ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C 341.19 IJ-822

P4 - 11294

2110/2-78 Т. Думитреску, С.Г. Кадменский, И.А. Ломаченков, С.Холан, В.И.Фурман

ВЛИЯНИЕ ПЕРЕНОРМИРОВКИ ОСТАТОЧНОГО ВЗАИМОДЕЙСТВИЯ НА АБСОЛЮТНЫЕ ШИРИНЫ «-РАСПАДА СФЕРИЧЕСКИХ ЯДЕР

P4 - 11294

Т. Думитреску, С. Г. Кадменский, И.А. Ломаченков, С. Холан, В.И.Фурман

ВЛИЯНИЕ ПЕРЕНОРМИРОВКИ ОСТАТОЧНОГО ВЗАИМОДЕЙСТВИЯ НА АБСОЛЮТНЫЕ ШИРИНЫ «-РАСПАДА СФЕРИЧЕСКИХ ЯДЕР

Направлено в "Известия АН СССР" /сер. физ./.

06	higher.	toeld	山谷、昭	HOTEL	T
11.	PTHII	X DC	слад	CREEKE	虚
	Gine	i fild	OTE	EKA	

Думитреску Т. и др.

P4 - 11294

Влияние перенормировки остаточного взаимодействия на абсолютные ширины а -распада сферических ядер

В рамках оболочечного приближения для вероятности а-распада получены формулы и проведены численные расчеты вклада в значение а -ширины перенормированного эффективного взаимодействия между нуклонами, формирующими а -частицу. В соответствии с предшествуюшими оценками учет указанного взаимодействия несколько уменьшает величины а-ширин.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препрент Объединенного института ядерных исследований. Дубна 1978

Dumitrescu T. et al.

P4 - 11294

The Influence of the Density-Dependent Effective Interaction on the Absolute Alpha-Widths of Spherical Nuclei

In the frame of the shell model approach for the probabilities of alpha-decay the exact formulas (for alpha-widths) taking into account the contribution of density dependent effective interaction between nucleons forming the emitted alpha-particle are obtained. In agreement with previous estimations the numerical calculation reveals that the inclusion of the above-mentioned interaction is followed by some decrease of absolute alpha-widths.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

С 1978 Объединенный институт ядерных исследований Дубна

1. В оболочечном приближении для вероятности араспада потенциал взаимодействия а-частицы с дочерним ядром $V_{\mu A-4}$ имеет вид /1/

$$V_{\alpha A-4} (\vec{r}_{1} \vec{r}_{2} \vec{r}_{3} \vec{r}_{4}) = \frac{4}{\sum_{i=1}^{4} V_{i} (|\vec{r}_{i}|) + /1/$$

+
$$\sum_{i>j=1}^{4} [v_{ij} (|\vec{r}_{i} - \vec{r}_{j}|) - V_{ij} (|\vec{r}_{i} - \vec{r}_{j}|)],$$

где $V_i(|\vec{r}_i|)$ и v_{ij} - соответственно самосогласован-ный одночастичный потенциал и эффективное остаточное взаимодействие нуклонов в ядре, а V_{ij} - затравочное парное взаимодействие в пустоте. До сих пор расчеты вероятностей *a*-распада делались $2^{/2}$ с учетом только первой суммы в потенциале $V_{\alpha A-4}$, причем потенциалы V_i (|r_i|) выбирались в обычной вудс-саксоновской форме. В ланной работе проведен расчет вклада в а-ширину взаимодействия между нуклонами, образующими а-частицу /второй член в формуле /1//.

Выражение для а-ширины без учета смешивания конфигураций запишем в виде

 $\Gamma_{\alpha} = \sum_{L} \left| \sum_{j_{1}, j_{34}} G_{P_{i}N_{i}P_{f}N_{f}}^{P_{\alpha}N_{\alpha}L} (M_{P_{\alpha}N_{\alpha}L}^{(1)} + M_{P_{\alpha}N_{\alpha}L}^{(2)}) \right|^{2} / 2 /$ Здесь индексы $P_{i}N_{i}(P_{f}N_{f})$ описывают состояние родительского /дочернего/ ядра, символы $P_{\alpha}(N_{\alpha})$ указывают конфигурации отделяемых пар протонова/нейтронов/, L - орбитальный момент а-частицы, а выражение для геометрического фактора $G_{P_i N_i P_f N_f}^{P_a N_a L}$ выписано в работе ^{/3/}. В формуле /2/ матричный элемент $M_{P_a N_a L}^{(1)}$ (M ⁽²⁾) соответствует учету только первого /второго / слагаемого во взаимодействии V_{aA-4} . Матричный элемент $M_{P_a N_a L}^{(2)}$ по аналогии с матричным

элементом $M_{P_a N_a L}^{(1)}$ запишем в виде /4/

$$M_{P_{\alpha}N_{\alpha}L}^{(2)} = \left(\frac{8k_{\alpha}}{\pi Q_{\alpha}}\right)^{\frac{1}{2}} S_{\alpha}^{P_{\alpha}N_{\alpha}} \int \Theta_{P_{\alpha}N_{\alpha}L}^{(2)}(R) F_{L}(R) R dR, \qquad /3/$$

где $F_L(R)$ - регулярная кулоновская функция, Q_a - энергня a -распада, $k_a = (2m_a Q_a / h)^{\frac{1}{2}}$ - соответствующий волновой вектор. Фактор $S^{P_a N_a}$ есть результат суммирования по спиновым переменным $\frac{3}{2}$. В формуле $\frac{3}{2}$ функцию $\Theta_{P_a N_a L}^{(2)}$ определим следующим образом:

$$\Theta_{\substack{P_{\alpha}N_{\alpha}L}}^{(2)}(\mathbf{R}) = \sum_{i < j}^{4} \Theta_{ij}(\mathbf{R}) =$$

$$= \sum_{i < j}^{4} \int \left[\left[\psi_{1}\psi_{2} \right]_{j} \left[\psi_{3}\psi_{4} \right]_{j} \right]_{34} \mathbf{L} \mathbf{M}^{u}_{ij}(\mathbf{r}_{ij}) \chi_{\alpha} \mathbf{Y}_{LM}^{\vec{R}} \times$$

$$\times \vec{d\xi}_{1} \vec{d\xi}_{2} \vec{d\xi}_{3} \vec{d\Omega}_{\vec{R}}, \qquad /4/$$

где квадратные скобки означают векторное сложение моментов, а

$$u_{ij} = v_{ij}(r_{ij}) - V_{ij}(r_{ij}); r_{ij} = |\vec{r}_i - \vec{r}_j|.$$

Для пространственной части внутренней волновой функции α -частицы используем стандартное выражение $^{/5/}$

$$\chi_{\alpha} (\vec{\xi} | \vec{\xi} | \vec{\xi} | \vec{\xi}) = (\beta/\pi)^{9/4} \exp[\frac{\beta}{2} (\xi_{1}^{2} + \xi_{2}^{2} + \xi_{3}^{2})],$$
/5/

 $\beta = 0.434 / \Phi_M / -2$.

В одночастичных оболочечных функциях $\psi_i = \psi_{n_i} \ell_{ij_i} (\vec{r}_i)$,

которые описывают состояния нуклонов, формирующих *a* -частицу, индексы 1,2 относятся к протонным состояниям, а 3,4 - к нейтронным. Выше использовались переменные

$$\vec{\xi}_{1} = \frac{1}{\sqrt{2}} (\vec{r}_{1} - \vec{r}_{2}), \qquad \vec{\xi}_{3} = \frac{1}{2} (\vec{r}_{1} + \vec{r}_{2} - \vec{r}_{3} - \vec{r}_{4}), \qquad /6/$$

$$\vec{\xi}_{2} = \frac{1}{\sqrt{2}} (\vec{r}_{3} - \vec{r}_{4}), \qquad \vec{R} = \frac{1}{4} (\vec{r}_{1} + \vec{r}_{2} + \vec{r}_{3} + \vec{r}_{4}).$$

Интегрирование в формуле /4/ проведем с помощью метода, предложенного в работе $^{/6/}$. В результате для части функции $\Theta_{P_{\alpha}N_{\alpha}L}^{(2)}$, соответствующей вкладу P-P и

N-N -членов взаимодействия /1/, получим формулу

$$\begin{split} & \Theta_{PP,NN}^{(2)} = \Theta_{12}^{(2)} + \Theta_{34}^{(2)} = \\ & = 64 \frac{\beta^{9/4}}{\pi^{3/4}} \frac{\hat{l}_1 \hat{l}_2 \hat{l}_3 \hat{l}_4}{\hat{L}} \int_0^\infty [v_{12}^{j_{12}} (R_{12}) A_{34}^{j_{34}} (R_{34})] + \\ & + A_{12}^{j_{12}} (R_{12}) v_{34}^{j_{34}} (R_{34})] \times \\ & \times e^{-2\beta \xi_3^{*2}} (1+(-1)^{j_{12}+j_{34}-L}) \sum_{k=0}^{\min(j_{12}j_{34})} (1+\delta_{k0})^{-1} C_{k-k-0}^{j_{12}j_{34}} X_{k-k-0} \times \\ & \times P_{j_{12}}^k (\cos\theta_{12}) P_{j_{34}}^k (\cos\theta_{34}) \xi_3^{*2} d\xi_3^* d\cos\theta \xi_3^* . \end{split}$$

5

Явный вид функций $v_{12(34)}^{j_{12}(j_{34})}(R_{12(34)})$, $A_{12(34)}^{j_{12}(j_{34})}$ и пере-менных интегрирования укажем ниже. Присоединенные полиномы Лежандра $P_j^k(\cos\theta)$ нормируем на величину 2/(2j + 1), ($\hat{\ell}_{i} = \sqrt{2\ell}_{i} + 1$). В случае N-P -взаимодействия непосредственное применение использованного выше метода /6/ невозможно. Однако если в волновой функции /5/ перейти к таким новым переменным $\chi_{a}(\vec{\xi}_{1}\vec{\xi}_{2}\vec{\xi}_{3})$ $\{\xi_i\}$, чтобы для потенциалов v_{ii} и V_{ij} координата выражалась через векторы \vec{r}_i и $\vec{r}_j = \vec{c}_j$, ξ₁ а координата $\vec{\xi}_2$ - через остальные два вектора из на-бора $\{\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4\}$, то вычисление интегралов /4/ для NP - взаимодействия проводится в полной аналогии с Р-Р и NN - случаями. Подобную замену переменных всегда можно сделать, поскольку функция χ_{α} симметрична относительно перестановки координат 4-х нуклонов. Изменяя соответствующим образом порядок сложения угловых моментов в функции /4/ и проведя необходимые выкладки, получим для функции $\Theta^{(2)}_{NP}$ следующую формулу:

$$\times \{ \sum_{j} \hat{j}_{13}, j \hat{j}_{24}, j \hat{j}_{13}, j \hat{j}_{24} \}_{13} \hat{j}_{24} \{ \begin{pmatrix} \ell_1 & \ell_3 & j_{13} \\ \ell_2 & \ell_4 & j_{24} \\ j_{12} & j_{34} \\ L \end{pmatrix} \{ v_{13}^{j_{13}}(R_{12}) A_{24}^{j_{24}}(R_{34}) +$$

+
$$A_{13}^{j}(R_{12}) v_{24}^{j}(R_{34})$$
 >

$$\times (1+(-1)^{j} 13^{j} 24^{-L}) \sum_{\substack{k_{1}=0}}^{\min(j} (13^{j} 24^{)} (1+\delta_{k_{1}0})^{-1} \times \\ \times C_{k_{1}-k_{1}0}^{j} P_{j_{13}}^{k} (\cos \theta_{12}) P_{j_{24}}^{k} (\cos \theta_{34}) + \\ + (-1)^{j} \sum_{j_{14}+j_{23}}^{j} \hat{j}_{12} \hat{j}_{34} \hat{j}_{14} \hat{j}_{23} \begin{cases} \ell_{1} - \ell_{4} - j_{14} \\ \ell_{2} - \ell_{3} - j_{23} \\ j_{12} - j_{34} - L \end{cases} \times \\ \times [v_{14}^{j} (R_{12}) A_{23}^{j} (R_{34}) + v_{23}^{j} (R_{34}) A_{14}^{j} (R_{12})] \times \\ \times (1+(-1)^{j} 14^{+j} 23^{-L}) \sum_{k_{2}=0}^{\min(j} (1+\delta_{k_{2}0})^{-1} \times \\ \times (1+(-1)^{j} 14^{+j} 23^{-L}) \sum_{k_{2}=0}^{\min(j} (1+\delta_{k_{2}0})^{-1} \times \\ \times C_{k_{2}-k_{2}0}^{j} P_{j_{14}}^{k} (\cos \theta_{12}) P_{j_{34}}^{k} (\cos \theta_{34}) \}, \qquad /8/$$

где использованы переменные, определенные соотношениями:

$$R_{12} = \sqrt{R^2 + \xi_3^2 + 2R\xi_3^2 \cos \theta_{\vec{\xi}_3}}, \quad \cos \theta_{12} = \frac{R + \xi_3^2 \cos \theta_{\vec{\xi}_3}}{R_{12}},$$

$$R_{34} = \sqrt{R^2 + \xi_3^2 - 2R\xi_3^2 \cos \theta_{\vec{\xi}_3}}, \quad \cos \theta_{34} = \frac{R - \xi_3^2 \cos \theta_{\vec{\xi}_3}}{R_{34}}.$$
Функции $v_{1i}^{j_{1i}}$ (R₁₂) имеют вид

$$v \frac{j_{ij}}{ij}(R_{12}) = \int d\xi_1 \xi_1 \xi_1 \frac{2e_1^2}{e_1^2} u_{ij}(R_{12}, r_1, r_2, 2\xi_1) \times$$

$$\times \int d\cos\theta \vec{\xi'_{1}} \psi_{n_{i}\ell_{j}j_{i}}^{\mu} (\mathbf{r}_{1}) \psi_{n_{j}\ell_{j}j_{j}}^{\mu} (\mathbf{r}_{2}) \times$$

$$\times (1 + (-1)^{\ell_{i}+\ell_{j}-j_{ij}}) \sum_{k=0}^{\min(\ell_{i}\ell_{j})} (1 + \delta_{k0})^{-1} C_{k-k}^{\ell_{i}\ell_{j}j_{ij}} \times$$

$$\times P_{\ell_{i}}^{k}(\cos\theta_{1})P_{\ell_{j}}^{k}(\cos\theta_{2}). \qquad (10/$$

Причем

$$r_{1} = \sqrt{R_{12}^{2} + \xi_{1}^{\prime 2} + 2R_{12}\xi_{1}^{\prime}\cos\theta_{\vec{\xi}_{1}}}, \quad \cos\theta_{1} = \frac{R_{12} + \xi_{1}^{\prime}\cos\theta_{\vec{\xi}_{1}}}{r_{1}},$$

$$r_{2} = \sqrt{R_{12}^{2} + \xi_{1}^{\prime 2} - 2R_{12}\xi_{1}^{\prime}\cos\theta_{\vec{\xi}_{1}}}, \quad \cos\theta_{2} = \frac{R_{12} - \xi_{1}^{\prime}\cos\theta_{\vec{\xi}_{1}}}{r_{1}}.$$

Функцин $A_{ij}^{j_{ij}}$ (R₁₂) также определяются формулой /10/, если положить u_{ij} (R₁₂r₁, r₂, $2\xi_1^{j} = 1$. Выражения для функций $v_{ij}^{j_{ij}}$ (R₃₄) и $A_{ij}^{j_{ij}}$ (R₃₄) получаются из формул для функций $v_{ij}^{j_{ij}}$ (R₁₂) и $A_{ij}^{j_{ij}}$ (R₁₂) соответственно при замене переменной ξ_1' на ξ_2' . Заметим, что в формулах /7/-/11/ $\vec{\xi}_3 = \frac{1}{2}\vec{\xi}_3$; $\vec{\xi}_1 = \frac{1}{\sqrt{2}}\vec{\xi}_1$ и $\vec{\xi}_2 = \frac{1}{\sqrt{2}}\vec{\xi}_2$. Как следует из приведенных выражений, учет NP - взаимодействия приводит

к появлению дополнительного суммирования по промежуточным квантовым числам j_{13} , j_{24} , j_{14} и j_{23} , что существенно усложняет вычисления.

2. Эффективное взаимодействие /ЭВ/ нуклонов в ядре может существенно отличаться $^{7/}$ от их взаимодействия в пустоте как для канала частица-дырка $^{/8/}$, так и для канала частица-частица $^{/9,10/}$. Это обстоятельство и приводит к необходимости учета второй суммы во взаимодействии V_{aA-4} /1/. При изучении *a*-распада принципиальным является использование нуклон-нуклонного взаимодействия конечного радиуса $^{/3/}$. Для интересующего нас канала частица-частица параметры ЭВ конечного радиуса известны $^{/10/}$ только для взаимодействия $a^2 \Gamma^{\xi}$, приводящего к спариванию. Поэтому ниже ограничимся случаем облегченного *а*-распада, для которого ЭВ $a^2 \Gamma^{\xi}$ должно давать главный вклад $^{/2/}$.

В соответствии с работой / 10/ выберем ЭВ в виде

$$v_{ij} = a^2 \Gamma_{ij}^{\xi} = \frac{\pi^2 h^3}{p_F^{m^*}} \{ \gamma_{ij}^{in} y^n (R_{ij}) + \gamma_{ij}^{ex} (1 - y^n (R_{ij})) \} f(r_{ij}) .$$
/12/

Здесь m^* - эффективная масса нуклона, p_F - импульс Ферми, функция $y(R_{ij}) = \rho(R_{ij})/\rho(0)$, где $\rho(R_{ij})$ - однонуклонная плотность / 11/, причем R_{ij} - координата центра тяжести взаимодействующей пары (ij) нуклонов. Зависимость от их относительной координаты определим в форме

 $f(r_{ij}) = \pi^{-3/2} r_0^{-3} \exp[-(r_{ij}/r_0)^2] / \Phi_M / -3, \qquad /13/$

где г₀ = 1,74 Фм в согласии со значением эффективного радиуса феноменологических нуклон-нуклонных потенциалов /11/. Конкретный вид зависимости ЭВ от плотности уⁿ(R_{ij}) содержит некоторую неопределенность в величине степени n, связанную с методом параметризации ЭВ. Ниже используем значение n = 2/3 /10/. Значения параметров γ in и γ ex, определяющие силу взаимодействия нуклонов во внутренней (γ in) и внешней (γ ex) областях ядра, подобраны феноменологически /7-10/.

Заметим, что ЭВ, ответственное за спаривание, действует только между нуклонами одного типа, так что в формуле /12/ следует положить $\gamma_{ij}^{in} = \gamma_{ij}^{ex} \equiv 0$ для случая NP-взаимодействия.

3. В таблице приведены результаты расчетов амплитуд М⁽¹⁾ и М⁽²⁾ для ряда оболочечных конфигураций отделяемых нуклонов, дающих значительный вклад в случае облегченного *а*-распада изотопов полония. Для удобства сравнения в таблице даны значения отношений

Таблица

Ядро	E _x = 5,38 HaB				
Вариант ЭВ	Конўлгураці я	РР	NN	NP	M21/M(0
$h = 2/3 \chi_{\rho\rho}^{in} = -1.5 \chi_{NN}^{in} = -2.8 \chi_{PP}^{ex} = \chi_{NN}^{ex} = = \chi_{NN}^{eyer} = -3.1 $	[(2d3/2)] (121/2)]]0	0,003	-0,02	-0,35	0,37
	[(1hg/2)°(3p1/2)°]0	-0,0005	-0,004	- 0,285	-0,29
	[(1hg/2)0(2f5/2)0]0	-0,0007	-0,008	-C,30	-0,31
	[(1hg/2)°(2gg/2)°]0	-0,0006	-0,005	-0,316	-0,32
	$\left[\left(1h_{9/2}\right)_{0}^{2}\left(1i_{13/2}\right)_{0}^{2}\right]_{0}$	-0,0007	-0,024	- 0,372	-0,39
n = 2/3 $\gamma_{PP}^{in} = \gamma_{NN}^{in} = 0$ $\gamma_{PP}^{ex} = -7.6$ $\gamma_{NN}^{ex} = -7.5$	$\left[\left(3s_{1/2}\right)_{0}^{2}\left(3p_{1/2}\right)_{0}^{2}\right]_{0}$	0,08	0,1	-0,33	-0,15
	$[(3s_{1/2})^2_0(2g_{9/2})^2_0]_0$	0,09	0,16	-C,38	-0,13
	[(351/2)0(1in/2)0]0	0,06	0 ,13	-0,33	-0,14
	$[(2d_{3/2})^2_o(2f_{5/2})^2_o]_o$	0,06	0,08	-0,29	-0,15
	$[(2d_{3/2})^2(1it_{1/2})^2]_0$	0,05	C,II	-C,3I	-0,15
$\chi^{nyct} = -3, 1$	[(1hg/2)0 (3, p 1/2)0]0	0,C8	0,68	-0,29	-0,13
	[(1hs/2)° (2fs/21°]0	0,07	0,67	-0,30	-0,16
	[(1hg/2)0 (299/2)0]0	0,06	0,12	-0,37	-0,19

М ⁽²⁾ / М ⁽¹⁾, а также величины относительных вкладов, соответствующие учету РР-, NN- и NP-взаимодействий.

Расчеты проведены для двух вариантов параметризации ЭВ из работы/10/ Ввиду слабой зависимости от массового числа параметров γ^{in} и γ^{ex} в наших вычислениях использованы их усредненные по А значения, указанные в *таблице*. Для первого варианта ЭВ параметры γ_{PP}^{ex} и γ_{NN}^{ex} фиксировались на их пустотных значениях, а константы γ^{in} подбирались/10/.При этом перенормировка взаимодействия для протонной системы оказалась относительно небольшой ($\gamma_{PP}^{in} \approx 1/2 \gamma_{PP}^{ex}$), а для нейтронной системы - весьма малой $(\gamma_{NN}^{in} \approx \gamma_{NN}^{ex})$. Ввиду

слабой перенормировки ЭВ вклады в амплитуду M⁽²⁾ от РР- и NN-взаимодействий оказываются малыми, и отношение M⁽²⁾/M⁽¹⁾ определяется в основном NP-компонентой, для которой мы приняли v 0. Таким обра-зом, приведенные в *таблице* величины отношений M⁽²⁾/M⁽¹⁾ представляют собой скорее верхние оценки этих отношений, поскольку в канале частица-частица кроме взанмодействия спаривательного типа а²Г^ξ имеется ЭВ. не равное нулю для NP - пары. Включение же любого притягивающего ЭВ V_{NP} приведет к уменьшению NPвклала в амплитуду М⁽²⁾ и соответственно уменьшит величину отношения M⁽²⁾/M⁽¹⁾. С учетом сказанного значения отношений М (2)/М (1). полученные для обсуждаемого варианта ЭВ, не противоречат качественным оценкам. сделанным ранее /2/. Следуя работе / 10/заметим, однако. что данный вариант параметризации ЭВ противоречит факту отсутствия сверхтекучести ядерной материи / 12/.

В нижней части *таблицы* приведены результаты расчетов для ЭВ $a^2 \Gamma^{\xi}$, не приводящего к сверхтекучести ядерной материи. Правда, в данном варианте параметризации $\gamma^{ex} \neq \gamma^{HYCT}$. Физически это означает, что переход ЭВ в пустотное взаимодействие происходит достаточно далеко от поверхности ядра /7/. Рассчитанные величины отношений $M^{(2)}/M^{(1)}$, а также парциальные вклады в них от РР-, NN-и NP-взаимодействий оказываются достаточно малыми и в соответствии с оценками /2/ ведут к уменьшению абсолютной ширины *a*-распада. Как видно из *таблицы*, величины $M^{(2)}/M^{(1)}$ довольно слабо зависят от квантовых чисел (n^f j), характеризующѝх состояния отделяемых нуклонов.

Таким образом, для облегченного a-распада учет части взаимодействия V_{aA-4} . связанной с перенормировкой ЭВ между нуклонами, формирующими испускаемую a-частицу, не приводит к существенному изменению абсолютных величин a-ширин. Для окончательного решения вопроса о роли указанного взаимодействия в процессе a-распада необходимы дальнейшие расчеты, требующие более полного знания параметров ЭВ конечного раднуса в канале частица-частица для широкого круга тяжелых a-радиоактивных ядер.

ЛИТЕРАТУРА

- 1. Кадменский С.Г., Калечиц В.Е. ЯФ, 1970, 12, с.70. 2. Кадменский С.Г., Фурман В.И. ЭЧАЯ, 1975, 6, с.469.
- 3. Furman W.I. e.a. Nucl.Phys., 1974, A226, p.131. 4. Холан С. ОИЯИ, P4-9278, Дубна, 1975.
- 5. Mang H.J. Phys. Rev., 1960, 119, p.1069.
- 6. Furman W.I. e.a. Nucl. Phys., 1975, A259, b.114.
- 7. Мигдал А.Б. Теория конечных ферми-систем и свойства атомных ядер. "Наука", М., 1965.
- 8. Бунатян Г.Г., Микулинский М.А. ЯФ, 1965, 1, с.38.
- 9. Саперштейн Э.Е., Троицкий М.А. ЯФ, 1965, 1, с.400. 10. Кадменский С.Г. и др. ОИЯИ, Р4-10469, Дубна, 1977; ЯФ, 1978, 27, в.4.
- 11. Бор О., Моттельсон Б. Структура атомного ядра. "Mup", M., 1971.
- 12. Green I.M., Moskowsky S.A. Phys. Rev., 1965, 139, *b.*790.

Рукопись поступила в издательский отдел 31 января 1978 года.