследуем влияние изовекторных сил $(\kappa_1^{(\lambda)} \neq 0)$ на свойства нижайших вибрационных состояний.

Волновую функцию возбужденного состояния запишем в виде:

$$\Psi_{n}(K^{\pi}) = \left[\sum_{i} C_{q_{0}i}^{n} Q_{q_{0}i}^{+} + \frac{1}{\sqrt{2}} \sum_{g_{1}g_{2}} D^{g_{1}g_{2}}(q_{0}n)Q_{g_{1}}^{+}Q_{g_{2}}^{+}\right]\Psi_{0'}/8/$$

где n - номер возбужденного состояния, $Q_g \Psi_0 = 0$, К - проекция спина на ось асимметрии, $\pi = (-1)^{\lambda_0}$, $\mu_0 = K$. Условие нормировки волновой функции выглядит так:

$$\sum_{i} (C_{q_0i}^{n})^2 + \sum_{g_1g_2} [D_{g_1g_2}^{g_1g_2}(q_0n)]^2 = 1.$$
 /9/

 \mathbf{r}

Поскольку расчеты выполнены для нижайших вибрационных состояний, в волновой функции /8/ в сумме по і учитывалось лишь по 3 первых фонона для каждой из мультипольностей $\lambda \mu$, квадрупольные и октупольные фононы. Явный вид C_{qoi}^{n} и $D^{g_{1}g_{2}}$ дан в⁽¹⁰⁾.

Для вычисления приведенных вероятностей электрических переходов $B(E\lambda)$ был использован аппарат, разработанный $B^{/3/}$. Чтобы посчитать $B(E\lambda)$, мы использовали выражение:

$$B(E\lambda) = |(\Psi_0|| \Re ||\Psi_n(K^{\pi}))|^2, \qquad /10/$$

где оператор электрического перехода m содержит двухфононные компоненты /см. $^{/3/}$ /, а для $\Psi(K^{\pi})$ использована волновая функция /8/. Тогда для $B(E\lambda)$ получается следующее выражение:

$$B(E\lambda) = |\sum_{i} \frac{C_{q_{0}i}^{n}}{\sqrt{Y_{q_{i}}}} [y_{p}^{q_{0}i}X^{q_{0}i}(p)(1+e_{eff}) + X^{q_{0}i}(n)e_{eff}] + \sum_{gg'}D^{gg'}(q_{0}n)[UN_{q_{0}i}^{gg'}e_{eff} + UP_{q_{0}i}^{gg'}(1+e_{eff})]|^{2}, / 11/$$

$$\begin{aligned} & \text{UN}_{q_{0}i}^{gg'} = \frac{1}{2} \sum_{ss's''} V_{ss'}^{(-)} f^{q_{0}} (ss') (\phi_{s's''}^{g'}, \psi_{s''s}^{g} + \\ & + \psi_{s''s}^{g'} \phi_{s''s'}^{g} - \bar{\phi}_{s's'}^{g'}, \bar{\psi}_{s''s}^{g} - \bar{\psi}_{ss''}^{g'}, \bar{\phi}_{s''s'}^{g} + \\ & + \phi_{ss''}^{g'}, \bar{\psi}_{s''s'}^{g} + \bar{\phi}_{ss''}^{g'}, \psi_{s's'}^{g} - \psi_{ss''}^{g'}, \bar{\phi}_{s''s'}^{g} - \\ & - \bar{\psi}_{s's''}^{g'}, \phi_{s''s}^{g}). \end{aligned}$$

Расчеты были проведены для некоторых редкоземельных ядер и актинидов. Ядра 154 Sm и 238 U условно можно считать типичными представителями двух областей деформированных четно-четных ядер. Ядро 166 Er представляет специальный интерес, поскольку энергия его первого β -вибрационного состояния сравнима с энергией двухфононного вибрационного состояния с $K^{\pi} = 0^{+}$.

В результате получаются сравнительно большие примеси двухфононного состояния в O⁺ /см.^{/6/} /. Рассмотрено также ядро ²²⁸ Th, у которого интерес представляет первое О+ состояние, имеющее почти чистую двухфононную структуру. Расчеты были сделаны и для ²⁴⁰ Pu. для которого уже имеются экспериментальные доказательства о существовании двухфононного октупольного вибрационного состояния /2/.

Константы G₇ и параметры потенциала Вудса-Саксона взяты из $^{/11/}$ Для $\kappa_0^{(\lambda)}$ использованы значения, которые приводят к правильному описанию энергий первых вибрационных состояний е оff =0.1. Расчеты проводились с двумя значениями изовекторной константы $\kappa_1^{(\lambda)} = 0$ и $\kappa_1^{(\lambda)} = -1.5\kappa_0^{(\lambda)}$. Второе значение $\kappa_1^{(\lambda)}$ позволяет хорошо описать положение изовекторных гигантских резонансов с $\lambda = 1, 2, 3$. В *табл. 1-5* приведены энергии, вероятности электрических переходов и структура первых и вторых вибрационных состояний для $K^{\pi} = O^+$, 2^+ , O^- , 1^- , В колонке "Структура" записаны одно- и двухфононные компоненты $(\lambda \mu i)$ н $(\lambda_1 \mu_1 i_1, \lambda_2 \mu_2 i_2)$ н их вклады $(C\lambda_0^n \mu_0 i_1)^2$ н $[D^{\lambda_1 \mu_1 i_1} \lambda_2 \mu_2 i_2 (\lambda_0 \mu_0 i_1)]^2$ в состояния $\Psi_n(K^{\pi})$ /8/.

Рассмотрим последовательно влияние обоих эффектов /ангармоничности и изовекторных сил/ на свойства нижайших вибрационных состояний вчетно-четных ядрах. В работах /6-8,12/ анализировалось влияние каждого из этих эффектов независимо, поэтому повторим некоторые результаты этих работ.

В работе /12/ показано, что нанболее существенным результатом влияния изовекторных сил на свойства нижайших вибрационных состояний, рассчитанных в гармоническом приближении, является увеличение коллективности этих состояний. Приведенные вероятности Е λ -переходов в основное состояние при $\kappa_1^{(\lambda)} = -1.5 \kappa_0^{(\lambda)}$ возрастают на 40-50% по сравнению со случаем, когда учитывается только изоскалярная компонента остаточных мультипольных сил.

Учет ангармоничности для изоскалярных фононов $(\kappa_1^{(\lambda)} = 0)^{/6-8/}$ приводит к понижению энергии нижайших состояний на 100-300 кэВ по сравнению с энергией фононов, рассчитанных в гармоническом приближении.

	154 Sm
<i>I</i> .	состояния
Ταблица	цвонные

	COCTORHER
ntension -	вибрационные
	ажние

194 Sm	6 1	$\binom{(A)}{1} = -1.5 \times \binom{A}{0}$	Структура, 🖇	(201)77; (301,301)14; (203)5;	(201,202) I	(204)61; (201)13; (301,301)11;	(201,201)5; (221,221)3; (202)2;	(221,223)2; (201,202)1	(221)87; (201,221)3;	(202,221)3; (201,223)2;	(222)1.3; (201,222)1	(222)77; (223)6	(201,222)6; (201,221)4	(221)3	(30I)87; (20I,30I)II		(303)90; (201,301)3	(302)2; (221,322)2	(201)I	(311)96; (201,311)I	#(IIF INS) :40(SIF)	
КННК	C d		B(EA)		I.2		1. 0			5.1			4 .0			I. 6		0.2			9.7	0.2
COCTO	Ра		E.MaB		I.2		I.9			I.5			2.4			0 . 1		2.2			1.4	2.3
ажние вибрационные		= 0	Структура, %	(20I)8I; (30I,30I) II;	(201,202)4; (201,201)2	(202)74; (201,201)9;	(203)5; (221,221)5;	(301,301)3; (311,311)I	(221)89; (202,221)3;	(201,223)3; (222)2;	(201,222)1; (201,221)1	(222)59; (223)17	(201,221)13; (201,222),	(221)3; (301,321)1	(301)85; (201,301)13		(302)98; (303)I			(311)97; (201,312)I	(3T2)90: (20T,3TT)7	
H		4 ¥	B(EA)	1. 6			0.002			2.7			0.3	_		6.9		0.1			6.3	0.3
			Е,КэВ	I.I			I.7			I.5			2.3			6 •0		2.2			т.4	2.2
	5	R(E)	~ ~	1.0						2.8						8 .1					6.0	
	ОΠР	R MaR		I.100				·		I.440						0.922					I.475	
		K_n^{\pi}		to			+s	1		2+ 1-2	•		+5	1		15	•	5	1		H	17

Таблица 2.		
Нижние вибрационные состояния	¹⁶⁶ Er	

1777	Опыт	1			Ра	c	ч ё	T
К'n	E, MoB	B(E)		,	$\binom{\lambda}{1} = 0$		$\kappa_1^{(\lambda)}$	= -1,5
			Е, МэВ	$B(E\lambda)$	Структура, %	Е,МэВ	B(Ελ)	Структура, 🖇
					(201)62; (221,221)32			(201)64;(221,221)30;(203)3
0‡	I.460		1.3	0.I	(203)3; (301,301)I	I.3	0.1	(301,301)2
-			ŀ		(203)45; (201)23			(203)51; (221,221)21
05	2,187		I.8	0.02	(221,221)20; (202)12	I.8	0.03	(201)20; (202)7
2					(221)93; (201,221)5			(221)94; (201,221)4
2‡	0.786	5.3	0.8	2.8	(203,221)1	0,8	4.5	(203,221)I
1			1		(222)98; (201,201)1			(222)99
25			2.0	0.I		2.0	0.I	
2			· ·		(301)94); (201,301)4			(301)94; (201,301)3;
07	1.663	3.0	1.6	2.6		I.6	4.3	(203,301)I
1-1					(302)98			(302)98
05			2.2	0.6		2.2	0.8	
-2					(311)90; (312)4			(311)85; (312)6; (221,311)4
17	I.830		1.8	I.I	(221,311)2; (221,312)1	I.7	2.2	(221,312)2
1-1					(312)88; (311)6;			(312)85; (311)10;
12			2.0	0.5	(221,311)1; (313)1	2.0	0.8	(221,311)1; (313)1
-2								

Таблица 3. Нижние вибрационные состояния ²²⁸ Th

	Опы	T		ίλ	P	a	८ प	6	(A) ^T
K_n^{π}				κı	y = 0			ĸ	1 =-1,5
	Е, ЖЭВ	B(E)	Е, № эВ	B(ЕЛ)	Структур	a, %	Е, МэВ	B(Β λ)	Структура,%
					(301,301)90; (201))7			(301,301)79; (201)19
0	0.830	1	0.9	0.1	(202)2		0.9	0.3	(202)I
-					(201)82; (301,301)	8			(201)58; (301,301)20
05			1.2	1.0	(311,311)5; (221,2	21)4	I.2	0.8	(311,311)7; (221,221)5
-					(221)89; (301,321)	6			(221)87; (301,321)7
2 †	0.977		0.9	3.5	(311,311)2; (203,2	2I)I	0,9	4.4	(311,311)3
-					(311,311)94; (301,	321)3			(311,311)91; (301,321)6
22	1.620		1.6	0.04	(222)1; (221)1		I.6	0.1	(222)2; (221)1
					(301)97				(301)95; (201,301)2
01	0.328		0.4	9.2			0.4	I2.4	(221,321)1
-					(201,301)99				(201,301)98; (301)2
02			I.7	0.05			I.7	0.2	
-				1	(311)97; (221,311)	2			(311)94; (221,311)3
II	p.740		0.7	9 . I	(201,311)1		0,7	13,0	(201,311)3
					(312)91; (201,311)	8			(312)93; (201,311)6
12			I.8	0.2			I.8	0.1	

10

	Опыт			())	P	a c	۲ (۵)	e (λ)
K_n^{π}				$-\kappa \left(^{n}\right) $	= 0		$\kappa_{1}^{(n)} =$	$-1.5 \kappa_0^{(1)}$
	E,MəB	B(E)	Е, МэВ	B(E) β	Структура, %	E,MoB	B(Eλ)	Структура, %
	1	1		1	(201)95: (301,301)4			(201)93: (301,301)6
a+	0.005	1		0.4		T.T	0.3	
01	0.925		1 1	0.4	(201,201)1	1.1	0.5	(201 201)05+ (203)0+ (201)
1					(301,301)91; (203)5			(301,301)83, (203)3, (201)8
05	1		1.4	0.002	(201)4	1.4	0.002	
1					(221)98; (301,321)2			(221)98; (301,321)2
2+	1.061	2.0	I.0	2.7		I.0	3.4	
1 ⁻ I	1.001				(222)100			(222)100
			- <i>h</i>		(111)100	тл	OT	(,=
22	1		1.4	0.1	(707)00	1.4	0.1	(201)00
l	1		ļ	ł	(301)99			(301)99
07	0.681	20.0	0.7	7.I	1	0.7	9.2	
1	1				(302)100			(302)100
0			T.7	0.2		1.7	0.1	
2		1	1		(311)100			(311)99
					()11/100		1.0	(
II	0.931		0.9	2.1	(0.9	4.0	(770)00
-					(312)99			(215)22
I.			I.7	1.2		1.7	1.3	
2	1	1	1		1		1	

Таблица 4. Нижние вибрационные состояния ²³⁸U

Таблица 5. Нижние вибрационные состояния ²⁴⁰ Ри

	0 п	H T		(λ	P	8	С प	e	$T(\lambda) \rightarrow T(\lambda)$
$ K_n'' $				κì	′ ≖ 0				$\kappa_1 = -1.5 \kappa_0$
	Б, щор	(אמ)ם	E,MəB	B(E))	Структур	о в, %	E,MoB	B(E2)	Структура, 🖇
0‡	0.860		1.0	0.3	(20I)87; (30I,30 (22I,22I)2; (22) (32I,32I)I)7 (,222)I	1.0	0.3	(201)84; (301,301)11 (221,221)2
02	1.410		1.2	0.002	(301,301)71; (20 (201)7; (202)1 (221)75:(301,32)3)20 21)10	1.3	0.01	(301,301)81; (201)10 (202)4; (203)4 (221)70: (301,321)13:
2 †	0.938		1.0	1.5	(201,221)6; (222 (201,222)2; (30) (222)90: (221)8	?)5 ,32 3}I	0.9	2,1	(201,221)7; (222)6 (201,222)2; (301,322)1 (222)88: (221)9
22	1.559		I.4	0.1	(301)96; (211,30)1)2	I.4	0.1	(201,222)I (301)94; (201,301)2
0Ī	0.597		0.6	8.0	(221,321)I (302)99		0.5	9.9	(22I,32I)2 ((302)84; (20I,30I)I2
02			I.5	0.002	(311)99		I.5	0.01	(203,301)I (311)98; (201,311)I
I			1.0	2.4	(312)98		I.0	3.6	(312)96; (201,311)2
12			1.7	I.I			I.7	I.0	(313)1

Перенормировав константы $\kappa_0^{(\lambda)}$, авторам удалось описать энергии первых квадрупольных и октупольных состояний, известные из эксперимента. При этом константы $\kappa_0^{(\lambda)}$ становятся более стабильными по отношению к А. Наибольшая перенормировка $\kappa_0^{(\lambda)}$ имела место для состояний с K=O⁺ и составляла около 20%. Непосредственные расчеты, проведенные в настоящей работе, показывают в большинстве случаев уменьшение $B(E\lambda)$ на 10-20% для первых вибрационных состояний в соответствии с изменением структуры этих состояний. Структура вторых и последующих состояний усложняется более существенно. Это видно из *табл. 1-5*. Примеси к доминирующему состоянию в ряде случаев достигают 50%.

Настоящие расчеты вибрационных состояний вангармоничном приближении показывают, что учет изовекторных сил приводит к понижению энергии нижайших сос-50-150 кэВ больше, чем это было тояний лишь на в случае чисто изоскалярных фононов /6-8/.Соответствуюκ^(λ) увеличивается при щая перенормировка констант этом на 1-2%. В таблицах 1-5 сравниваются результаты расчетов нижайших вибрационных состояний в ангармоничном приближении, проведенных без учета и с учетом изовекторных сил. Сравнение полученных значений для $B(E \lambda)$ дает возможность оценить, каким образом включение изовекторных сил влияет на коллективность состояний. Как правило, при включении изовекторных сил величина B (E λ) повышается по сравнению с ее значением в чисто изоскалярном случае на 40-50%. Это - результат увеличения коллективности фононов. Следовательно. можно сказать, что при учете изовекторных сил состояния становятся более коллективными. Исключение составляют состояния с $K^{\pi} = O^{+}$ для ²³⁸U и ¹⁵⁴Sm и большинство вторых вибрационных состояний для ²²⁸ Th. Это следствие того, что включение в расчеты изовекторных сил приводит к уменьшению коллективности второго и третьего фонона, если для них в чисто изоскалярном случае X^g(n) <X^g(p). Из формулы для вероятности электрических переходов в гармоническом приближении /см. / 13 // можно увидеть, что подобные особенности у

квадрупольных вибрационных состояний связаны прежде всего с появлением фазового множителя у^t.

При учете изовекторного взаимодействия снова можно сделать вывод ^(6,), что чем ближе к переходной области находятся ядра, тем более сложна бывает структура их вибрационных состояний. Для $\kappa_1^{(\lambda)} \neq 0$ наблюдаются некоторые изменения в процентном содержании фононов в каждом конкретном состоянии, но это существенно не меняет структуры состояния, поскольку доминирующие по своим вкладам фононы /или определенные двухфононные примеси/при $\kappa_1^{(\lambda)}=0$ остаются такими и при $\kappa_1^{(\lambda)}=-1.5\kappa_0^{(\lambda)}$.

Интересно было посмотреть, как повлияет на результаты расширение фононного пространства. Мы сделали расчеты для ¹⁶⁶Ег, в которых учитывали 10 фононов для каждой мультипольности. Полученные результаты для нижайших состояний почти не отличаются от тех, которые мы получили, работая с тремя фононами для каждой мультипольности. Из этого можно заключить, что расчеты, сделанные с тремя фононами для низколежащих состояний, дают вполне удовлетворительные результаты. Однако, если какой-либо из следующих по энергии фононов окажется сильно коллективным /как, например, четвертый фонон в ¹⁵⁴Sm /, его учет приводит к изменениям в структуре соответствующего состояния.

При учете изовекторного взаимодействия, как и в чисто изоскалярном случае, влияние ангармоничности сказывается прежде всего на вторых и более высоких вибрационных состояниях. Их структура обычно сложнаоднофононные и двухфононные примеси к доминирующему состоянию достигают ~ 50%. Более четко это проявляется в квадрупольных вибрационных состояниях/см. *табл.* З и 4 для ¹⁶⁶ Ег и ²²⁸ Th/.

Нашими расчетами подтверждается двухфононная структура второго состояния с $K^{\pi} = O^+ B$ ядре ²⁴⁰ Pu. Из *табл.* 5 видно, что в это состояние наибольший вклад, равный 81%, дает компонента /3O1, 3O1/. Это находится в соответствии с надежно установленным экспериментальным фактом ^{/2/}, что второе O⁺ - состояние в ²⁴⁰ Pu близко по структуре к двухфононному, построенному из двух фононов с $K^{\pi} = O^-$. Модель правильно передает /с точностью до 100 кэВ/ также и энергию этого состояния.

В заключение можно сказать, что включение изовекторной константы в расчеты для низколежащих состояний приводит лишь к небольшим изменениям в ранее полученных результатах ^{/7,8/} для нижайших вибрационных состояний деформированных четно-четных ядер.

Авторы выражают глубокую благодарность В.Г.Соловьеву за постоянный интерес и ценные советы. Мы также признательны А.И.Вдовину, В.В.Воронову, В.О.Нестеренко и Ч.Стоянову за плодотворные дискуссии и предоставление программ и материалов для расчетов.

ЛИТЕРАТУРА

- 1. Meyer R.A. Phys. Rev., 1968, 170, p.1089; Meyer R.A. Phys. Rev., 1968, 174, p. 1478.
- Schmorak M.R. et al. Phys.Rev.Lett., 1970, 24 p. 1507.
- 3. Соловьев В.Г. Теория сложных ядер. "Наука", М., 1971.
- 4. Григорьев Е.П., Соловьев В.Г. Структура четных деформированных ядер. "Наука", М., 1974.
- Soloviev V.G. Phys.Lett., 1966, 21, p. 320; Soloviev V.G. Nucl. Structure Symp., Dubna, IAEA, Vienna, 1968, p. 101.
- Jolos R.V., Soloviev V.G., Zheleznova. Phys.Lett., 1967, 25B, p. 393; Jolos R.V. et al. Phys.Lett., 1968, 27B, p. 614.
- 7. Кырчев Г., Соловьев В.Г., Стоянов Ч. Изв. АНСССР, сер. физ., 1975, 39, стр. 2015.
- 8. Иванова С.П., и бр. Изв. АН СССР, сер.физ., 1976, 40, стр. 750.
- 9. Soloviev V.G. Preprint JINR, E4-11012, Dubna, 1977.
- 10. Вдовин А.И., Кырчев Г., Стоянов Ч. ТМФ, 1974, 21, стр. 137.
- 11. Гареев Ф.А. и др. ЭЧАЯ, 1973, 4, стр. 357;
- Гареев Ф.А. и др. ЭЧАЯ, 1976, 7, стр. 450. 12. Малов Л.А., Нестеренко В.О. Препринт ОИЯИ, P4-11211, Дубна, 1978.
- 13. Малов Л.А., Нестеренко В.О., Соловьев В.Г. ТМФ, 1977, 32, стр. 134.

Рукопись поступила в издательский отдел 19 мая 1978 года.