ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3/10-78

P4-11151

Г.Г.Бунатян

1499/2-78

5-91

ОБОЛОЧЕЧНЫЕ ПОПРАВКИ К ПОЛУЭМПИРИЧЕСКИМ ФОРМУЛАМ ДЛЯ МАСС И СРЕДНИХ КВАДРАТИЧНЫХ РАДИУСОВ ЯДЕР

P4-11151

Г.Г.Бунатян

ОБОЛОЧЕЧНЫЕ ПОПРАВКИ К ПОЛУЭМПИРИЧЕСКИМ ФОРМУЛАМ ДЛЯ МАСС И СРЕДНИХ КВАДРАТИЧНЫХ РАДИУСОВ ЯДЕР

Направлено в ЯФ

063	SHC 1511	HIICTHTYT
ядер1	LIT HURS	ниннока
E!	15 MAG	TEHA

Бунатян Г.Г.

P4-11151

Оболочечные поправки к полуэмпирическим формулам для масс и средних квадратичных радиусов ядер

Для тяжелых сферических ядер исследуются поправки к полуэмпирическим (жидкокалельным) формулам для энергии связи δЕ и среднего квадратичного раднуса & r²>, обусловленные оболочечной структурой ядер, при последовательном учёте сильного взаимодействия нуклонов. Подробно выясняется, на какую точность могут претендовать расчёты, выполненные на основе метода оболочечных поправок. Исследуется зависимость результатов от входящих в расчёты параметров. Результаты вычислений δ <г²>.δE сопоставляются с опытными данными. Выполнено сравнительное изучение δЕ для двух областей ядер: соседних с ²⁰⁸ Рb и ядер с 110≤ Z ≤ 120, 174≤ N ≤ 188 ("сверхтяжелых"). Видно, что проведенный нами анализ не дает оснований при этих Z,N ожидать наличия дважды магического ядра, подобного ²⁰⁸Рb. Оболочечная поправка оказывается для многих ядер в этой области примерно одинаковой, δΕ ~-10 ÷ -8 МэВ, если считать их сферическими. Это могло бы служить указанием на повышенную стабильность в равной мере для большого числа таких ядер. Даны примеры оценок полупериодов Ту а-распада этих ядер.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Bunatian G.G.

P4-11151

Shell—Corrections to the Semi-Empiric Formulas for the Masses and Mean Square Radii of Nuclei

The corrections to the semi-empiric (liquid-drop) formula for the binding energy δE and the mean square radius $\delta < r^2 >$ due to shell nuclear structure are investigated for heavy spherical nuclei taking into account the strong nucleon interaction in a consequent way. The thorough consideration is given to the possible accuracy of calculation in terms of the shell-corrections method. The dependence of the results on the parameters involved in the calculation is studied. The calculated results δE , $\delta < b$ are compared with experimental ones, A comparative investigation δE is performed for the mass numbers in the vicinity of the ²⁰⁸Pb nucleus and nuclei with $110 \leq Z \leq 120$, $174 \leq N \leq 188$ (superheavy nuclei). The analysis carried out has shown that in this region $(110 \le Z \le 120, 174 \le N \le 188)$ one cannot expect the presence of the double magic nuclei similar to 208Pb The shell correction appeared to be about the same ($\delta E \sim -8 \div -10$ MeV) for most nuclei in this region if it was assumed that they were spherical, This result might be considered as an indication of a higher stability for the majority of such nuclei. The estimates of alpha-decay life-time for these nuclei are also presented.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

введение

В теории ядра большой раздел составляют задачи, в которых изучается изменение свойств ядра, обусловленное изменением $\delta n = \tilde{n} - n$ распределения нуклонов лишь у поверхности Ферми. Примером может служить изменение числа частиц на величину $\delta A << A / A$ - число нуклонов в ядре/, действие на ядро внешнего поля, затрагивающее лишь состояния у границы Ферми, и т.п. Применение методов теории конечных ферми-систем /1/ позволяет во всех таких задачах найти изменения характеризуюших ядро физических величин с последовательным учетом сильного взаимодействия нуклонов. К этому же кругу задач относится и вычисление оболочечных поправок / 2,3/ к полученным на основе модели жидкой капли полуэмпирическим формулам, например для радиуса R = r_o A^{1/3} или пля масс ядер/4/. Такие полуэмпирические формулы достаточно хорошо передают лишь усредненную, плавную зависимость рассматриваемых величин от Z, N; для каждого ядра имеются отклонения от этой зависимости, обусловленные особенностями именно его строения. Если предположить, что такие формулы описывают свойства системы, которая характеризуется некоторой плавной, сглаженной функцией от Z, N распределения нуклонов \widetilde{n}_{λ} по одночастичным состояниям λ , то можно ввести в рассмотрение $\delta n_{\lambda}(N,Z) = n_{\lambda}(N,Z) - \tilde{n}_{\lambda}(N,Z) - отклонение ис$ тинной функции распределения п,, учитывающей оболочечную структуру, от той $\tilde{n}_{\lambda}(Z, N)$, которая приводила бы к плавной зависимости от Z, N всех величин. Если \tilde{n}_{λ} такова, что $\delta n_{\lambda} \neq 0$ лишь у границы Ферми, то

оказывается возможным /5,6/ вычислить вызванную этими δn_{λ} поправку δE к энергин связи ядра \tilde{E} , полученной по полуэмпирическим формулам из/4/. При этом $\delta E = E - \tilde{E}$ представляется в виде разложения по варнациям функции распределения δn_{λ} . Через δn_{λ} можно выразить и поправки к другим эмпирическим формулам, например вычислить отклонение $\delta < r^2 >$ среднего квадратичного раднуса от плавной зависимости <r 2>~A2/3. Следует подчеркнуть, что в отличне от других задач при вычислении оболочечных поправок мы имеем дело с функцией \tilde{n}_{λ} , не относящейся к какому-либо реальному ядру. Введение ее представляет собой лишь искусственный прием, имеющий целью выделить в полной энергии связи Е часть Е, плавно зависящую от Z, N, для которой и получены полуэмпирические формулы. Возможность построения такой сглаженной функции распределения ñ, обеспечивающей однозначное вы-деление "гладких" составляющих в различных величинах Е, <r²> и т.п., мы исследуем в настоящей работе на примере вычисления масс и средних квадратичных раднусов тяжелых сферических ядер. Предстоит выяснить, насколько однозначным является результат вычисления δE , основанный на введении $\delta \widetilde{n_{\lambda}}$, или, иными словами, какова связанная с этим точность вычисления масс ядер /и других величин/ в методе оболочечных поправок. Мы обсудим также зависимость результатов от параметров одночастичного потенциала и роль члена $\delta_2 E$, квадратичного по δn_{λ} , в выражении для ЭВ /см. /1//. Выяснив уровень достоверности получаемых результатов, мы далее рассмотрим, какие заключения можно сделать о свойствах, которыми могли бы обладать ядра с большими Z, N - сверхтяжелые ядра.

МЕТОД ВЫЧИСЛЕНИЯ

1. В работах $^{/5,6/}$ при последовательном учете сильного взаимодействия нуклонов было получено выражение для изменения δE энергии основного состояния, вызван-

ного изменением δn_{λ} функции распределения нуклонов у поверхности Ферми, в виде разложения по вариациям δn_{λ} . В настоящей работе мы проведем расчеты без учета парных корреляций сверхпроводящего типа и ограничимся членами, квадратичными по δn_{λ} . Тогда согласно $^{/5,6/}$:

$$\delta \mathbf{E} = \mathbf{E} - \widetilde{\mathbf{E}} = \delta_{1} \mathbf{E} + \delta_{2} \mathbf{E} = \sum_{\lambda} \widetilde{\epsilon_{\lambda}} \delta \mathbf{n}_{\lambda} + \frac{1}{2} \sum_{\lambda \downarrow \lambda} a^{2} \Gamma_{\lambda_{2} \lambda_{2}}^{\lambda_{1} \lambda_{1}} \delta \mathbf{n}_{\lambda} \delta \mathbf{n}_{\lambda_{2}} ,$$

$$/1/$$

λ включает и зарядовый индекс $\nu = p.n.$ В /1/ амплитуда рассеяния Г связана обычным уравнением с неприводимой амплитудой $\Gamma^{\omega/1/}$, входящей в теорию конечных фермисистем:

$$a^{2}\Gamma = a^{2}\Gamma^{\omega} + a^{2}\Gamma^{\omega} A a^{2}\Gamma, \quad A_{\lambda\lambda'} = (n_{\lambda} - n_{\lambda'})(\epsilon_{\lambda} - \epsilon_{\lambda'})^{-1}, \nu = \nu', \lambda \neq \lambda',$$
$$a^{2}\Gamma^{\omega} dn/d\mu = f + g(\vec{\sigma}\vec{\sigma}') + f'(\vec{r}\vec{r}') + g'(\vec{\sigma}\vec{\sigma}')(\vec{r}\vec{r}'). \qquad /2/$$

Изменение среднего квадратичного радиуса $\delta\!\!<\!\!r^2\!\!>\!\!/A$ определяется выражением

$$\delta < r^2 >_A = V_{\lambda\lambda} [r^2/A] \delta n_{\lambda}, V[r^2/A] = r^2/A + a^2 \Gamma^{\omega} A V[r^2/A]. /3/$$

Изменение среднего квадратичного раднуса заряда $\delta < r^2 > Z$ получается из /3/ заменой r^2/A на $r^2(\tau_Z + 1)/2Z$. Соотношения /1/-/3/, как обычно /1/, записаны в представлении собственных функций ϕ_{λ} одночастичного гамильтониана. Для сферических ядер после отделения угловых переменных в уравнения /2/, /3/ войдут лишь амплитуды

$$f^{nn} = f^{pp} = f + f', f^{np} = f^{pn} = f - f',$$

$$f^{\nu\nu'}(r) = f^{\nu\nu'}_{in} + (f^{\nu\nu'}_{ex} - f^{\nu\nu'}_{in}) \frac{n(0) - n(r)}{n(0)}.$$
 /4/

4

5

Здесь учтена координатная зависимость $^{/7/}$ амплитуд f $^{\nu\nu'}$ от г. Входящие сюда f $^{\nu\nu'}_{in, ex}$ определялись ранее из решения других задач. Мы используем значения

$$f_{in}^{nn} = 1$$
, $f_{in}^{np} = -0.6$, $f_{ex}^{nn} = -1$, $f_{ex}^{np} = -3$, /4a/

предложенные в /8/.

2. По самому смыслу нашей задачи следует использовать собственные значения $\tilde{\epsilon}_{\lambda}$ и собственные функции $\tilde{\phi}_{\lambda}$ одночастичного потенциала, параметры которого получены из анализа экспериментальных данных для большого числа ядер и являются плавными функциями Z, N. Наиболее полно построение такого потенциала выполнено в работе /9/. Мы проводим все основные расчеты с $\tilde{\epsilon}_{\lambda}$, $\tilde{\phi}_{\lambda}$ потенциала из /9/. При этом, очевидно, предполагается, что именно такой усредненный по Z, N одночастичный потенциал относится к системе со сглаженной функцией распределения \tilde{n}_{λ} . Изменение функции распределения δn_{λ} приводит к отличию одночастичного спектра ϵ_{λ} от собственных значений такого гамильтониана

$$\delta \epsilon_{\lambda} = \epsilon_{\lambda} - \tilde{\epsilon}_{\lambda} = a^2 \Gamma_{\lambda'\lambda}^{\lambda\lambda} \delta n_{\lambda'}, \qquad /5/$$

и выражение /1/ можно переписать в виде

$$\delta \mathbf{E} = \mathbf{\tilde{E}} - \mathbf{E} = \sum_{\lambda} \epsilon_{\lambda} \delta \mathbf{n}_{\lambda} - \frac{1}{2} \sum_{\lambda \lambda'} \mathbf{a}^{2} \Gamma_{\lambda \lambda'}^{\lambda' \lambda'} \delta \mathbf{n}_{\lambda} \delta \mathbf{n}_{\lambda'}, \qquad /\mathbf{1a}/\mathbf{a}$$

т.е. если бы при вычислении первой суммы в /1/ использовались бы ϵ_{λ} , а не $\tilde{\epsilon}_{\lambda}$, то изменился бы знак перед вторым членом. Отличие $\tilde{\epsilon}_{\lambda}$ от ϵ_{λ} и $\tilde{n}_{\lambda}, \tilde{\phi}_{\lambda}$ от $n_{\lambda}, \phi_{\lambda}$ во второй сумме в /1/, /1а/ уже не существенно, т.к. его учет привел бы к выявлению членов более высокого порядка по δn , которые мы здесь не учитываем.

3. Введение \tilde{n}_{λ} можно представить себе следующим образом. Вначале с целью получения \tilde{n}_{λ} (A) для некоторого ядра A усредним просто n_{λ} (A) по некоторому интервалу ядер /т.е. значений A / вокруг данного A

$$\widetilde{n}_{\lambda}(A) = \frac{1}{\gamma_{A}} \frac{A_{i} = A + \gamma_{A}/2}{\sum_{i} n_{\lambda} (A_{i})}.$$
 /6/

Результат такого усреднения очевиден. Если некоторое состояние λ_1 занято у всех ядер в интервале усреднения, т.е. $n_{\lambda_i}(A_i) = 1$ для всех этих A_i , то, очевидно, $\tilde{n}_{\lambda_1} = 1$, если n_{λ_2} занято у всех ядер A_i , кроме

лишь одного, то $\tilde{n}_{\lambda_0} = (\gamma_A - 1) / \gamma_A$ и т.д. Для состояния

 λ , занятого лишь у одного ядра, очевидно, $\tilde{n}_{\lambda} = 1/\gamma_{A}$, а для состояния λ' , свободного у всех ядер, $\tilde{n}_{\lambda'} = 0$. Можно переписать /6/ в виде:

$$\tilde{n}_{\lambda} = \frac{1}{\gamma} \int_{\mu-\gamma/2}^{\mu+\gamma/2} n(\mu'-\epsilon_{\lambda}) d\mu' = \int_{-\infty}^{\infty} n(\mu'-\epsilon_{\lambda}) \zeta(\frac{\mu-\mu'}{\gamma}) d\mu',$$

$$\zeta = \begin{cases} \frac{1}{\gamma}, -\gamma/2 \le \mu'-\mu \le \gamma/2\\ 0 \end{cases}.$$
(77)

Здесь μ^{ν} - энергия ферми ядра, для которого определяется $\tilde{n}_{\lambda}(A)$, $n(\mu^{\nu} - \epsilon_{\lambda}) \equiv \theta(\mu^{\nu} - \epsilon_{\lambda}) = n_{\lambda}$ - усредняемая функция. Усреднение в /7/ проводится с простейшей весовой функцией ζ . Если бы мы заменили ζ на δ - функцию, что соответствует нулевому интервалу усреднения, то, очевидно, получили бы $\tilde{n}_{\lambda} = n_{\lambda}$. δ - функцию можно представить в виде разложения по полиномам Эрмита H_{ν} :

$$\delta(\mathbf{x}) = \exp(-\mathbf{x}^{2})/(\gamma\sqrt{\pi}) \sum_{k=0,2...}^{2m} a_{k} H_{k}(\mathbf{x}), \ m \to \infty, \ \mathbf{x} = \frac{\tilde{\mu}^{\nu} - \mu^{\nu}}{\gamma}.$$
/8/

Будем менять теперь весовую функцию ζ , а с нею и эффективный интервал усреднения, используя для ζ выражение /8/, но оставляя в этой сумме лишь конечное, небольшое число слагаемых /т.е. k=2m/ и меняя также

величину у. Входящий сюда параметр $\tilde{\mu}^{\nu}$ - "сглаженная" энергия Ферми - определяется из условия сохранения числа частиц

 $\sum_{\lambda} \delta n_{\lambda} = 0 .$ /9/

Определение δn_{λ} содержит, следовательно, параметры m, γ . Введенная таким способом \tilde{n}_{λ} удовлетворяет необходимым условиям, обсуждавшимся во введении, если существует достаточно большой интервал значений величин m, γ , для которого результат вычисления δE , $\delta < r^2 > \mu$ т.п. с $\delta n_{\lambda} (m, \gamma) = n_{\lambda} (m, \gamma) - \tilde{n}(m, \gamma)$ не зависит от m, γ . Разумеется, параметры m, γ должны быть такими, чтобы $\delta n_{\lambda} \neq 0$ лишь для состояний λ у границы Ферми; очевидно, должно быть $\gamma << \mu^{\nu}$ для конечного, не слишком большого m, m = 2÷5. С другой стороны, на интервале γ должно находиться достаточно много уровней, т.е. $\gamma > 5$ МэВ.

4. Еще раз подчеркнем, что мы вычисляем непосредственно изменения $\delta E = E - \tilde{E}, \delta < r^2 >$, вызванные наличнем δn_{λ} , а ни в коем случае не сами $E, < r^2 >$ и т.п. В ряде работ/3/ оболочечные поправки вычислялись по эмпирической формуле

$$\delta \mathbf{E} = \sum_{\lambda} \tilde{\epsilon}_{\lambda} \mathbf{n}_{\lambda} - \int_{-\infty}^{\mu} \epsilon \frac{1}{\gamma} \sum_{\lambda} \zeta(\frac{\epsilon - \epsilon_{\lambda}}{\gamma}) d\epsilon =$$
$$= \sum_{\lambda} \tilde{\epsilon}_{\lambda} \delta \mathbf{n}_{\lambda} - \frac{\gamma}{\sqrt{\pi}} \sum_{\lambda} \int_{\frac{\epsilon_{\lambda} - \tilde{\mu}}{\gamma}}^{\infty} x e^{-\mathbf{x}^{2}} d\mathbf{x} \sum_{\mathbf{k}=0,2...}^{2m} \mathbf{a}_{\mathbf{k}} \mathbf{H}_{\mathbf{k}}(\mathbf{x}).$$
 /10/

Если можно пренебречь здесь последней суммой, то выражение /10/ совпадает с /1/ при $\Gamma = 0$, т.е. при отсутствии взаимодействия между квазичастицами. Оценки второй суммы в /10/, проводившиеся в /5/, указывают, видимо, на ее малость по сравнению с первой. Подчеркнем, что в противоположность /1/ выражение /10/ не обращается внуль при $\delta n_{\lambda} = 0$ из-за наличия в нем последней суммы. Вопрос о различии /1/ и /10/ заслуживает, возможно, более детального изучения.

РЕЗУЛЬТАТЫ РАСЧЕТОВ ДЛЯ ТЯЖЕЛЫХ СФЕРИЧЕСКИХ ЯДЕР

1. В этом разделе мы прежде всего выясним на примере ядер, соседних с ^{208 Pb}, насколько достоверными можно считать результаты, полученные на основе изложенного выше метода, т.е. на какую точность описания свойств ядер может претендовать этот метод.

Формулы /1/-/3/ содержат не только суммы по состояниям дискретного спектра, но также и интегралы по непрерывному спектру. В формулах, содержащих δn_{λ} , суммирование и интегрирование ведется по состояниям, не слишком далеким от границы Ферми, т.к. с удалением от нее δn_λ быстро убывают. В наших расчетах мы заменяем для не слишком больших положительных энергий, $\widetilde{\epsilon_\lambda}$ < 20 *МэВ*, интегрирование по непрерывному спектру суммированием по квазистационарным состояниям, существующим при таких энергиях в потенциале Вудса-Саксона из /9/. Нахождение соответствующих комплексных собственных энергий $\tilde{\mathbf{E}}_{\lambda} = \tilde{\epsilon}_{\lambda} - i\tilde{\Gamma}_{\lambda}/2$ и функций $\tilde{\phi}_{\lambda}$ опи-сано подробно в /10/.В наших расчетах мы пренебрегаем Γ_{λ} и мнимой частью Im ϕ_{λ} , что соответствует пренебрежению затуханием квазичастиц за счет вылета из системы. Возможность такого пренебрежения обсуждалась в/10/. В наших расчетах суммирование производилось по состояниям λ при условии, что $|\epsilon_{\lambda} - \epsilon_{\rm F}| \leq$ ≤ 25÷30 МэВ. Этого вполне достаточно, т.к. точность самого метода, как мы убедимся далее, не лучше ~2 МэВ. а включение уровней с бо́льшими n, l приводит при $\gamma = 5 \div 10$ МэВ к изменениям в δE , не превосходящим <1 МэВ.

2. Мы провели все расчеты для четных значений Z, N, $12O \le N \le 13O$, $76 \le Z \le 9O$, меняя m и y в достаточно широких пределах, с целью проверки существования области значений m, y, для которой вычисляемые величины δE , $\delta < r^2 >$ можно с определенной точностью полагать не зависящими от m, y. Типичные результаты

таких расчетов представлены на *рис.* 1. С чисто методической целью мы изобразили отдельно суммы $\delta_1 E^n$ и $\delta_1 E^p$ по нейтронным и протонным состояниям ($\delta_1 E = \delta_1 E^p + \delta_1 E^n$), а также всю величину δE , включая и $\delta_2 E$ /1/. Оказывается, что для различных ядер зависимость $\delta_1 E^{\nu}$, δE от m, γ совершенно различна, но лишь для ядра ²⁰⁸Pb можно с достаточной точностью, ~O,1-O,2 *МэВ*, полагать $\delta E(m, \gamma)$ не зависящими от m, γ в области значений $6 \le 2m \le 10$, 7 *МэВ* $\le \gamma \le 9$ *МэВ*.

Рис. 1. Зависимость оболочечных поправок к энергии /МэВ/ от γ /МэВ/ при различных т/см./10//. Штрихпунктирнал кривал - $\delta_1 E^p$, штрихованнал кривал - $\delta_1 E^n$, сплошнал кривал - полнал $\delta E = \delta_1 E^p + \delta_1 E^n + \delta_2 E$.

<

Для других ядер для $2m = 4 \div 12$, при изменении γ от 6 до 10 *МэВ* δ₁E меняется не менее чем на величину ~1÷2 МэВ. Очевидно, что лишь на такую точность и может претендовать вычисление δE в соответствии с самой сущностью метода. Видимо, наиболее плавно при 2m = 6 $\delta E(m, \gamma)$ зависит от γ для 7 $M \ni B \le \gamma \le$ 9. $M \ni B$, или при 2m=8 для 8 МэВ≤у ≤ 10 МэВ. Можно, выбрав, например, 2m = 6, $\gamma = 8 M \partial B$, вычислить δE для всех ядер рассматриваемой области, помня, однако, при этом, что точность такого расчета, во всяком случае не лучше чем ~ 1÷2 МэВ. Мы проводим расчеты для сферических ядер, для которых параметры среднего потенциала/9/ подобраны как раз наиболее определенно. Как показывают выполненные нами расчеты, даже весьма незначительные изменения параметров этого потенциала, вызывающие изменения $\delta \epsilon_{\lambda}$ в пределах ~ О,2 *МэВ*, могут приводить к изменению δE на величину ~1 МэВ. В табл. 1 представлены результаты вычисления δE и $\delta_2 E$ при m = 3, $\gamma = 8 M \mathcal{B}$, позволяющие судить о величине вклада $\delta_9 E$ в δЕ для различных ядер. Как видно из этой таблицы, всегда $\delta_{2} E > 0$ и не превосходит ~2 *МэВ*, т.е. имеет тот же порядок величины, что и неопределенности в вычислении $\delta_1 E$, связанные с выбором m, y, или параметров одночастичного потенциала. При этом оказывается, что $\delta_2 E$ практически не зависит от m, γ для $4 \leq 2m \leq 10$, 6 $M \ni B \le \gamma \le 10 M \ni B$.

3. Из табл. 1 видно, что наименьшего значения $\delta E < 0$ достигает для ²⁰⁸ Pb. При небольшом отличии Z, N от Z =82, N =126 SE существенно меняется; эти изменения гораздо больше обсуждавшихся выше неопределенностей в вычислении $\delta_1 E$. Для дважды магического ядра и его ближайших соседей $\delta E < 0$ аномально малы, причем этот качественный результат является вполне достоверным, хотя сама величина δE и вычисляется лишь с точностью ~1÷2 МэВ. На рис. 2 и З вычисленные нами при 2m=6, γ =8 *МэВ* δE сравниваются с разностями $\delta E_{\Theta KCD}$ между экспериментальными массами ядер и их значениями, полученными по полуэмпирической формуле из/4/ . Мы представили результаты так, чтобы показать зависимость экспериментальных и вычисленных нами величин от N при фиксированных Z, или от Z при фиксированных N.

Таблица 1	l
Зависимость бЕ (МэВ) (верхние	числа в каждой клетке)
и δ Е (МэВ) (нижние числа) от	Z,N для ядер, соседних
² с ²⁰⁸ Рb (при 2m =6, у	= 8 MəB)

and the second s								
M	76	78	80	82	84	86	88	90
120	3,8I	0,74	-I,87	-6,06	-2,94	-0,36	0 ,72	2,I
	I,I	I,I3	I,78	I,8	I,19	0,74	0 ,45	0,4
122	-0,99	-2,44	-5,24	-8,2	-6,36	-3,68	-3,04	- I,58
	0,87	0,7	1,11	I,I5	0,6	0,3	0,13	0 ,22
124	-3,98	6,22	-8, 95	-12,06	-10,04	-7,23	-6,07	-5,21
	I,08	0,64	0,81	0,79	0,4	0,25	0,25	0,46
126	-6,74	- 8,4 9	-11,15	-14,82	-12,58	-9,63	-7,7I	-6,77
	I,56	1,02	I,16	0,51	0,33	0,33	0,5I	0,94
128	-3,3	-5,37	-7,83	-II,I9	-7,2 6	-5,44	-2,61	-I,68
	I,78	I,I6	I,I4	0,42	0 ,33	0 ,4 6	0,71	I,24
130		-2,14 1,54	-4,74 I,36	-7,70 0,59	-3,44 0,59	-0,97 0,83	2,06 1,17	3,2 1,8

Как видно, во всех случаях магические числа Z =82, N =126 четко выделены как для вычисленных, так и для экспериментальных значений δE . При Z =82 или N =126 всегда имеется резкий минимум $\delta E(Z, N)$. Отметим, что вычисленная величина $\delta E(Z, N)$ имеет даже более резкий минимум при магических числах, чем экспериментальная. Еще раз подчеркнем, что данный метод, как было выяснено выше, даже для хорошо исследованной области ядер, соседних с 208 Pb , заведомо не может претендовать на количественное описание масс ядер с точностью, лучшей чем ~2 *МэВ*.

Рис. 2. Вычисленные при 2m =6, у=8 МэВ и экспериментальные /крестики/ значения оболочечных поправок $\partial E(Z,N)$ /МэВ/ к полуэмпирическим формулам для масс ядер/4/ в зависимости от N при определенных Z.

4. Изменения $\delta < r^2 > \delta < r^2 > Z$ мы вычисляем согласно /3/ с теми же δn_λ , Что и δE . При этом оказывается, что существует при 2m=6,8 достаточно большой интервал значений γ , 5 $M_{\beta}B \le \gamma \le 10$ $M_{\beta}B$, в котором $\delta < r^2 > Z$, А меняется слабо, в пределах $\sim 10 \div 20\%$, если только сами $\delta < r^2 >$ не слишком малы, $\delta < r^2 > \sim 0,1$ ΦM^2 . В *пабл.* 2 приведены значения $\delta < r^2 > Z$, Вычисленные при 2m=6,

Λ

13

Рис. 3. То же, что на рис. 2, но приводится зависимость $\delta E(Z, N)$ от Z при определенных N.

 $\gamma = 8$. Из табл. видно, что учет $\delta < r^2 >$, вызванного отклонением δn_{λ} , приводит к замедлению роста $< r^2 > (A)$ для рассматриваемых Z, N. Действительно, с ростом A $\delta < r^2 >$ уменьшается. Интересно заметить, что при N=126 $\delta < r^2 > Z$ минимально при Z =82, а $\delta < r^2 > A$ при Z =82 минимально при Z =82, а $\delta < r^2 > A$ при Z =82 минимально при N=126. В экспериментах получают разности $\Delta (< r^2 > Z)$, или $\Delta (\sqrt{< r^2 > Z})$ соседних ядер. Для рассомотренных нами ядер таких данных не много, они собраны во втором столбце табл. З. В третьем столбце приведены разности $\Delta (< r^2 > Z)$, или $\Delta (\sqrt{< r^2 > Z})$, которые получаются, если $< r^2 > Z = 0, 6r_0^2 A^{2/3}$, $r_0 = 1, 24 \ Фм.$ В последнем столбце даны те же разности с учетом

 $\delta < r^2 > Z$ из табл. 2, т.е. $< r^2 > Z = 0.6r_0^2 A^{2/3} + \delta < r^2 > Z$. Можно заметить, что учет $\delta < r^2 > Z$ приближает вычисленные значения к экспериментальным.

Таблица 2 Величины *б*<г²> А^{ФМ²} (верхняя часть таблицы) и *⊗*г²> ^{ФM²} (нижняя часть таблицы), вычисленные согласно (3) для различных Z, N

	5 < 22 > A					
ZN	120	122	124	126	128	130
76	0,217	0,16	0,14	0,08	0,1	
78	0,17	0,14	0,05	0,05	0,07	0,09
80	0,11	0,11	0,08	0,03	0,04	0,05
82	0,11	0,09	0,06	0,01	0,03	0,04
84	0,09	0,07	0,04	-0,0I	0,02	0,04
8 6	0,08	0,05	0,03	-0,02	-0,01	0,02
88	-0,02	-0,05	-0,08	-0,04	-0,02	-0,0I
90	-C,04	-0,06	-0,09	-0,07	-0,04	-0,02
		চ<	212			
	120	122	I24	I26	128	I3 0
76	0,21	0,2	0,15	0 ,06	0,03	
78	0,13	0.1	0.07	-0.02	-0.05	_0.08
		1 7	1			-0,00
80	0,05	0,02	-0,01	-0,1	-0,12	-0,15
80 82	0,05 -0,02	0,02 -0,05	-0,0I -0,07	-0,I -0,I5	-0,12 -0,18	-0,05 -0,15 -0,21
80 82 84	0,05 -0,02 -0,03	0,02 -0,05 -0,05	-0,01 -0,07 -0,07	-0,I -0,I5 -0,I4	-0,12 -0,18 -0,17	-0,15 -0,21 -0,2
80 82 84 86	0,05 -0,02 -0,03 -0,04	0,02 -0,05 -0,05 -0,06	-0,0I -0,07 -0,07 -0,08	-0,I -0,I5 -0,I4 -0,I4	-0,12 -0,18 -0,17 -0,015	-0,15 -0,21 -0,2 -0,2
80 82 84 86 88	0,05 -0,02 -0,03 -0,04 -0,1	0,02 -0,05 -0,05 -0,06 -0,I	-0,0I -0,07 -0,07 -0,08 -0,I	-0,1 -0,15 -0,14 -0,14 -0,14	-0,12 -0,18 -0,17 -0,015 -0,14	-0,15 -0,21 -0,2 -0,2 -0,2 -0,17
80 82 84 86 88 90	0,05 -0,02 -0,03 -0,04 -0,1 -0,1	0,02 -0,05 -0,05 -0,06 -0,1 -0,1	-0,0I -0,07 -0,07 -0,08 -0,I -0,I3	-0,1 -0,15 -0,14 -0,14 -0,14 -0,15	-0,12 -0,18 -0,17 -0,015 -0,14 -0,16	-0,15 -0,21 -0,2 -0,2 -0,17 -0,17

	Таблица	3			
Экспериментальные и	вычислен	ные раз	вности	$\Delta(\langle \mathbf{r}^2 \rangle_{\mathbf{Z}})$	или
$\Delta(\sqrt{\langle r^2 \rangle}_{\pi})$ соседних	ядер (по	лени	я в тен	(Cre)	

ядра	әкспериментальные данные	くてわません あくとうま=0.	くとうころのである + あくとり / 2 ·
208 206 P8	△(√(ч))=0,0ІЗфм /II/ =0,0І4фм /I2/	0,018¢m	0,0120m
,	۵٫099±0,014 مارد کې د د د د د د د د د د د د د د د د د د	0 ,19 ¢ <mark>⊭</mark>	0,111 <mark>4</mark> 2
206 2 04 PB, PB	$\Delta(v_{2}^{2})=0,105\pm0,020_{M}^{2}/13/$	0 , 194 %	0 ,13¢²
204 202 Hg, Hg	$\Delta(\langle t_{\lambda} \rangle)^{-0, 162^{\pm 0}, 024 t_{M}^{2} / 13 / 0, 117 t_{M}^{2} / 14 / 0, 117 t_{M}^{2} / 14 / 0)}$	0,190 ²	0,15 0²,
902 Hg, Hg	A(2) 0.11902 /14/	0 , 1947	0 ,16 \$ ²

РАСЧЕТЫ ДЛЯ ЯДЕР С БОЛЬШИМИ Z,N /Сверхтяжелых/

1. Мы убедились, что развиваемый метод содержит ряд неопределенностей и, по существу, не может в принципе даже для хорошо изученных ядер, соседних с ²⁰⁸ Pb, претендовать на точность, лучшую чем ~ 2 *МэВ*. Но он дает аномально малые значения $\delta E < 0$ для дважды магического ядра и его ближайших соседей, тем самым качественно выделяя такие ядра из всех других в соответствии с опытными данными о массах ядер. В этом разделе мы покажем, к каким результатам приводит вычисление этим методом масс тех ядер, которые имели бы большие Z, N : 110 $\leq Z \leq 120$, 174 $\leq N \leq 188$, сверхтяжелых ядер, в предположении, что они сферические. Для проведения таких расчетов нам прежде всего необходимо экстраполировать потенциал из^{/9/} в область больших Z,N. Мы делаем это, просто подставляя большие Z,N в формулы работы /9/, дающие зависимость параметров потенциала от Z,N. Невозможно сколько-нибудь определенно оценить точность такой экстраполяции. Можно лишь надеяться получить качественно правильные результаты, если предполагать, что такие сверхтяжелые ядра отличаются от обычных тяжелых ядер лишь большим числом нуклонов и имеют при этом ту же среднюю плотность о градиент плотности $\nabla \rho$ и т.п. Все вычисления проводятся совершенно так же, как и в предыдущем разделе. В формулах /1/ - /3/ суммирование по состояниям λ проводилось при условии, что $|\epsilon_{\lambda} - \epsilon_{F}| \leq 25 \div 30$ МэВ. Включение уровней с большими n, l не представляет сложности, но является излишним, если учесть обсуждавшиеся в предыдущем разделе неопределенности в вычислении $\delta_1 E$.

2. Как и в предыдущем разделе мы выяснили, можно ли для этих ядер указать область значений m, y, где $\delta E(m, v)$ была бы с хорошей точностью постоянна. Для нескольких ядер результаты таких расчетов представлены на рис. 4. Из приведенных примеров можно заключить, что для $2m = 6,8 \delta E$ зависит от γ при 5 $M \ni B < v < v$ 58 МэВ примерно столь же сильно, как и для случаев, представленных на рис. 1. В табл. 4 и на рис. 5,6 представлены результаты нашего вычисления δΕ и δ₀Ε при 2m = 6, $\gamma = 7$ МэВ для $174 \le N \le 188$, $110 \le Z \le 120$. Как видно из пабл. 4, 8Е имеет примерно одну и ту же величину, -8--10 МэВ, для многих ядер в этой области Z, N. Следовательно, у нас нет оснований считать какое-либо из ядер этой области дважды магическим в противоположность той ситуации, которая имела место для ²⁰⁸ Pb и соседних с ним ядер. Часто обсуждающееся в литературе ядро с Z=114, N=184, как это видно из пабл. 4, отнюдь не может считаться дважды магическим: для него $\delta E < 0$ даже больше, чем для ряда соседних с ним ядер. Наличие примерно одинаковой оболочечной поправки, $\delta E \sim -8 \div -10$ МэВ, к полуэмпирической /капельной/ энергии связи/4/ у многих ядер означает.

Рис. 4. То же, что на рис. 1, но для больших Z,N.

что все они могут в равной мере обладать несколько повышенной по отношению к делению стабильностью, но среди них нельзя выделить одно или несколько ядер, для которых можно было бы ожидать стабильности, аномально большой по сравнению со всеми соседними ядрами. Из сопоставления с результатами предыдущего раздела ясно, что вывод об отсутствии дважды магического ядра в этой области Z, N можно считать вполне достоверным, несмотря на неопределенности в вычислении δ_{1} Е порядка нескольких МэВ. К такому заключению

Рис. 5. Зависимость $\delta_{.1} E(Z,N) / M \ni B / / штри - хованная кривая / и$ $<math>\delta E(Z,N) / M \ni B / / сплошная$ кривая / от N при заданных Z для 110 $\leq Z \leq 120$, 176 $\leq N \leq 188. m=3, y=7 M \ni B$.

мы приходим, сравнивая данные табл. 1 и 4, а также puc. 2,3 с puc. 5,6. Из табл. 1 и puc. 2,3 видно, что числа Z =82, N =126 явно выделены, для них $\delta E < 0$ имеет всегда четкий минимум. Причем, расчеты дают минимум даже более резкий, чем это следует из опытов. А из табл. 4 и puc. 5,6 ясно, что для Z =114, N =184, или каких-либо других Z,N в этой области, $\delta E < 0$ такого минимума не имеет; для большого числа ядер δE примерно одинаковые. Как видно из табл. 4 и puc. 5,6, учет $\delta_2 E$ для этих ядер играет достаточно важную роль и заметно влияет на зависимость $\delta E(Z,N)$ от Z,N. В ряде случаев оказывается, что $\delta_1 E(Z,N)$ и $\delta E(Z,N)$ имеют минимум при различных Z,N.

	,	Таблица	4		
Зависимость	$\delta E(Z, N)$	(МэВ)	(верхние	числа в	каждой
клетке) и δ_{2}	E(Z,N) (M	іэВ) (ні	ижние чис	ла) от Z	, N для
больших Z, N	\mathbf{N} : $110 \leq \mathbf{Z}$	\leq 120, \Box	$174 \leq N \leq$	188 (при	н <i>ү</i> =
	$\gamma =$	7 Мэ В	, 2m=6)		

NZ	110	112	114	II6	118	120
174	-I,57	-5,26	8,69	-8,45	6, 18	-4,8
	I,36	0,78	0,57	0,65	I, 27	I,95
176	-I,82	6,06	10,27	-10,17	-8,05	-6,6
	I,77	0,98	0,58	0,58	0,9I	I,79
178	-2,5I	-7,22	-II,66	-II,70	-I0,I7	-8,93
	2,44	I,47	0,86	0,7I	0,88	I,55
180	-2,36	-6,0I	-I0,98	-10,40	-9,58	-8,83
	2,78	I, 95	I,23	I,10	I,25	I,82
182	-3,25	-6,64	-I0,9I	-10,33	-9,03	-8,44
	3,3I	2,48	I,89	I,74	I,94	2,30
184	-2,77	-6,45	-9,40	9,96	-9,04	-7,96
	4,49	3,68	3,19	2,98	3,18	3,75
186	0,65	-3,22	-6,30	-5,75	-3,74	-3,37
	4,82	3,87	3,42	3,06	3,22	3,54
188	4,26	0,85	-2,56	-2,0	-0,I	0,68
	5,35	4,22	3,77	3,33	3,42	3,60

3. Мы получили достаточно малую $\delta E < 0$ для многих ядер с большими Z,N, считая их сферическими. Естественно полагать, что с деформацией ядер δE будет расти вследствие увеличения плотности уровней у границы Ферми. Это позволяет ожидать наличия барьера деления у этих ядер. Отметим, что поскольку $\delta_2 E$ дает заметный вклад в δE , до 3-4 *МэВ*, то $\delta_2 E$ необходимо учитывать при попытках вычисления барьеров деления.

Используя полученные результаты и полуэмпирические формулы для масс ядер $^{/4/}$, мы можем оценить энергии *а*-распада Q_a . В *табл.* 5 для нескольких сверх-

Рис. 6. То же, что на рис. 5, но приводится зависимость от Z при заданных N.

тяжелых ядер приведены Q_α и соответствующие им значения $\log_{10} T_{1/2}$, полученные из систематики периодов полураспада/15/Как видим, есть основания в ряде случаев ожидать достаточно больших $T_{1/2}$. Естественно, приведенные данные являются лишь ориентировочными из-за обсуждавшихся выше неопределенностей в вычислении $\delta_1 E$.

Из приведенного нами исследования ясно, что развиваемый метод позволяет получить ряд полезных сведений о свойствах ядер. При этом, однако, необходимо ясно представлять себе, что по самой своей сути он может претендовать лишь на весьма ограниченную точность.

Z	\mathcal{N}		log 10 Ty2 (MORTH)
112	182	4,8	21,9
	184	5,6	15,85
	186	8,2	2,7
114	178	4,8	22,9
	180	6,4	11,8
	182	5,0	21,3
	184	6,9	9,1
	186	9,6	-1, 4 5
II6	178	9,7	-I,I6
	180	12,2	-7,6
	182	11,4	-5,8
	184	11,5	-6,0
	186	13,9	-II,0

Таблица 5 Энергия Q_а и логарифмы полупериодов а-распада сверхтяжелых ядер

В заключение автор благодарит Б.И.Пустыльника за внимание к работе и многочисленные полезные дискуссии.

ЛИТЕРАТУРА

- 1. Мигдал А.Б. Теория конечных ферми-систем и свойства атомных ядер. М., Наука, 1965.
- Swiatecki W.J. Proc. 2d Int. Conf. on Nuclear Masses, Springer-Verlag, Vienna, 1964, p.52; Myer W.D., Swiatecki W.R. Nucl.Phys., 1966, 81, p.1.
- 3. Strutinsky V.M. Nucl.Phys., 1967, A95, p.420; Nucl.Phys., 1968, A122, p.1.
- Myers W.D. Atomic Data and Nuclear Data Tables, 1976, 17, p. 411; Myers W.D., Swiatecki W.J. Nucl. Phys., 1966, 81, p.1;

Ann.Phys., (N.Y.), 1969, 55, p.395; Ann.Phys., (N.Y.), 1974, 84, p.186.

- 5. Bunatian G.G. e.a. Nucl. Phys., 1972, A188, p.225.
- 6. Бунатян Г.Г. ЯФ, 1973, 17, с. 28.
- 7. Бунатян Г.Г., Микулинский М.А. ЯФ, 1965, 1, с. 35.
- 8. Осадчиев В.М., Троицкий М.А. ЯФ, 1967, 5, с. 961.
- 9. Чепурнов В.А. ЯФ, 1967, 6, с. 955.
- 10. Бунатян Г.Г. ОИЯИ, Р4-11004, Дубна, 1977.
- De Jager C.W. e.a. Atomic Data and Nuclear Data Tables, 1974, 14, p.479.
- 12. Engfer R. e.a. Там же, стр. 509.
- 13. Boehm F., Lee P.L. Там же, стр. 605.
- 14. Heilig K., Stendel A. Тамже, стр. 613.
- 15. Keller K.A., Munzl H. Nucl. Phys., 1970, A148, p.615.

Рукопись поступила в издательский отдел 9 декабря 1977 года.