ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3/10-78 P4 - 11186

M-473

В.С.Мележнк, Л.И.Пономарев

1536 2-78

ПОЛЯРИЗАЦИЯ ВАКУУМА

В И-МЕЗОМОЛЕКУЛАХ ИЗОТОПОВ ВОДОРОДА

P4 - 11186

В.С.Мележик, Л.И.Пономарев

поляризация вакуума

в *µ*-мезомолекулах изотопов водорода

Направлено в "Physics Letters"

Мележик В.С., Пономарев Л.И.

P4 - 11186

Поляризация вакуума в и -мезомолекулах изотопов водорода

Найдены поправки на поляризацию электрон-позитронного вакуума к уровням энергии и -мезомолекул. Вычисленный сдвиг уровней, $\Delta E_{Jv} < 0,5$ эВ, на порядок величины меньше аналогичного сдвига в и -мезоатомах.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Melezhik V.S., Ponomarev L.I.

P4 - 11186

Vacuum Polarization in μ Mesic Molecules of Hydrogen Isotopes

The vacuum polarization corrections due to the electron-positron vacuum have been obtained for the energy levels of μ mesic molecules. The calculated level shift, $\Delta E_{JV} < 0.5$ eV, is by an order of magnitude less than the analogous shift in μ mesic atoms.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR,

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

С 1978 Объединенный институт ядерных исследований Дубна

введение

Для последовательного описания различных мезомолекулярных процессов $^{/1/}$ необходимо знать уровни энергии μ -мезомолекул. При вычислении скоростей резонансного образования μ -мезомолекул dd μ и dt μ нужно знать их уровни энергии с особо высокой точностью: ~ 0,01 эВ, т.е. ~ 10^{-5} м.а.е. $^{/2/}$. В связи с этим при вычислении уровней энергии μ -молекул следует учитывать многочисленные поправки: на поляризацию вакуума, релятивистские поправки, поправки на конечные размеры и поляризацию ядер, на электронное экранирование и т.д.

В μ -мезоатомах водорода поправка на поляризацию электрон-позитронного вакуума является наибольшей и составляет величину ~ $a^3 \left(\frac{m_{\mu}}{m_e}\right)^2 ~ 10^{-3}$ м.а.е. ~1 эВ ^{/3,4/}. Простые оценки показывают, что остальные поправки меньше, по крайней мере, на порядок величины: лэмбовский сдвиг ~ $\frac{1}{m_{\mu}^2}$ ~ 10^{-4} м.а.е. ~ 0,1 эВ ^{/5/}, тонкая структура ~ a^2 ~ 10^{-4} м.а.е. ~ 0,1 эВ, размеры ядер ~ $\left(\frac{a_{\pi}}{a_{\mu}}\right)^2$ ~ 10^{-4} м.а.е. ~ 0,1 эВ, размеция ядер - того же порядка и обратна по знаку ^{/6,7/}, электронное экранирование ~ $\left(\frac{a_{\mu}}{a_e}\right)^3 ~ 10^{-6}$ м.а.е. ~ 10^{-3} эВ.

В данной работе вычислены поправки на поляризацию электрон-позитронного вакуума к уровням энергии µ -мезомолекул. Этот расчет представляет также самостоятельный интерес в связи с возможностью экспериментального измерения абсолютной величины поляризационного сдвига уровня в μ -молекуле^{/2/}.

1. ПОЛЯРИЗАЦИЯ ЭЛЕКТРОН-ПОЗИТРОННОГО ВАКУУМА В МЕЗОАТОМАХ

Как известно, кулоновский потенциал V(г) точечного заряда искажается вследствие поляризации вакуума^{/3/}:

$$\mathbf{V}(\mathbf{r}) + \delta \mathbf{V}(\mathbf{r}) = -\frac{a}{\mathbf{r}} + \delta \mathbf{V}(\mathbf{r}).$$
(1)

Поляризационные поправки к закону Кулона V(r) = $-\alpha/r$ находятся в виде ряда по теории возмущений $^{/3,8/}$:

$$\delta \mathbf{V}(\mathbf{r}) = a \cdot \mathbf{A}(\mathbf{r}) + a^2 \mathbf{B}(\mathbf{r}) + \dots$$
(2)

Коэффициенты A(r) и B(r) были впервые вычислены в работах^{/9/} и^{/10/}. В дальнейшем мы будем учитывать только главный член в разложении (2), который принято называть потенциалом Юлинга^{/11/}:

$$\delta V(r) = \alpha \cdot A(r) = -\frac{\alpha}{r} \cdot \frac{2\alpha}{3\pi} \int_{1}^{\infty} \frac{dx}{x^2} \sqrt{x^2 - 1} \left(1 + \frac{1}{2x^2}\right) e^{-2\gamma x r}, \quad (3)$$

где $\gamma = \frac{m_e}{\alpha \cdot m}$, $\frac{1}{m} = \frac{1}{m_{\mu}} + \frac{1}{M_a}$,

 m_e — масса электрона, m_{μ} — масса μ —мезона, M_a — масса более тяжелого ядра в мезомолекуле. (Здесь и в дальнейшем используем систему единиц h=e=m=1).

Поляризационный сдвиг уровня энергии мезоатома равен:

$$\Delta \mathbf{E}_{n} = \int |\Psi_{n}(\vec{\mathbf{r}})|^{2} \cdot \delta \mathbf{V}(\mathbf{r}) \, d\vec{\mathbf{r}}, \qquad (4)$$

где $\Psi_n(r)$ – волновая функция μ –мезоатома в состоянии n.

В табл.1 приведены вычисленные нами поправки $\Delta E_{n\ell}$ к энергетическим уровням 1s,2s и 2p состояний мезоатомов p_{μ} , d_{μ} и t_{μ} , а также разности $\Delta E_{2p} - \Delta E_{2s}$.

Таблица 1

Поправки на поляризацию вакуума к уровням энергии *µ* -мезоатомов

ΔЕ _{Nℓ} (эв)	Pμ	d μ	tμ
ΔE, (9B)	-1,896*	-2,126	-2,212
ΔE_{2s} (9B)	-0,219*	-0,245	-0,255
ΔE_{2n} (9B)	-0,0145*	-0,0176	-0,0188
$\Delta E_{2p} - \Delta E_{2s}$ (aB)	0,205**	0,227***	0,236

* Поправки к уровням энергии мезоатома $P\mu$, впервые вычисленные Галаниным и Померанчуком ^{/4/}, равны соответственно: $\Delta E_{18} = -1.8$ эВ, $\Delta E_{28} = -0.2$ эВ, $\Delta E_{2p} = -0.014$ эВ.

** Величина, полученная в работе^{/13/}, равна 0,2049. *** В работе^{/14/} получена величина 0,2276. Из приведенной таблицы можно найти следующие величины для р µ -атома:

$$\frac{\Delta E_{2s} - \Delta E_{1s}}{E_2 - E_1} \cdot 10^3 = 0.894; \quad \frac{\Delta E_{2p} - \Delta E_{1s}}{E_2 - E_1} \cdot 10^3 = 0.992.$$

(Здесь: $E_2 - E_1 = \frac{3}{8} \cdot \frac{e^2}{a_{\mu}}$ - разность уровней энергии n =2 и n =1 мезоатома Р μ), что согласуется с расчетом Фолди и Эриксона^{/12/}. которые для приведенных величин получили значения 0,89 и 1,00 соответственно.

2. ПОЛЯРИЗАЦИЯ ВАКУУМА В *µ*-МЕЗОМОЛЕКУ-ЛАХ

Смещения уровней *µ* -мезомолекул определяются выражением

$$\Delta E_{Jv} = \int |\Psi_{Jv}(\vec{r},\vec{R})|^2 \cdot \delta V(\vec{r},\vec{R}) d\vec{r} d\vec{R}.$$
(5)

Здесь: $\delta V(\vec{r}, \vec{R})$ - потенциал Юлинга для μ -мезомолекулы, $\Psi_{Jv} = (\vec{r}, \vec{R})$ - волновая функция μ -мезомолекулы во вращательном состоянии J и колебательном состоянии v, определение векторов $\vec{r}, \vec{R}, \vec{r_a}$ и \vec{r}_b показано на рис. 1.

Рис.1. Система координат для *µ*-мезомолекулы.

Потенциал Юлинга $\delta V(\vec{r}, \vec{R})$ для мезомолекулы выбран в виде суммы потенциалов, где поправки $\delta V(\vec{r}_a)$ и $\delta V(\vec{r}_b)$ обусловлены взаимодействием μ -мезона с ядрами а и b, а поправка $\delta V_{ab}(\mathbf{R})$ -взаимодействием ядер а и b;

$$\delta V(\vec{r},\vec{R}) = \delta V(\vec{r}_{a}) + \delta V(\vec{r}_{b}) + \delta V_{ab}(\vec{R}) =$$

$$= \frac{2\alpha^{2}}{3\pi} \int_{1}^{\infty} \frac{dx}{x^{2}} \sqrt{x^{2} - 1} (1 + \frac{1}{2x^{2}}) (-\frac{e^{-2\gamma xr_{a}}}{r_{a}} - \frac{e^{-2\gamma xr_{b}}}{r_{b}} + \frac{e^{-2\gamma xR}}{R}).$$
(6)

Это приближение соответствует учету диаграмм, приведенных на рис. 2а и 26. Диаграммы более высокого порядка не учитывались.

Рис.2. Фейнмановские диаграммы, соответствующие потенциалу Юлинга, обусловленному взаимодействием *µ* -мезона с ядрами (а) и взаимодействием ядер между собой (б).

Волновые функции мезомолекулы водорода в двухуровневом приближении имеют вид:

$$\Psi_{Jv}(\vec{r},\vec{R}) = \frac{1}{R} [\phi_{g}(\vec{r};R)\chi_{g}^{Jv}(R) + \phi_{u}(\vec{r};R)\chi_{u}^{Jv}(R)] \frac{1}{\sqrt{4\pi}}, \quad (7)$$

где $\phi_{g}(\vec{r},R)$ и $\phi_{u}(\vec{r},R)$ – четная и нечетная волновые функции основного состояния задачи двух центров^{/16/}. Волновые функции $\chi_{g}^{Jv}(R)$ и $\chi_{u}^{Jv}(R)$, представляющие относительное движение ядер а и b, вычислены с относительной точностью ~10⁻⁴, а вклад отброшенных членов ~ 10⁻²/15/.

Выражение для сдвига уровней µ -мезомолекул, следующее из соотношений (5) и (7), можно представить в виде

$$\Delta E_{\mathbf{J}\mathbf{v}} = \sum_{i,j} \int_{0}^{\infty} \chi_{i}^{\mathbf{J}\mathbf{v}}(\mathbf{R}) \chi_{j}^{\mathbf{J}\mathbf{v}}(\mathbf{R}) \cdot \delta V_{ij}(\mathbf{R}) d\mathbf{R} = \Delta E_{\mathbf{J}\mathbf{v}}^{(\mu)} + \Delta E_{\mathbf{J}\mathbf{v}}^{(\pi)}, \quad (8)$$

где

6

7

$$\delta V_{ij}(\mathbf{R}) = \int \phi_i(\vec{r};\mathbf{R}) \delta V(\vec{r},\vec{R}) \phi_j(\vec{r};\mathbf{R}) d\vec{r}$$

(і и ј принимают значения д и и). Поскольку добавка $\delta V_{ab}(R)$ к потенциалу 1/R, обу-

словленная взаимодействием ядер, не зависит от координат мезона г, то в результате усреднения (8) получим:

$$\Delta E_{Jv}^{(\Re)} = \int_{0}^{\infty} \delta V_{ab}(R) \left[\left(\chi_{g}^{Jv}(R) \right)^{2} + \left(\chi_{u}^{Jv}(R) \right)^{2} \right] dR.$$
 (9a)

В силу симметрии потенциала $\delta V(\vec{r}, \vec{R})$ и волновых функций $\phi_i(\vec{r}; R)$ при замене $\vec{r}_a \rightarrow \vec{r}_b$ справедливы равенства $\delta V_{ug}(R) = \delta V_{gu}(R) \equiv 0$, и вследствие этого окончательное выражение для $\Delta E_{Jv}^{(\mu)}$ принимает вид

$$\Delta E_{Jv}^{(\mu)} = \int_{0}^{\infty} \left[\chi_{g}^{Jv}(R) \right]^{2} \cdot \delta V_{gg}(R) + \left[\chi_{u}^{Jv}(R) \right]^{2} \delta V_{uu}(R) dR.$$
(96)

(Для μ -молекул с равными массами ядер ($M_a = M_b$) вклад в ΔE дает только $\delta V_{gg}(R)$, поскольку в в этом случае $\chi_{\mu}(R) \equiv 0^{/15}$).

Из определения (6) следует соотношение

$$\delta V_{ii}(R) = -\frac{2 a^2}{3 \pi} \int_{1}^{\infty} \frac{dx}{x^2} \sqrt{x^2 - 1} \left(1 + \frac{1}{2x^2}\right) L_{ii}(R, x), \quad (10)$$

где

$$L_{ii}(R,x) = \int \phi_i^2(\vec{r},R)(\frac{e}{r_a} + \frac{e}{r_b})d\vec{r}.$$
 (11)

В настоящее время существует несколько алгоритмов вычисления волновых функций $\phi_i(\vec{r}; R)$ задачи двух центров с точностью $10^{-11}/17^{-20}$. В данной работе использован алгоритм /19/, в котором $\phi_i(\vec{r}; R)$ представляется в виде

$$\phi_{i}(\vec{\mathbf{r}};\mathbf{R}) = N_{i}(\mathbf{R})X_{i}(\xi;\mathbf{R})Y_{i}(\eta;\mathbf{R})\frac{e^{\pm im\Phi}}{\sqrt{2\pi}}, \quad (12)$$

где $X_i(\xi; R)$ и $Y_i(\eta; R)$ – радиальные и угловые кулоновские сфероидальные функции ^{/16/}, ξ , η , Φ – сфероидальные координаты, $N_i(R)$ – нормировка, определяемая из условия

$$\int |\phi_{i}(\vec{r};R)|^{2} d\vec{r} = 1$$
.

Для $X_i(\xi; R)$ и $Y_i(\eta; R)$ использованы следующие разложения /19/:

$$X_{i}(\xi; R) = \left(\frac{\xi+1}{2}\right)^{\sigma_{i}} e^{-\frac{p_{i}(\xi-1)}{2}\sum_{s=0}^{\infty} g_{s}^{(i)}(\frac{\xi-1}{\xi+1})^{s}},$$

$$Y_{i}(\eta; R) = \begin{cases} e^{-\frac{p_{i}(1-\eta)}{2}\sum_{s=0}^{\infty} c_{s}^{(i)}(1-\eta)^{s}}, & 0 \le \eta \le 1, \\ e^{-\frac{p_{i}(1+\eta)}{2}\sum_{s=0}^{\infty} c_{s}^{(i)}(1+\eta)^{s}}, & -1 \le \eta \le 0. \end{cases}$$
(13)

Здесъ

$$p_i = \frac{R}{2} \sqrt{-2E_i(R)}, \quad \sigma_i = \frac{a}{2p_i} - (m+1), a = 2R,$$

 $g_{-1} = c_1 = c_{-1} = 0$, $g_0 = c_0 = 1$, $c_0 = 1$ для g - состояния, $c_0 = 1$ для u -состояния.

Энергию связи трех частиц принято отсчитывать от энергии E_a изолированного атома μM_a ($M_a \ge M_b$). Поскольку справедливы равенства $\Delta E_a = \delta V_{gg}(\infty) = \delta V_{uu}(\infty)$, где ΔE_a – поляризационный сдвиг основного состояния атома μM_a , то поляризационный сдвиг уровня μ – -мезомолекулы равен:

$$\Delta E_{Jv}^{(\mu)} = \int_{0}^{\infty} \left[\chi_{g}^{Jv}(R) \right]^{2} \left[\delta V_{gg}(R) - \delta V_{gg}(\infty) \right] + \left[\chi_{u}^{Jv}(R) \right]^{2} \cdot \left[\delta V_{uu}(R) - \delta V_{uu}(\infty) \right] dR.$$
(14)

Результаты расчетов приведены в табл.2. На рис.3 изображены функции $\delta V_{gg}(R)$ для dd μ и dt μ

8

9

Таблица 2 Поправки на поляризацию вакуума к уровням энергии µ -мезомолекул изотопов водорода*

	y = 0		y = 1		y =2	y =3
	v = 0	v = 1	v = 0	v = 1	$\mathbf{v} = 0$	v = 0
	-0,338		-0 ,080			
ρ ρμ	0,053		0,016			
	-0,285		-0,064			
	-0,369		-0,125			
pdμ	0,079		0,029			
	- 0 ,290		-0,096			
	-0,383		-0,149			
ptμ	0,058		0,025			
	-0,325		-0,124			
dd µ	- 0 ,466	-0,062	-0,262	0 ,00 2	-0,027	
	0,069	0,032	0,035	0,006	0 ,0II	
	-0,397	-0,030	-0,227	0,008	-0,016	
	-0,490	-0,086	-0,304	-0,010	-0,073	
dtμ	0,062	0,030	0,037	0,007	0,015	
	-0,428	-0,056	-0,267	-0,003	-0,058	
ttμ	- 0 ,533	-0,135	-0,370	-0,056	-0,150	0,037
	0,054	0,038	0,041	0,022	0,020	0,007
	-0,479	-0,097	-0,329	-0 ,034	-0,130	0,044

* Для каждого уровня μ -мезомолекулы приведены три значения поляризационного сдвига в эВ: в первой строке – сдвиг $\Delta E_{Jv}^{(\mu)}$, обусловленный взаимодействием µ -мезона с ядрами (диаграммы 2а), во второй сдвиг $\Delta E_{Jv}^{(я)}$, обусловленный взаимодействием ядер (диаграмма 26), и в третьей – суммарный сдвиг уровня $\Delta E_{Jv} = \Delta E_{Jv}^{(\mu)} + \Delta E_{Jv}^{(R)}$.

При вычислении использованы следующие значения масс частиц: $m_{\mu} = 206,769; M_p = 1836,152; M_d = 3670,481;$ M, =5496,918 и значение Ry=13,60535 эВ.

Рис.3. Потенциалы $\delta V_{gg}(R)$ и $\delta V_{uu}(R)$ для мо-лекулы dt_{μ} и $\delta V_{gg}(R)$ для молекулы dd_{μ} . При $R \rightarrow 0$ значения $\delta V_{uu}^{dt\mu}(0) = -17,002$, $\delta V_{gg}^{dd\mu}(0) = -16,419$, $\delta V \frac{d \psi}{u u}(0) = -0,402$ с точностью $\sim \frac{m \mu}{2 M_a}$ равны поляризационным сдвигам атома с зарядом Z = 2 и массой $M = M_a + M_b$ в состояниях 1s σ и 2p σ соответственно. Указанная погрешность несущественна, поскольку при $R \rightarrow 0$ $\chi_{i}^{Jv}(R) \sim R^{J+1}$.

и функции δV_{uu} (R) для dt_{μ} . Видно, что потенциалы $\delta V_{gg}(\mathbf{R})$ для $\mathrm{d} \mathrm{d} \mu$ и $\mathrm{d} \mathrm{t} \mu$ аналогичны и имеют правильную асимптотику при R→∞. Детали вычислений потенциалов δV_{ii} (R) приведены в Приложении.

ЗАКЛЮЧЕНИЕ

В работе вычислены поправки на поляризацию электрон-позитронного вакуума к уровням энергии μ -мезомолекулы изотопов водорода. Поляризационные сдвиги уровней, $\Delta E_{Jv} < 0.5$ эВ, оказались на порядок величины меньше аналогичных сдвигов уровней μ -мезоатомов. Точность вычислений (~ 0.01 эВ) в принципе может быть повышена, но требует существенного увеличения счетного времени на ЭВМ.

Отметим также, что экспериментальная техника, использованная для измерения температурной зависимос-/21/ ти скорости резонансного образования µ- молекул позволяет найти абсолютную величину поляризационного сдвига уровня (J =1, v = 1) молекулы ddµ с точностью ~ 10⁻³ эВ. Чтобы извлечь из этих измерений величину сдвига, необходимо вычислить энергию соответствующего уровня ddµ -молекулы с точностью ~ 10⁻³ эВ (в настоящее время точность вычислений ~ 0,1 эВ)^{/2/}.

В заключение мы выражаем благодарность С.И.Виницкому, И.В.Пузынину, Т.П.Пузыниной и Л.Н.Сомову за постоянную помощь в работе, а также И.В.Комарову и Р.Н.Фаустову за обсуждения.

ПРИЛОЖЕНИЕ

Подставляя (12) в (10)-(11) и учитывая симметрию $Y_i(\eta; R)$ при замене $\eta \rightarrow -\eta$, получим:

$$\delta V_{ii}(R) = -\frac{2a^2}{3\pi} \int_{1}^{\infty} \frac{dx}{x^2} \sqrt{x^2 - 1} (1 + \frac{1}{2x^2}) L_{ii}(R, x), \quad (\Pi.1)$$

$$-\frac{\beta R}{2} \xi$$

$$L_{ii}(R, x) = \frac{1}{2} R^2 N_i^2(R) \{\int_{1}^{\infty} X_i^2(\xi; R) e^{-\frac{\beta R}{2}} \xi d\xi \int_{0}^{1} Y_i^2(\eta; R) \times (e^{-\frac{\beta R}{2}\eta} + e^{\frac{\beta R}{2}\eta}) d\eta + \int_{1}^{\infty} X_i^2(\xi; R) e^{-\frac{\beta R}{2}} \xi d\xi \int_{0}^{1} Y_i^2(\eta; R) \times (e^{-\frac{\beta R}{2}\eta} - e^{-\frac{\beta R}{2}\eta}) d\eta + \int_{1}^{\infty} X_i^2(\xi; R) e^{-\frac{\beta R}{2}} \xi d\xi \int_{0}^{1} Y_i^2(\eta; R) \times (e^{-\frac{\beta R}{2}\eta} - e^{-\frac{\beta R}{2}\eta}) d\eta + \int_{1}^{\infty} X_i^2(\xi; R) e^{-\frac{\beta R}{2}} \xi d\xi \int_{0}^{1} Y_i^2(\eta; R) \times (\Pi.2)$$

где $\beta = 2\gamma \mathbf{x}$.

Используя разложения (13), интегралы (II) можно представить в виде

$$L_{ii} (R, x) = R^{2} N_{i}^{2} (R) \{ \sum_{\nu=0}^{r} A_{\nu} [-S_{\nu}^{(0)}(p + \frac{\beta R}{2}) + 2S_{\nu}^{(1)}(p + \frac{\beta R}{2})] \times [a_{\nu} T_{\nu}(p + \frac{\beta R}{2}) + a_{\nu} e^{-\beta R} T_{\nu} (p - \frac{\beta R}{2})] + \sum_{\nu=0}^{r} A_{\nu} S_{\nu}^{(0)}(p + \frac{\beta R}{2}) \times [a_{\nu} (T_{\nu}(p + \frac{\beta R}{2}) - T_{\nu+1}(p + \frac{\beta R}{2})) - e^{-\beta R} a_{\nu} (T_{\nu}(p - \frac{\beta R}{2}) - T_{\nu+1}(p - \frac{\beta R}{2}))] \}.$$
(II.3)

Здесь

$$A_{\nu} = \sum_{s=0}^{r} g_{\nu-s}^{(i)} g_{s}^{(i)}, \quad S_{\nu}^{(\gamma)}(p) = \int_{1}^{\infty} e^{-p(x-1)\sigma - \nu - \gamma} (x-1)^{\nu} dx$$

$$\mathbf{x} = \frac{\xi + 1}{2}, \ \sigma = 2 \ \sigma_i, \ \mathbf{p}_i = 2 \ \mathbf{p}_i,$$
 (II.4)

$$a_{\nu} = \sum_{s=0}^{r} \tilde{c}_{\nu-s}^{(i)} \tilde{c}_{s}^{(i)} , \quad T_{\nu}(p) = \int_{0}^{1} e^{-p(1-\eta)} (1-\eta)^{\nu} d\eta,$$

где г определяется заданной точностью вычислений. Величины $S_{\nu}^{(\gamma)}(p)$ и $T_{\nu}(p)$ вычислялись по рекуррентным соотношениям, приведенным в работе ^{/19/}, что дает большую точность вычислений при относительно малой затрате счетного времени. Интеграл (П.1) по х вычислялся по формуле Симпсона шагом $h_{\chi} = 0,1$ от 1 до $x_{max} = 20$.

Точность вычислений ∆Е _{Jv} выше чем 10⁻² эВ, поскольку отброшенный член

$$\int_{x_{\max}}^{\infty} [L_{ii}(R,x) - L_{ii}(\infty,x)] \frac{1}{x^2} \sqrt{x^2 - 1(1 + \frac{1}{2x^2})} dx \sim \frac{1}{(\gamma x)^2} - 10^{-3}.$$

При малых $\tilde{p} = |p - \frac{\beta R}{2} - |$ алгоритм, изложенный в^{/19/}, неустойчив, поэтому в случае $\tilde{p} < 1$ для вычисления T_{ν} использовалось разложение

$$T_{\nu}(p) = \sum_{k=0}^{\infty} (-1)^{k} \frac{1}{k! (1+\nu+k)!} p^{k} . \qquad (II.6)$$

Вычислительные неустойчивости возникают также при больших отрицательных $\tilde{p} = p - \frac{\beta R}{2}$. Для их устранения

в выражении (П.3) при $R \ge 6$ пренебрегаем членами, пропорциональными е $-\beta R$. Действительно, при R > 6:

ЛИТЕРАТУРА

- 1. Gerstein S.S., Ponomarev L.I. Mesomolecular Processes Induced by μ^- and π^- Mesons. In: Muon Physics. Eds. V.Hughes and C.S.Wu, v.III,141, Academic Press, New York, 1975.
- 2. Виницкий С.И. и др. Препринт ОИЯИ Р4-10929, Дубна, 1977.
- Лифшиц Е.М., Питаевский Л.П. Релятивистская квантовая теория, ч. II. Наука, М., 1971; Ахиезер А.И., Берестецкий В.Б. Квантовая электродинамика, Наука, М., 1969.
- 4. Галанин А.Д., Померанчук И.Я. ДАН СССР, 1952, 86, 251.
- 5. Иваненко Д.Д., Пустовалов Г.Е. УФН, 1957, 61, 27.
- 6. Ким Е.Н. Мезонные атомы и ядерная структура. Атомиздат, М., 1975.
- 7. Старцев С.А., Петрунькин В.А., Хомкин А.Л., ЯФ, 1976, 23, 1233.
- 8. Zavattini E. Scool "Ettore Majorana", Erice, 24-30, April, 1977.
- 9. Uehling E.A. Phys.Rev., 1935, 48, 55.
- 10. Kallen G, Sabry A. K.Danske Vidensk. Selsk.Mat.-Fys.Medd., 1955, 29, p.17.
- 11. Klarsfeld S. Phys.Lett., 1977, 66B, p.1,86.
- 12. Foldy L., Eriksen E., 1954, 95, p.1048.
- 13. De Giacomo A. Nucl. Phys., 1969, 11B, p.411.

14

- 14. Carboni G. Lett. Nuovo Cim., 1973, 7, p.160.
- 15. Виницкий С.И., Пономарев Л.И. ЖЭТФ, 1977, 72, 1670.
- Комаров И.В., Пономарев Л.И., Славянов С.Ю. Сфероидальные и кулоновские сфероидальные функции, Наука, М., 1976.
- 17. Madsen M.M., Peek J.M. Atomic Data, 1971, 2, p. 171.
- 18. Power J. Phyl. Trans. Roy. Soc. (London), 1973, 274, p.663.
- 19. Пономарев Л.И., Пузынина Т.П. Препринт ОИЯИ Р4-5040, Дубна, 1970.
- 20. Трускова Н.Ф. ОИЯИ, Р11-10207, Дубна, 1976.
- 21. Быстрицкий В.М. и др. Мезоны в веществе. В кн.: Труды Международного симпозиума по проблемам мезонной химии и мезомолекулярных процессов в веществе, Дубна, 7-10 июня 1977 г., ОИЯИ, Д1,2,14-10908, Дубна 1977, см. также доклад на Международной конференции по физике высоких энергий, Цюрих, 1977.

Рукопись поступила в издательский отдел 22 декабря 1977 года.