СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

27/1.78

P4 - 11092

998/2-78

C 346.35 B-14

ВЛИЯНИЕ СТРУКТУРЫ ЯДРА НА СВЕРХТОНКОЕ РАСЩЕПЛЕНИЕ УРОВНЕЙ В МЮОННЫХ АТОМАХ

P4 - 11092

ŧ

В.И.Багаев, И.Н.Михайлов

ВЛИЯНИЕ СТРУКТУРЫ ЯДРА НА СВЕРХТОНКОЕ РАСШЕПЛЕНИЕ УРОВНЕЙ В МЮОННЫХ АТОМАХ

Влижные структуры ядра на сверятонкое расшепление уровней в мюсиных атомах

Получены (аналитические выражения, позволяющие описывать спектры мюонных атомов с четно-четными ядрами, обладающими статической неаксиальной деформацией. Получены также формулы, необходимые для расчета спектра мюонных атомов с нечетными ядрами, при этом предполагается, что остов ядра имеет статическую неаксиальность.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного инствуута ядорных исследований. Дубиа 1977

Bagaev V.I., Mikhailov I.N.

P4 - 11092

Effect of Nuclear Structure on Hyperfine Level Splitting in Muonic Atoms

Analytical expressions are obtained which allow one to describe spectra of muonic atoms with even-even nuclei possesing a static non-axial deformation. Formulae are also obtained needed for the calculation of spectrum of muonic atoms with odd nuclei at the assumption that the even core of the nuclei has a static non-axiality.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1977

введение

Спектры мюонных атомов являются одним из всточников изучения структуры атомных ядер и, в частности, распределения заряда. Определенные в мюонных экспериментах значения радиуса (с), днффузности поверхности (t) и квадрупольного момента Q являются одними из самых надежных. В мюонных атомах с деформированными ядрами наблюдается сильное E 2взаимодействие ^{1,2}. В настоящее время существует большое количество работ, в которых изучается распределение заряда на основе ротационной модели ³⁻¹⁴ в предположении об аксиальности атомного ядра.

Однако имеются определенные расхождения между теоретически установленными энергиями мюонных атомов и их экспериментальными эначениями. Одной из причин этого может быть неаксиальная деформация. Настоящая работа посвящена теоретическому описанию ялияния неаксиальных деформаций на спектры мюонных атомов, при этом рассматриваются как четные ядра, так и нечетные, в описании которых достигнут значительный успех в рамках модели с трехосным остовом ^(15.)

ЭЛЕКТРИЧЕСКОЕ ВЗАНМОДЕЙСТВИЕ В мюонных атомах с нечетными ядрами

Первоначально отметим, что в мюонных атомах с сильно деформированными ядрами ^{E2} -взаимодействие превосходит М1 -взаимодействие в сотни раз^{/12/}. Матричные элементы для М1 -взаимодействия приведены в^{6/6/.} Вычисление уровней мюонного атома состоит в deшении уравнения на собственные значения:

$$(H_{N} + c\vec{a}\vec{p} + \beta mc^{2} + H_{\mu N})\Psi_{\mu N} = E\Psi_{\mu N} .$$
 /1/

Здесь собственная функция $\Psi_{\mu N}$ зависит как от координат мюона, так и координат всех нуклонов. Гамильтониана состоит из трех членов: 1/ H_N - гамильтониана ядра, описывающего взаимодействие нуклонов между собой; 2/ $ca\vec{p} + \beta m c^2$ - оператора Дирака, описывающего движение мюона / a_i и β - обычные четырехрядные матрицы Дирака/; 3/ $H_{\mu N}$ - взаимодействия мюона и всех нуклонов в ядре с учетом радиационных поправок.

Одно из основных приближений состоит и том, что $H_{\mu N}$ аппроксимируется взаимодействием мюона со средним статистическим полем, создаваемым всеми нуклонами ядра. Потенциал в точке (г, θ', ϕ') в системе ядра имеет вид

$$\phi(\vec{\mathbf{r}}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{m=\ell} \frac{1}{2} \sqrt{\frac{4\pi}{2\ell+1}} Q_{\ell m} f_{\ell,m}(\mathbf{r}) Y_{\ell m}(\theta', \phi'), \qquad /2/$$

здесь $f_{\ell_m}(r)$ определяется соотношением

$$f_{\ell_m}(r) = \frac{1}{r^{\ell+1}} \{ 1 - \frac{1}{Q_{\ell_m}} \int_{r}^{\infty} \rho_{\ell_m}(r') \frac{(r'^{2\ell-1} - r^{2\ell+1})}{r'^{\ell-1}} dr' \}, \quad /3/$$

где Q_{[m} - соответствующая гармоника в распределении плотностей - равна:

$$\rho_{\ell_{\rm m}}(\mathbf{r}') = \int \rho(\mathbf{r}') Y_{\ell_{\rm m}}(\theta', \phi') do, \qquad /4/$$

а Q_{lm}- соответствующий мультипольный момент:

$$Q_{\ell_m} = 2 \sqrt{\frac{4\pi}{2\ell+1}} \int_0^\infty \rho_{\ell_m}(r) r^{\ell+2} dr.$$
 /5/

В этой работе рассматривается влияние на спектры μ^- мезоатомов монопольной, квадрупольной и гексадекапольной частей потенциала.

Гросс-структура спектра мезоатома определяется уравнением

$$(\mathbf{c}\vec{a}\vec{\mathbf{p}}+\beta\mathbf{m}\mathbf{c}^{2}+\Phi(\mathbf{r}))\Psi=\mathbf{E}\Psi, \qquad /6/$$

где $\Phi(r)$ - монопольная часть в распределения потенциала. Решение этого уравнения в аналитическом виде возможно только для случая точечных ядер /см., например, ^{/17/}/. В случае тяжелых ядер описание нижних уровней мюона возможно только с помощью ЭВМ.

Собственные функции мюона можно записать в виде

$$\Psi_{nk}^{\mu} = \begin{pmatrix} 1/r \ G_{nk} \ (r) \chi_{k}^{\mu} \ (\theta, \phi) \\ \\ i/r \ F_{nk} \ (r) \chi_{-k}^{\mu} \ (\theta, \phi) \end{pmatrix}, \qquad /7/$$

где квантовые числа k удовлетворяют соотношениям:

$$k = \ell$$
, если $j = \ell - 1/2$,
 $k = -(\ell + 1)$, если $j = \ell + 1/2$.

Здесь ℓ и ј - соответственно полный и орбитальный моменты.

Уровни энергии и волновые функции мюона определяются в результате решения системы связанных дифференциальных уравиений:

$$\frac{\mathrm{d}\mathbf{F}(\mathbf{r})}{\mathrm{d}\mathbf{r}} \approx \frac{\mathbf{k}}{\mathbf{r}} \mathbf{F}(\mathbf{r}) - \frac{1}{\mathrm{hc}} [\mathbf{E} - \mathrm{mc}^2 - \Phi(\mathbf{r})] \mathbf{G}(\mathbf{r}), \qquad \mathbf{/8/}$$

$$\frac{dG(r)}{dr} = -\frac{k}{r} G(r) + \frac{1}{hc} [E + mc^2 - \Phi(r)] F(r), \qquad /9/$$

где F(t) и G(r) - соответственно малая и большая компоненты волновой функции мюона с нормировкой

$$\int_{0}^{\infty} (F^{2} + G^{2}) dr = 1.$$
 /10/

Гамильтоннан, описывающий ядро, можно записать в виде /18/

$$H_{N} = h + A_{1}I_{1}^{2} + A_{1}I_{2}^{2} + A_{3}I_{2}^{2} + B_{1}I_{1} + B_{2}I_{2} + B_{3}I_{3} + C_{1}(I_{2}I_{3} + I_{2}I_{3}) + C_{2}(I_{3}I_{1} + I_{1}I_{3}) + C_{3}(I_{1}I_{2} + I_{2}I_{1}),$$
(11/

где h , A_ν , B_ν , C_ν зависят от β , γ , ξ н обобщенных импульсов, сопряженных этим координатам. В данном случае мы учитываем только вращательные возбуждения, поэтому ограничиваемся только ротационной частью, т.е. считаем гамильтоннан соответствующим модели Давыдова-Филиппова^{/19/}.

$$H_{N} = A_{1} I_{1}^{2} + A_{2} I_{2}^{2} + A_{3} I_{3}^{2} . \qquad /12/$$

Здесь коэффициенты А, равны:

$$A_{\nu} = \frac{1}{8 B \beta^2 \sin^2(\gamma - \frac{2\pi\nu}{3})}$$
 /13/

где В - массовый параметр.

Волновые функции коллективного движения ядра в этом случае представляются в виде

$$\Psi = \sum_{\substack{k \geq 0}} A(\lambda IK) | IMK > , \qquad /14/$$

где < IMK > - волновые функции акснального ротатора

$$|IMK\rangle = \sqrt{\frac{2I+1}{16\pi^2(1-\delta K0)}} \{ D_{MK}^{I}(\theta_i) + (-1)^{I} D_{M-K}^{I}(\theta_i) \}.$$
 (15/

Здесь θ_i - углы Эйлера, А (λ IK) определяются из решения соответствующей задачи на собственные значения:

$$H_{N}\Psi_{\lambda IM} = E \Psi_{\lambda IM} .$$
 (16/

При этом учитываются те состояния, которые соответствуют менимальному значению энергии при данном I, т.е. рассматриваются состояния только основной полосы.

Часть гамильтоннана, соответствующая квадрупольному и гексадекапольному взаимодействию, имеет вид

$$\begin{split} H_{\mu N} &= -\frac{1}{2} \, \mathrm{e}^{\,2} (\sqrt{\frac{4\pi}{5}} \, (\mathsf{Q}_{20}^{\,\,} \mathsf{f}_{20}^{\,\,} \mathsf{Y}_{20}^{\,\,} (\theta', \phi') + \\ &+ \mathsf{Q}_{22}^{\,\,} \mathsf{f}_{22}^{\,\,} (\mathsf{Y}_{22}^{\,\,} (\theta', \phi') + \mathsf{Y}_{2-2}^{\,\,} (\theta', \phi')) + \sqrt{\frac{4\pi}{9}} \mathsf{Q}_{40}^{\,\,} \mathsf{f}_{40}^{\,\,} (\mathfrak{r}) (\theta', \phi')) \end{split}$$

здесь учтено выполнение условий

$$Q_{22} = Q_{2-2}, Q_{2\pm 1} = 0, f_{22}(r) = f_{2-2}(r),$$
 /18/

а также предположение, являющееся, по-видимому, вполне обоснованным, о том, что деформации, соответствующие Y_{4m} , где $m \neq 0$, отсутствуют; θ' , ϕ' - это угловые координаты мюона в системе координат, связанной с ядром. Для перехода в лабораторную систему воспользуемся обычными свойствами D-функций Вигнера

$$Y_{p\ell}(\theta',\phi') = \sum_{m} D_{m\ell}^{p}(\theta_{i}) Y_{pm}(\theta,\phi).$$
 (19/

Учитывая, что полный момент системы мюон плюс ядро (F) и его проекция (M) сохраняются, базисные функции выбираем в виде

$$|\lambda I j n k\rangle = \sum_{M_{I} \mu} (I j M_{I} \mu | FM) \Psi_{\lambda I M_{I}} \Psi_{nk}^{\mu}.$$
 /20/

Здесь і , M_{I} и ј, μ - квантовые числа угловых моментов ядра и мюона, несохранение которых связано с сильным Е2 -взаимодействием.

Матричные элементы, описывающие квадрупольное взаимодействие, имеют вид /учтено, что I и К - целые/:

$$\langle \lambda' \mathbf{1}' \mathbf{j}' \mathbf{n}' \mathbf{k}'; \mathbf{FM} | \mathbf{H}_{\mu \mathbf{NQ}_{2}} | \lambda \mathbf{I} \mathbf{j} \mathbf{n} \mathbf{k}; \mathbf{FM} \rangle =$$

$$= -(1)^{2\mathbf{j}'+\mathbf{I}+\mathbf{j}+\mathbf{F}} \sqrt{(2\mathbf{j}'+\mathbf{1})(2\mathbf{I}'+\mathbf{1})} \quad \forall (\mathbf{I}' \mathbf{j}' \mathbf{I} \mathbf{j}; \mathbf{F2})(\mathbf{j}' \mathbf{2} \mathbf{1}/2 \, \mathbf{0} | \mathbf{j} \mathbf{1}/2 \, \mathbf{)} \times$$

$$\times \frac{1}{2} [\mathbf{1} + (-1)^{\ell+\ell'}] \mathbf{e}^{2} \times [\mathbf{Q}_{20} \int d\mathbf{r} (\mathbf{F}_{\mathbf{n}'\mathbf{k}'}(\mathbf{r}) \mathbf{F}_{\mathbf{n}\mathbf{k}}(\mathbf{r}) +$$

$$+ \mathbf{G}_{\mathbf{n}'\mathbf{k}'}(\mathbf{r}) \mathbf{G}_{\mathbf{n}\mathbf{k}}(\mathbf{r})) \mathbf{f}_{20}(\mathbf{r}) \times$$

$$\times \{ \sum_{\substack{\mathbf{K} \geq \mathbf{0} \\ \mathbf{q} \in \mathbf{TH}_{\mathbf{A}} \}} (-1)^{\mathbf{K}} (\mathbf{1}' \mathbf{2} - \mathbf{KO} | \mathbf{I} - \mathbf{K}) \mathbf{A} (\lambda' \mathbf{1}' \mathbf{K}) \mathbf{A} (\lambda \mathbf{IK}) \} +$$

$$+ \mathbf{G}_{\mathbf{n}'\mathbf{k}}(\mathbf{r}) \mathbf{G}_{\mathbf{n}\mathbf{k}}(\mathbf{r}) \mathbf{f}_{\mathbf{22}}(\mathbf{r}) \times \{ \sum_{\substack{\mathbf{K} \geq \mathbf{0} \\ (\mathbf{q} \in \mathbf{TH}_{\mathbf{A}} \}} \sqrt{\mathbf{1} + \delta \mathbf{K0}} (-1)^{\mathbf{K}} \times$$

$$\times ((\mathbf{I}' \mathbf{2}, - \mathbf{K} - \mathbf{2}, \mathbf{2} + \mathbf{I} - \mathbf{K}) \mathbf{A} (\lambda' \mathbf{1}' \mathbf{K} + \mathbf{2}) \times$$

$$\times (\mathbf{1}' \mathbf{K}) + (-1)^{\mathbf{I}'+\mathbf{I}} (\mathbf{I}' \mathbf{2} \mathbf{K} \mathbf{2} | \mathbf{IK} + \mathbf{2}) \mathbf{A} (\lambda' \mathbf{1}' \mathbf{K}) \mathbf{A} (\lambda \mathbf{IK} + \mathbf{2})) \}].$$

Соответственно матричные элементы, описывающие гексадекапольное взаимодействие, имеют вид

,

•

<\lambda 'I 'j 'n 'k '; FM | H_{µNQ4} | \lambda I j n k ; FM > =
2j '+ I+j+F
= - (-1)
$$\sqrt{(2j'+1)(2I'+1)} W (I'j' I j; F4)(j'21/20|j1/2) \times$$

$$\times \frac{1}{2} [1 + (-1)^{\ell + \ell'}] e^{2} Q_{40} \int dr (F_{n'k'}(r) F_{nk}(r) + + G_{n'k'}(r) G_{nk}(r)) f_{40}(r) \times \times \{ \sum_{\substack{k \ge 0 \\ (4 = r H_{\bullet})}} (-1)^{K} (I'4 - KO | I - K) A (\lambda'I'K) A (\lambda IK) \}. /22/$$

Аналогично можно получить выражения для взаимодействия других мультипольностей.

Интенсивности дипольных переходов определяются выражением

$$A_{if}(n'\ell'F' \rightarrow n \ell F) = (E_{i} - E_{f})^{3} \sum_{MM} |(n FM|\vec{r}|n'\ell'F'M')|^{2} = (E_{i} - E_{f})^{3} (2\ell + 1)(2F + 1)(2F' + 1)(\ell 100 | \ell'0)^{2} \times |\sum_{jj'}(-1)^{j+j'-1} (2j + 1)^{1/2} (2j' + 1)^{1/2} \times |(n \ell j)\vec{r}|n'\ell'j')C(Ij'F')C(IjF)W(\ell j\ell'j';1/21) \times |(n \ell j)\vec{r}|FF';11)|^{2},$$

$$(n \ell j)\vec{r}FF';11)|^{2},$$

$$(2j' + 1)^{2} (2j' + 1)^{2} (2j' + 1)^{2} (2j' + 1)^{2} + (2j' + 1)^{2} |(2j' + 1)^$$

где C(IjF) - коэффициенты, входящие в разложение волновых функций соответствующего уровня по базисным волновым функциям:

$$|\lambda n \ell; FM \rangle = \sum_{Ij} C(IjF) |\lambda Ijnk; FM \rangle.$$

При анализе использовалось распределение заряда типа Ферми, имеющее вид

$$\rho(\vec{r}) =$$

$$= \frac{P_0}{1 + \exp\{\frac{4 \ln 3}{t} (r - c(1 + \beta \cos_y Y_{20}(\theta, \phi) + \frac{\beta \sin y}{\sqrt{2}} (Y_{22}(\theta, \phi) + \frac{Y}{2 \cdot 2}(\theta, \phi) + \beta \frac{Y}{4 \cdot 4}(\theta, \phi))\}}}$$
/24/

Здесь с характеризует расстояние, на котором плотность убывает вдвое по сравнению с центральной; t - диффузность поверхности ядра; параметры β и γ определяют квадрупольную деформацию; парамет β β_4 дает значение гексадекапольной деформации. Квадрупольные моменты в этом случае равны:

$$Q_{20} = 2 \sqrt{\frac{4\pi}{5}} \rho_0 c^5 \left(\beta \cos \gamma \left(1 + \frac{\pi^2}{8 \ln^2 3} \left(\frac{t}{c}\right)^2\right) + 4 \left(\frac{1}{14} \sqrt{\frac{5}{\pi}} \beta^2 \cos 2\gamma + \frac{3}{7\sqrt{\pi}} \beta \beta_4 + \frac{5}{77} \sqrt{\frac{5}{\pi}} \beta_4^2 \left(1 + \frac{\pi^2}{16 \ln^2 3} \left(\frac{t}{c}\right)^2\right)\right) \right) / 25/$$

$$Q_{22} = 2\sqrt{\frac{4\pi}{5}} \rho_0 c^5 \left(\frac{\beta \sin \gamma}{\sqrt{2}} \left(1 + \frac{\pi^2}{8 \ln^2 3} \left(\frac{t}{c}\right)^2\right) + 4\left(\frac{3}{2\sqrt{2} \frac{\pi}{2\pi}} - \beta \beta_4 \sin \gamma - \frac{1}{14}\sqrt{\frac{5}{2\pi}} \beta^2 \sin 2\gamma \left(1 + \frac{\pi^2}{16 \ln^2 3} \left(\frac{t}{c}\right)^2\right)\right) \right)$$

Здесь мы отбрасывали члены, пропорциональные (t/c) в четвертой степени и выше.

Отметни, что даже если в распределения типа /24/ параметр $\beta_4 = 0$. го гексадекапольный момент, тем не менее, ссть и его величину можно оценить из выражения /считаем) = 0 и пренебрегаем членами (t/c) в четвертой степени и выше/

$$Q_{40} = \frac{72}{35} \sqrt{\pi \beta^2 c^7 \rho_0} (1 + \frac{5}{12} (\frac{\pi}{\ln 3})^2 (\frac{1}{c})^2).$$
 (27/

Поскольку $Q_{40} \neq 0$. то при точных расчетах, когда $\beta_4 = 0$, нужно учитывать гексадекапольную часть потенциала. При вычислении требуется знание величины проникающей функции $f_{40}(r)$. Если учитывать только члены, пропорциональные β_A , то она при малых г равна:

$$f_{40}(r) = \frac{r^4}{c^9};$$
 /28/

при учете же членов, пропорциональных $\beta\beta_4$ и β^2 , ее величина становится следующей /считали г малыми/:

$$f_{4}(r) = \frac{(\beta_{4} - 3S)}{(\beta_{4} + 6S)} \frac{r^{4}}{c^{9}}.$$
 (29/

где S определяется выражением

$$S = \sqrt{\frac{5}{4\pi}} \beta \left(\frac{\sqrt{5}}{6} (22)0/40 \right)^2 \beta + (2400/40)^2 \beta). \qquad /30/$$

При больших г проникающая функция в обоих случаях равка:

$$f_{40}(r) = \frac{1}{r^5}$$
. /31/

ЭЛЕКТРИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ В мюонных атомах с нечетными ядрами

Как упоминалось выше, в последнее время нечетные ядра сравнительно хорошо описываются в предположении о неаксиальной деформации четно-четного остова ¹⁵. Поэтому при описании спектров мезоатомов с нечетными ядрами в рамках упомянутой модели мы должны учитывать неаксиальность остова.

Рассмотрим вариант, когда нечетной частицей является нейтрон. В этом случае μ^- -мезон будет электрически взаимодействовать только с остовом и соответствующий член в гамытьтониане, определяющий квадрупольное взаимодействие, записывается так:

$$H_{\mu N Q_2} = -\frac{1}{2} \sqrt{\frac{4}{5}\pi} e^2 (Q_{20} f_{20}(r) Y_{20} (\theta', \phi') + Q_{22} f_{22}(r) (Y_{22} (\theta', \phi') + Y_{2-2}(\theta', \phi'))).$$
 (32/

Волновые функции ядра вмеют вид / 15/

$$\Psi(\lambda \mathbf{IM}) = \sum_{K\Omega} \mathbf{C}_{K\Omega}^{\mathbf{I}j\lambda} (\mathbf{D}_{\mathsf{M}K}^{\mathsf{I}}\chi_{\Omega}^{\mathsf{j}} + (-1)^{\mathsf{I}-\mathsf{j}} \mathbf{D}_{\mathsf{M}-\mathsf{K}}^{\mathsf{I}}\chi_{-\Omega}^{\mathsf{j}}), \qquad /33/$$

где

$$|\mathbf{K}| \leq \mathbf{I}, \quad \Omega \geq 1/2.$$

Базисные волновые функции выбираем аналогично случаю четно-четного ядра. При этом матричные элементы квадрупольного взаимодействия определяются выражением

$$<\lambda' I'j'n'k';FM \mid H_{\mu NQ_2} \mid \lambda Ijnk;FM > =$$

$$= -8\pi^{2}e^{2}(-1) \sqrt{\frac{(2j'+1)(2j+1)(2\ell+1)}{(2l'+1)}} W(jlj'l';F2) \times$$

× W (
$$\ell j \ell' j'; 1/2 2$$
)($\ell 200 | \ell' 0$)× [$Q_{20} \int (G_{n'k}(r)G_{nk}(r) +$

+
$$F_{n'k'}(r)F_{nk}(r)f_{20}(r)dr \times$$

 $\langle i \sum_{K\Omega} C_{K\Omega}^{I'j'\lambda'} C_{K\Omega}^{Ij\lambda}(12KO|1'K) \} + Q_{22} \int (G_{n'k'}(r)G_{nk}(r) +$
 $+ F_{L+1}(r)F_{L-1}(r)f_{L-1}(r)dr \times$

$$\times \left\{ \sum_{KK'\Omega} C_{K'\Omega}^{ij\lambda'} C_{K\Omega}^{ij\lambda} \right\} ((12K-2|I'K')+(12K2|I'K)) \left\} .$$

/34/

ŝ

В случае, если нейтронное или протонное состояние является дырочным, то выражение будет аналогичное.

Если же нечетной частицей является протон, то в этом случае нам необходимо учесть кроме взаимодействия остова с μ -мезоном также и взаимодействие мезона с протоном. Выражение, описывающее взаимодействие остова с мезоном, будет аналогично вышеприведенному, влияние же нечетного протона учитывается введением в гамильтониан члена

$$H_{p\mu} = -\frac{e^2}{|r_p - r_{\mu}|^2} .$$
 (35/

Это выражение можно разложить в ряд по полиномам Лежандра:

$$H_{p\mu} = -e^{2} \sum_{\nu=0}^{\infty} f(r_{p}, r_{\mu}) P_{\nu} (\cos \omega).$$
 /36/

Здесь $f_{\nu}(r_{p},r_{\mu})$ равна:

$$f_{\nu}(r_{p},r_{\mu}) = \frac{r_{\nu}^{\nu}}{r_{\nu}^{\nu+1}},$$
 /37/

где $r_{<}$ - меньшее, а $r_{>}$ - большее из чисел r_{p} , r_{μ} . Далее это выражение можно представить в виде

$$H = -e^{2} \sum_{\nu=0}^{\infty} \frac{4\pi}{2\nu+1} f(r_{p}, r_{\mu}) \sum_{\eta=-\nu}^{\nu} Y_{\eta}(\theta_{\mu}, \phi_{\mu}) Y_{\nu\eta}(\theta_{p}, \phi_{p}), /38/$$

где θ_{μ} , ϕ_{μ} - угловые координаты мезона, а θ_{p} , ϕ_{p} - соответсъвенно угловые координаты протона.

Член с $\nu = 0$ мы не будем далее рассматривать, поскольку он автоматически учитывается при вычислении базисных волновых функций мюона. Поскольку волновая функция нечетного протона задана в системс координат, связанной с ядром, то нам необходимо совершить переход в эту систему с помощью D-функций, после чего матричные элементы от $H_{p\mu}$ легко вычисляются и имеют вид

$$<\lambda$$
 'I' j'n 'k'; FM | H _{pµ} | λ I j _µ n k; F'M > =

$$= -8\pi^{2}e^{2}(-1)^{1'-j_{\mu}-\ell_{\mu}-j_{\mu}'-\ell_{\mu}-j_{\mu}'-j$$

где соответственно $f_{\nu}(\mathbf{r}_{\mu})$ определяется соотношением $f_{\nu}(\mathbf{r}_{\mu}) = \int R_{n\ell}^2 f_{\nu}(\mathbf{r}_p, \mathbf{r}_{\mu}) d\mathbf{r}_p$, /40/

а Т равно:

$$T = \sum_{\substack{K'\Omega' \\ K\Omega}} C_{K'\Omega'}^{I'j\lambda'} C_{K\Omega}^{Ij\lambda} ((I_{\nu}K\zeta | I'K')(j_{\nu}\Omega\zeta | j\Omega') + (-1)^{I-j} (I_{\nu}-K\zeta | I'K')(j_{\nu}-\Omega\zeta | j\Omega') + (-1)^{I'-j} (I_{\nu}K\zeta | I'-K')(j_{\nu}\Omega\zeta | j'-\Omega') + (-1)^{I+I'-2j} (I_{\nu}-K\zeta | I'-K')(j_{\nu}-\Omega\zeta | j-\Omega')).$$

$$(41/4)$$

Здесь квантовые числа ℓ и ј относятся к протону.

Для интенсивностей дипольных переходов будет, как и в случае четно-четных ядер, справедлива формула /23/.

МАГНИТНОЕ ВЗАИМОДЕЙСТВИЕ В МЮОННЫХ АТОМАХ С НЕЧЕТНЫМИ ЯДРАМИ

Взанмодействие магнитных моментов ядра и мюона вызывает определенный сдвиг уровней мюонного агома. Произведем учет этого взаимодействия. Член гамильтониана, описывающий этот эффект, имеет вид

$$H_{\mu} = \frac{e}{c} \vec{a} \vec{A} . \qquad (42/$$

Здесь а_i - матрицы Дирака, А_i - компоненты векторного потенциала.

Если допустить, что ядро является точечным, то можно написать ^{/15/}:

$$H_{\mu} = \frac{e}{c} g_1 \frac{\vec{1} \cdot [\vec{n} \vec{a}]}{r^2} + \frac{e}{c} g_2 \vec{j} \frac{[\vec{n} \vec{a}]}{r^2}.$$
 (43/

Здесь g_1 и g_2 - соответствующие гиромагнитные множители /15/Матричные элементы, соответствующие первому члену в выражении /43/, имеют вид:

$$\langle \lambda' I' j'n'k'; FM | H_{M_1} | \lambda I j n k; FM \rangle =$$

$$= 2 \frac{\theta}{c} g_1 (-1)^{j'+I-F} \sqrt{I(I+1)(2I+1)} W(jIj'I';F1) \times$$

$$\times \{A \int \frac{G_{n'k'}(r)F_{nk}(r)}{r^2} dr + B \int \frac{F_{n'k}(r)G_{nk}(r)}{r^2} dr \} \times$$

$$\times (\sum_{K\Omega} C_{K\Omega}^{I'j\lambda'} C_{K\Omega}^{Ij\lambda}).$$

$$/44/$$

Здесь А вычисляется по формуле

$$A = -\frac{1}{2} (-1) \sqrt{\frac{j'+2j+1}{2}} \sqrt{\frac{(2j'+1)(2j+1)(2\ell+1)}{2}} \times \frac{j'+2j+1}{2} \sqrt{\frac{(2j'+1)(2\ell+1)(2\ell+1)}{2}} \times \frac{j'+2j+1}{2} \sqrt{\frac{(2\ell+1)(2\ell+1)(2\ell+1)}{2}} \times \frac{j'+2j+1}{2} \times \frac{j'+2j+1}{2} \sqrt{\frac{j'+2j+1}{2}} \times \frac{j'+2j+1}{2} \times \frac{j'+2j+1}{2$$

$$\times [j' - l'')(j' + l' + 1) - (j - l')(j + l + 1)] \times$$

$$\times W(j' l'' j l' ; 1/2 1)(l' 100 | l' 0),$$

$$/ 45/$$

по этой же формуле вычисляется и B, только в случае А, ј' и ℓ' отвечают -k', а ј и ℓ определяются k; соответственно в случае В ј' и ℓ' отвечают -k', а ј и ℓ' - соответствуют -k. Матричные элементы второго члена выражения /43/ имеют вид

$$<\lambda ' I' j_{\mu}' n'k'; FM | H_{M_{2}} | \lambda I j_{\mu} nk; FM > = = 8\pi^{2} \frac{e}{c} g_{2} (-1)^{j'+I-F} \sqrt{\frac{j(j+1)}{2I'+1}} W (j_{\mu} I j_{\mu}' I'; F1) \times /46/\times (A \int \frac{G_{n'k'}(r)F_{nk}(r)}{r^{2}} dr + B \int \frac{F_{n'k'}(r)G_{nk}(r)dr}{r^{2}})P,$$

где Ропределяется выражением

$$P = \sum_{\substack{K \mid \Omega' \\ K\Omega \\ \eta}} C^{\mathbf{I}'j\lambda'} C^{\mathbf{I}j\lambda}_{K\Omega} ((\mathbf{I}\mathbf{1}K\eta | \mathbf{I}'K')(\mathbf{j}\mathbf{1}\Omega\eta | \mathbf{j}\Omega') + (-1)^{\mathbf{I}-\mathbf{j}} (\mathbf{I}\mathbf{1} - K\eta' \mathbf{I}'K')(\mathbf{j}\mathbf{1} - \Omega\eta | \mathbf{j}\Omega') + (-1)^{\mathbf{I}'-\mathbf{j}} (\mathbf{I}\mathbf{1}K\eta | \mathbf{I}' - K')(\mathbf{j}\mathbf{1}\Omega\eta | \mathbf{j}' - \Omega') + (-1)^{\mathbf{I}'+\mathbf{I}-2\mathbf{j}} (\mathbf{I}\mathbf{1} - K\eta | \mathbf{I}' - K')(\mathbf{j}\mathbf{1} - \Omega\eta | \mathbf{j} - \Omega')).$$
 (47/

ЗАКЛЮЧЕНИЕ

Расчеты с использованием приведенных выше формул и произвелены для мезоатома ²³⁸U. Они показали, были произвелены для мезоатома что неакснальность существенно меняет как энергин. так и интенсивности переходов /20/. С использованием 238U. полученного с достаточно высоким спектра иразрешением на синхроциклотроне ОИЯИ. была оценена статическая неаксиальность ядра 238U. которая оказалась равной 13° Аналогично можно с достаточной точностью, пользуясь полученными здесь формулами, рассчитать спекто мезоатомов с нечетными ядрами, а путем спавнения теоретического спектра с экспериментальным возможна оценка неакспальности четно-четного остова.

ЛИТЕРАТУРА

- 1. Jacobson B.A. Phys. Rev., 1954, 96, p.1637. 2. Wilers L. Mat.Fys. Medd., 1954, 29, NB.

- 3. Acker H.L. Nucl. Phys., 1965, 62, p.477. 4. Cote R.E. Phys. Rev., 1969, 179, p.1134.
- 5. McKee R.J. Phys. Rev., 1969, 180, p.1139.
- 6. Pieper W., Greiner W. Phys. Lett., 1967, 24B, p. 377. 7. Pieper W., Greiner W. Nucl. Phys., 1968, A109, p.533.
- 8. Davidson J.P. Phys.Lett., 1974, 32, p.337. 9. Acker H.L. Nucl.Phys., 1966, 87, p.153.

- 10. De Witetal S.A. Nucl. Phys., 1967, 87, p.657. 11. Konishi T. Progr. Theor. Phys., 1972, 48, p.1569.
- 12. Ким Е. Мезонные атомы и ядерная структура. М., Атомиздат, 1975.
- 13. Энгфер Р. и др. ЭЧАЯ, 1975, 5, с.382.
- 14. Lehnder A. e.a. Nucl. Phys., 1975, A254, p.315. 15. Meyer-ter-Vehn J. Nucl. Phys., 1975, A249, p.111,141.
- 16. Acker H.L. e.a. Nucl. Phys., 1966, 87, p.1.
- 17. Шифф Л.И. Квантовая механика. М., ИЛ., 1959.
- 18. Михайлов И.Н. и др. ЭЧАЯ, 1977, 8, №6.
- 19. Davidov A.S., Filippov G.F. Nucl. Phys., 1958, 8, p.257.
- 20. Bagaev V.I. e.a. Phys.Lett., 1977, 67B, p.169.

Рукопись поступила в издательский отдел 18 ноября 1977 года.