ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 12/411-74 P4 - 10886

4885/2-77

P-189

11 11 11

П.П.Райчев, Р.П.Русев

УРОВНИ ЭНЕРГИИ И ПРИВЕДЕННЫЕ ВЕРОЯТНОСТИ Е2-ПЕРЕХОДОВ ДЕФОРМИРОВАННЫХ ЧЕТНО-ЧЕТНЫХ ЯДЕР В СХЕМЕ SU(3)



P4 - 10886

П.П.Райчев,\* Р.П.Русев \*

УРОВНИ ЭНЕРГИИ

И ПРИВЕДЕННЫЕ ВЕРОЯТНОСТИ Е2-ПЕРЕХОДОВ ДЕФОРМИРОВАННЫХ ЧЕТНО-ЧЕТНЫХ ЯДЕР

B CXEME SU(3)

Направлено в ЯФ

| Объединенций енститут |
|-----------------------|
| ядерных последования  |
| <b>B</b> ME MACTERA   |

\* ИЯИЯЭ Болгарской АН, София

Райчев П.П., Русев Р.П.

P4 - 10886

Уровни энергии и приведенные вероятности Е2-переходов деформированных четно-четных ядер в схеме SU(3)

В рамках схемы SU(3) даны правила вычисления приведенных матричных элементов и электрических квадрупольных операторов, а также энергий состояний в основной и гамма-ротационной полосах.

Достигнуто хорошее количественное согласие с экспериментальной картиной в области редкоземельных элементов.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

## Препринт Объединенного института ядерных исследований. Дубна 1977

Raichev P.P., Rusev R.P.

P4 - 10886

Energy Levels and Reduced Probabilities of E2-Transitions for Deformed Even-Even Nuclei in SU(3) Scheme

Within the SU(3) scheme rules are given for the calculation of reduced matrix elements and electric quadrupole operators, as well as of state energies in a ground and gamma-rotational bands. A good quantitative agreement with experimental results for the rare-earth region has been achieved.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

1. В работе<sup>/1/</sup> выяснена роль группы SU(3) для объяснения энергетических уровней и классификации состояний легких ядер. Обзор результатов в этом направлении дается в монографиях<sup>(2,3/)</sup>. Все эти работы основываются на оболочечной модели и ограничиваются рассмотрением легких ядер, принадлежащих 1р и 2s-1d - оболочкам. Применение схемы SU(3) в области тяжелых ядер считалось неправдоподобным, так как казалось, что остаточные взаимодействия в тяжелых ядрах разрушают симметрию, наблюдаемую в области легких ядер.

В работах <sup>/4,5/</sup> высказано предположение о том, что схема SU(3) может быть использована при описании тяжелых деформированных четно-четных ядер. При этом допускается, что спектр деформированных четно-четных ядер есть результат нарушения первоначальной SU(3) симметрии в ядрах, т.е. нижайшие коллективные состояния деформированных четно-четных ядер объединяются в расщепленные мультиплеты группы SU(3). Формально это предположение основывается на том, что низколежащие состояния этих ядер имеют те же значения углового момента  $\ell$ , которые содержатся в мультиплете SU(3) , определенном числами ( $\lambda,\mu$ ), где  $\lambda$  - четное число, а  $\mu$ принимает значения $\mu$ = 0,2,4,.... Так, например, мультиплету ( $\lambda, 2$ ) /  $\lambda$  четное/ принадлежат состояния со следующими значениями углового момента:

 $\ell = \frac{0, 2, 4, \dots, \lambda \quad (K = 0)}{2, 3, 4, \dots, \lambda + 2 \quad (K = 2),}$  /1/

© 1977 Объединенный инспинут ядерных исследований Дубна

где К различает состояния с одинаковым  $\ell$ , встречающимся два раза в мультиплете. С другой стороны, энергетические спектры рассматриваемых ядер содержат две ротационные полосы - основную -  $(K^{\pi}=0^{+})$  с  $\ell =$ = 0,2,4... и у вибрационную -  $(K^{\pi}=2^{+})$  с  $\ell =$ 2,3,4 н т.д. Это позволяет формально предположить, что обе полосы принадлежат к SU(3) мультиплету ( $\lambda$ ,2) и что наблюдаемый спектр является нарушенной SU(3) - симметрией.

Предположение перестает быть формальным и приобретает физический смысл, только если построенная с его помощью схема способна описать наблюдаемый спектр деформированных четно-четных ядер, и приведенные вероятности Е2 -переходов между состояниями расщепленного ( $\lambda$ , $\mu$ ) мультиплета. В<sup>757</sup> было показано, что если энергетический спектр возникает в результате нарушения SU(3) - симметрии, то для приведенных вероятностей E2 -переходов можно получить соотношения, находящиеся в хорошем согласии с экспериментом. Оставался, однако, открытым вопрос, можно ли в рамках этой схемы получить также и наблюдаемые энергетические спектры ядер. Настоящая работа посвящена этому вопросу.

2. В рассматриваемой версии схемы SU(3) предполагается, что гамильтониан можно записать в виде:

$$H = H_0 + V$$
, (2/

где  $H_0$  инвариантен относительно SU(3), а V нарушает SU(3) симметрию, так что полный гамильтониан инвариантен только относительно группы трехмерных вращений 0(3).

Таким образом, расщепляется мультиплет  $(\lambda, \mu)$ . При этом микроскопическая реализация операторов  $H_0$  и V для нас несущественна. Роль будет играть только тензорная природа слагаемых, входящих в гамильтониан. Чтобы определить вид оператора V и его действие на базисные векторы мультиплета SU(3). приведем некоторые результаты работы  $^{/4/}$ .

Унитарные неприводимые представления группы SU(3) определяются двумя числами п н  $T(n = 0, 1, 2, ... T = \frac{n}{2}, \frac{n}{2} - 1).$ 

Состояния, принадлежащие мультиплету (n.T) различаются значениями углового момента  $\ell$ , его проекцией <sup>m</sup> и дополнительным квантовым числом *a* которое принимает целочисленные значения и отличает состояния с одинаковыми  $\ell$ , встречающиеся несколько раз в (n,T) мультиплете. Состояния с максимальной проекцией момента <sup>m</sup>  $= \ell$  строятся следующим образом:

$$n T \ell_{a} \ge z^{\beta} \xi_{1}^{\ell_{1}} (\xi_{1} \eta_{0} - \xi_{0} \eta_{1})^{\ell_{2}} (\xi^{2})^{r} (A^{+})^{a} | 0 > .$$
 /3a/

Здесь  $\xi_k$  и  $\eta_k$  - трехмерные векторы в сферическом базисе, а z ,  $\xi^2$  и  $A^+$  имеют следующий вид:

$$z = \xi_{0} \left( \xi_{1} \eta_{0} - \xi_{0} \eta_{1} \right) + \xi_{1} \left( \xi_{1} \eta_{-1} - \xi_{-1} \eta_{1} \right)$$

$$\xi^{2} = \xi_{0}^{2} + 2\xi_{1}\xi_{-1}, \quad \eta^{2} = \eta_{0}^{2} + 2\xi_{1}\xi_{-1}$$

$$(\xi_{-}) = \xi_{0} \eta_{0} + \xi_{1} \eta_{-1} + \xi_{-1} \eta_{1}$$

$$A^{+} = \xi^{2} \eta^{2} - (\xi_{\eta})^{2}.$$
(6)

Числа  $\ell_1$  ,  $\ell_2$  , a ,  $\beta$  принимают целочисленные значения:

$$\ell_{1} = \ell + 2\alpha - \frac{1}{2}n + T$$

$$\ell_{2} = \frac{1}{2}n - T - 2\alpha - \beta$$

$$\ell_{3} = \frac{1}{2} - (\frac{1}{2}n - T - 2\alpha - \beta)$$

$$\ell_{4} = \frac{1}{2} - (\frac{1}{2}n - T - 2\alpha - \beta)$$

 $\max\{0, \frac{1}{2}(\frac{1}{2}n - T - \ell_{-})\} \le a \le \min\{\frac{1}{2}(\frac{1}{2}n - T - \beta), \frac{1}{2}(\frac{n}{2} + T - \ell_{-}\beta)\},\$ 

а  $\beta = 0$ , когда  $\frac{n}{2} + T - \ell$  четное и  $\beta = 1$  в противном случае. К сожалению, состояния /За/ с разными *а* неортогональны, так как не являются собственными векторами некоторого эрмитового оператора. Можно, однако,

4

5

построить линейные комбинации | n T  $\ell \omega > = \sum_{a} C_{a}^{\omega}$  | n T  $\ell a >$ ,

которые выбираются из условия диагональности H и, следовательно, будут ортогональны как по  $\ell$ , так и по  $\omega$ .

Числа <br/>п "Т и aсвязаны с $\lambda$  ,<br/>  $\mu$  и К схемы Эллиота с помощью

$$\lambda = 2 T, \ \mu = \frac{n}{2} - T, \ K = \frac{n}{2} - 2 T - 2 \alpha.$$
 /5/

Векторы  $\xi_k$  и  $\eta_k$  рассматриваются как операторы рождения. Вакуумное состояние определяется из условия

$$\xi_{k}^{+} \mid 0 > = 0; \quad \eta_{k}^{+} \mid 0 > = 0,$$
 /6/

где

 $\xi_{k}^{+} = \frac{\partial}{\partial \xi_{k}}, \quad \eta_{k}^{+} = \frac{\partial}{\partial \eta_{k}}.$ 

С помощью операторов  $\xi_k$ ,  $\xi_k^+$  н  $\eta_k$ ,  $\eta_k^+$  можно построить генераторы группы SU(3)<sup>/4/</sup>. Введем следующие обозначения:

$$B_{m}^{k} = \xi_{m}\xi_{k}^{+} + \eta_{m}\eta_{k}^{+}$$
 /7/

Тогда операторы углового момента записываются в виде:

$$L_0 = B_1^1 - B_{-1}^{-1}, \quad L_1 = B_1^\circ - B_0^{-1}, \quad L_1 = L_1^+,$$
 /8/

а тензор квадрупольного момента:

$$Q_2 = B_1^{-1}, Q_1 = B_1^{\circ} + B_0^{1}, Q_0 = 2B_0^{\circ} - B_1^{1} - B_{-1}^{-1}, Q_{-m} = Q_m^{+}$$
 /9/

Приступим теперь к определению вида оператора V в /2/. Еще Эллиотом было показано<sup>/1/</sup>, что если V имеет вид Q-Q взаимодействия, т.е.  $\ell = 2,3,4...$  n=3,

$$V = \kappa Q \cdot Q = \kappa \sum_{m} (-1)^{m} Q_{-m} Q_{m}, \qquad /10/$$

то порождаемый им спектр имеет ротационный характер, т.е. мультиплет расщепляется по закону  $\kappa \ell(\ell+1)$ . Этот способ нарушения симметрии неудовлетворителен, поскольку состояния с одинаковыми  $\ell$ , принадлежащие различным полосам, получаются с одинаковыми энергиями, что противоречит эксперименту.

Баргманн и Мошинский <sup>/6/</sup> показали, что существует еще один оператор, который снижает SU(3) - симметрию до 0(3). Этот оператор имеет вид:

$$\Omega_1 = Q^3 = \sum_{\mu\nu\lambda} Q_{\mu\nu} Q_{\mu\lambda} Q_{\nu\lambda}$$
 /11/

и может быть интерпретирован как ангармоническое квадрупольное взаимодействие. Оказывается, однако, что при применении этого оператора состояния второй полосы получаются ниже, чем соответствующие состояния основной полосы, и поэтому он непригоден для описания спектра.

**В**<sup>74/</sup> показано, что существует еще один оператор  $\Omega_2 = A^+A$ , который инвариантен относительно 0(3) и расщепляет (n,T) - мультиплет. Здесь  $A^+$  дается выражением /3/, а A - эрмитово сопряженный к  $A^+$ . Смысл оператора  $\Omega_2$  выясняется следующим образом. Если считать, что операторы  $\xi_k$  и  $\eta_k$  рождают частицы с "псевдоспином" 1/2 и проекцией псевдоспина +1/2и -1/2, соответственно, то можно ввести операторы "псевдоспиновой" группы

$$T_{1} = \frac{1}{\sqrt{2}} (\xi \eta^{+}), \quad T_{-1} = \frac{1}{\sqrt{2}} (\eta \xi^{+}), \quad T_{0} = \frac{1}{2} (\xi \xi^{+} - \eta \eta^{+}).$$
/12/

С помощью этих операторов легко можно проверить, что  $\xi^2, \xi\eta \, {\bf n} \, \eta^2$  - операторы рождения пары частиц с угловым моментом  $\ell$  =0 и проекцией "псевдоспина" 1,О и 1 соответственно. Единственную инвариантную комбинацию с нулевым угловым моментом и нулевым псевдоспином, которую можно построить с помощью  $\xi^2, \, \xi\eta \, {\bf n} \, \eta^2$ , является оператор  $A^+ = \xi^2 \eta^2 - (\xi\eta)^2$  Поэтому оператор  $A^+$ можно рассматривать как оператор рождения четырех частиц с нулевым спином и псевдоспином. Такая система является естественным обобщением пары сверхпроводящего типа в ядре, а оператор  $\Omega_2 = A^+A$  можно условно рассматривать как оператор числа "альфаподобных образований" в ядре. Оператор  $\Omega_2$  действует только на состояния основной ротационной полосы.

3: В данной работе мы выбираем оператор взаимодействия в следующем виде:

0

$$V = \mu Q^{2} - \kappa \left( \Omega_{1} - \lambda \Omega_{2} \right)$$
 /13/

и используем его для ортогонализации базиса и для нахождения энергетического спектра ряда тяжелых деформированных четно-четных ядер. Мы рассматриваем часто встречаемый случай, когда имеются две ротационные полосы - основная ( $K^{\pi} = 0^+$ ) и  $\gamma$ -ротационная ( $K^{\pi} = 2^+$ ). В этом случае n - четное, а  $T = \frac{n}{2} - 2$  и возможны следующие состояния:

а/ Основная полоса. Здесь a = 1, а = 0, 2, ..., n-4. Остальные квантовые числа равны

$$\ell_1 = \ell$$
,  $\ell_2 = 0$ ,  $r = \frac{1}{2}(n - \ell - 4)$ ,  $\beta = 0$ . /14/

б/ Полоса a = 0. Угловой момент принимает значения  $\ell = 2, 3, 4, ..., n - 3$ , а остальные квантовые числа определяющие базисные векторы, следующие:

$$\ell_{1} = \ell - 2 , \quad \ell_{2} = 2 - \beta , \quad r = \frac{1}{2} (n - \ell - 2 - \beta);$$
  
$$\beta = \begin{cases} 0 & \ell - \text{четное} \\ 1 & \ell - \text{нечетное}. \end{cases}$$
 /15/

Матричные элементы оператора  $\Omega_1$  имеют следующий вид /  $\ell$  - четное/:

Состояния с нечетным  $\ell$  встречаются только в полосе a=0 и существует только один матричный элемент

$$< n T \ell 0 | \Omega_1 | n T \ell 0 > = -(2n-3) [ \ell(\ell+1) -12 ].$$
 /17/

Матричные элементы оператора  $\Omega_2$  имеют вид:

$$< n T \ell 1 | \Omega_2 | n T \ell 0 > = 2 (n + \ell) (n - \ell - 2)$$
  
 $< n T \ell 1 | \Omega_2 | n T \ell 1 > = 4 (n - 1)^2 - 2\ell (\ell + 1).$  /18/

Остальные матричные элементы этого оператора равны нулю.

Собственные векторы оператора /1/ ищем в виде

$$|\mathbf{n} \mathbf{T} \boldsymbol{\ell} \ \omega \rangle = \sum_{a=0,1} \langle \mathbf{n} \mathbf{T} \boldsymbol{\ell} a | \mathbf{n} \mathbf{T} \boldsymbol{\ell} \omega \rangle | \mathbf{n} \mathbf{T} \boldsymbol{\ell} a \rangle, \qquad /19/$$

где |n T f w> удовлетворяют уравнения

$$\mathbf{V} \mid \mathbf{nT} \boldsymbol{\ell} \mid \boldsymbol{\omega} > = \boldsymbol{\omega} \mid \mathbf{nT} \boldsymbol{\ell} \mid \boldsymbol{\omega} > .$$

Легко видеть, что в случае четных <sup>?</sup> собственными значениями оператора <sup>V</sup> являются корни секулярного уравнения

$$\left. \left. \left\{ \begin{array}{ccc} n \, T \, \ell \, 0 \, | \, V \, | \, n \, T \, \ell \, 0 > - \omega & < n \, T \, \ell \, 1 \, | \, V \, | \, n \, T \, \ell \, 0 > \\ \\ \left. \left. \left\{ n \, T \, \ell \, 0 \, | \, V \, | \, n \, T \, \ell \, 1 > - \omega \right\} \right. \right. \right. \right\} = 0.$$

Таким образом, для энергии четных состояний получаем

$$E_{\ell}^{\pm} = \mu \quad \ell \quad (\ell+1) + \kappa \{(2n-3) \quad [\ell \quad (\ell+1) \quad -6 \quad ] - \lambda \quad [2(n-1)^{2} + \ell \quad (\ell+1)] \}$$

$$\pm \sqrt{[6(2n-3) + \lambda [2(n-1)^{2} - \ell \quad (\ell+1)]]^{2} + 36(1 + \frac{\lambda}{3}) \quad (\ell-1)(\ell+1)(\ell+2),$$
/22/

8

9

где  $E_{\ell}^{-}$  относятся к основной полосе, а  $E_{\ell}^{+}$  - к  $\gamma$  -ротационной. Энергия основного состояния отсчитывается от значения

$$ω(l = 0) = κλ4(n-1).$$
 (23/

При этом  $E_{\ell}^{\pm} = \omega^{\pm}(\ell) - \omega(\ell = 0).$ Аналогично для состояний с нечетными  $\ell$  получаем:

$$E_{\ell} = \mu \ell(\ell+1) + \kappa \{(2n-3) [\ell(\ell+1)-12] - 4\lambda (n-1)^{2} \}.$$
 /24/

Здесь параметры  $\mu$ ,  $\kappa$ ,  $\lambda$  определяются из эксперимента, а квантовое число n зависит от максимального спина  $\ell_{max}$  в основной полосе. Оказывается, однако, что результаты несущественно меняются с изменением n, так что в дальнейшем мы везде полагаем n=14.

4. Для определення приведенных вероятностей E2переходов надо найти матричные элементы оператора Q между состояниями /19/. Воспользуемся соотношением

$$Q_0 | n T \ell a \ge \sum_{\substack{s=0,\pm 1 \ k=0,1,2}} a_s^{(k)} (L_{-1})^k | n T \ell + k a + s > ,$$

где коэффициенты a<sup>(k)</sup> были вычислены в<sup>/4,5/</sup>. Тогда

$$Q_0 | n T \ell \omega \rangle = \sum_{a} \sum_{k,s} \langle n T \ell a | n T \ell \omega \rangle a_s^{(k)} (L_{-1})^k | n T \ell + k, a + s \rangle$$

$$= \sum_{\omega',\alpha,k,s} \langle nT \ell_{\alpha} | nT \ell_{\omega} \rangle \langle nT, \ell+k, \omega' | nT \ell+k, \alpha+s \rangle \times a_{s}^{(k)} (L_{-1})^{k} | nT \ell+k \omega' \rangle.$$

Коэффициенты преобразования  $< n T \ell_{\alpha} | n T \ell_{\omega} >$  определяются с помощью уравнения /2O/, после чего нетрудно определить матричные элементы  $< nT\ell + k_{\omega}' ||Q||nT\ell_{\omega} >$ .

-2,298 -2,400 -2,534 -2,477 -2,477 -2,477 -2,477 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,2,474 -2,474 -2,474 -2,474 -2,474 -2,474 -2,474 для ядер элементов редкоземельной  $\left|\right\rangle$ 0,757 0,839 1,163 0,855 0,855 0,855 0,575 0,575 0,836 0,920 0,649 0,649 0,780 0,780 × -11, 11 -22,20 -22,20 -10,97 - 3,44 - 2,57 - 2,25 - 2,25 - 2,33 - 3,45 -8,20 Ħ 168 170Yb 170Yb 174Yb 174Hf 176Hf 176Hf 178Hf 180Hf 180Hf 188W 188W 186W 186W 186W 186OS 184OS области AL DO  $\boldsymbol{\prec}$ -2,003 -2,008 -2,015 -2,015 -2,015 -2,015 -2,035 -2,035 -2,035 -2,035 -2,035 -2,124 И ×  $\boldsymbol{\prec}$ • Ħ Значения параметров I,001 I,356 0,906 0,906 0,908 0,9862 0,498 0,498 0,498 0,498 0,498 0,498 0,470 0,470 0,690 ¥ -II,5I -25,59 - 8,565 - 13,35 - 13,35 - 2,36 - 3,067 - 3,067 - 3,067 - 1,34 - 1,34 - 1,34 Ħ 152 Sm 152 Sm 154 Sm 154 Gd 156 Gd 160 Dy 160 Dy 164 Dy 164 Er 164 Er 166 Er 166 Er (TDO

Таблица 1

Таблица 2 (продолжение)

Таблица 2 Значения энергий (в кэВ) и отношения приведенных вероятностей Е2-переходов

| <b></b> | K = 0                | 152                 | Sm  | K = 2                |                     |
|---------|----------------------|---------------------|-----|----------------------|---------------------|
| J       | E <sub>J</sub> (exp) | E <sub>J</sub> (th) | J   | E <sub>J</sub> (exp) | E <sub>J</sub> (th) |
| 2       | 121,78               | I04,88              | 2 * | 1085,8               | II36,96             |
| 4       | 366,44               | 346,I2              | 3   | I233,8               | 1217,77             |
| 6       | 706,90               | <b>7</b> I3,95      | 4   | 1371,6               | I330,29             |
| 8       | II25,60              | 1139,86             |     |                      | ,                   |
| I0_     | I609.00              | 17.48,47            |     |                      |                     |

| $B\left(E2,22\rightarrow 0_0\right)$                                    |       | $B(E2; 4_2 \rightarrow 2_0)$                            |       | B(E2;2 <sub>2</sub> →4 <sub>0</sub> |             | ) $B(E2;4_2 \rightarrow 6_0)$ |       |
|-------------------------------------------------------------------------|-------|---------------------------------------------------------|-------|-------------------------------------|-------------|-------------------------------|-------|
| $\overline{B(E2,2_2 \rightarrow 2_0)} \overline{B(E2;4 \rightarrow 4)}$ |       | $B(E2; 2_2 \rightarrow 2_0) B(E2; 4_2 \rightarrow 4_0)$ |       |                                     | $;4_2,4_0)$ |                               |       |
| exp                                                                     | th    | exp                                                     | th    | exp                                 | th          | exp                           | th    |
| 0,408                                                                   | 0,408 | 0 <b>,0</b> 95                                          | 0,071 | 0,086                               | 0,I33       | 0,II4                         | 0,363 |

## $^{154}$ Sm

K **≈**0

|   | K = 1                | 0                   |   | K = 2                |                     |  |  |  |  |
|---|----------------------|---------------------|---|----------------------|---------------------|--|--|--|--|
| J | E <sub>J</sub> (exp) | E <sub>J</sub> (th) | J | E <sub>J</sub> (exp) | E <sub>J</sub> (th) |  |  |  |  |
| 2 | 82,0                 | 82,13               | 2 | 1440.0               | 1485.50             |  |  |  |  |
| 4 | 266,9                | 269,08              | 3 | I540,0               | 1533.26             |  |  |  |  |
| 6 | 544,3                | 547,73              | 4 | 1660.0               | 1605.62             |  |  |  |  |
| 8 | 903,4                | 895,13              |   | ,                    | ,,,,                |  |  |  |  |

| $\frac{3(\text{E2}; 2_2 \rightarrow 0)}{B(\text{E2}; 2_2 \rightarrow 2_0)}$ |       | B(E2;4 <sub>2</sub> →2             | 0)               | B (E2;22            | •4 <sub>0</sub> ) |
|-----------------------------------------------------------------------------|-------|------------------------------------|------------------|---------------------|-------------------|
|                                                                             |       | B (E2;4 <sub>2</sub> $\rightarrow$ | 4 <sub>0</sub> ) | $B(E2;2_2 \to 2_0)$ |                   |
| exp                                                                         | th    | exp                                | th               | exp                 | th                |
| 0434                                                                        | 0,409 | 0,156                              | 0,072            | 0,135               | 0,132             |

|                        | K = 0                                     | 160                                            | Dy                    | K =                                           | 2                                                  |
|------------------------|-------------------------------------------|------------------------------------------------|-----------------------|-----------------------------------------------|----------------------------------------------------|
| J                      | E <sub>J</sub> (exp)                      | E <sub>J</sub> (th)                            | J                     | E <sub>J</sub> (exp)                          | E <sub>J</sub> (th)                                |
| 2<br>4<br>6<br>8<br>10 | 86,9<br>283,8<br>581,0<br>967,0<br>1428,7 | 86,07<br>284,08<br>586,07<br>976,80<br>1434,62 | 2<br>3<br>4<br>5<br>6 | 966,I<br>1049,I<br>1155,9<br>1288,5<br>1438,I | 994,18<br>1059,18<br>1149,72<br>1254,85<br>1403,29 |

| $B(E2;2_2 \to 0_0)$ |                                                                             | B(E2;4 <sub>2</sub> | $\rightarrow 2_0$ )                                            | B(E2;2 <sub>2</sub> | → 4 <sub>0</sub> ) | B(E2;4; | 2→6 <sub>0</sub> ) |       |
|---------------------|-----------------------------------------------------------------------------|---------------------|----------------------------------------------------------------|---------------------|--------------------|---------|--------------------|-------|
|                     | $\overline{B(E2;2_2 \rightarrow 2_0)} \overline{B(E2;4_2 \rightarrow 4_0)}$ |                     | $(E2; 2_{9} \rightarrow 2_{0}) B(E2; 4_{9} \rightarrow 4_{0})$ |                     |                    |         |                    |       |
|                     | exp                                                                         | th                  | exp                                                            | th                  | exp                | th      | exp                | th    |
|                     | 0,532                                                                       | 0,415               | 0,143                                                          | 0,076               | 0,064              | 0,134   | 0,214              | 0,356 |

|    | K = 0                | 1                   | <sup>62</sup> Dy | K =                  | -2                  |
|----|----------------------|---------------------|------------------|----------------------|---------------------|
| J  | E <sub>J</sub> (exp) | E <sub>J</sub> (th) | J                | E <sub>J</sub> (exp) | E <sub>J</sub> (th) |
| 2  | 80,7                 | 78,51               | 2                | 888,2                | 919,57              |
| 4  | 265,7                | 26I,7I              | 3                | 963,0                | 980,18              |
| 6  | 548,5                | 549,56              | 4                | 1061,0               | 1061,01             |
| 8  | 920,9                | 942,03              | 5                | II82 <b>,</b> 8      | II62,02             |
| 10 | 1374,6               | 1439,01             |                  |                      |                     |

| ſ | $B(E2;2_2\rightarrow 0_0)$ |                                 | B(E2;4; | $B(E2;4_2\rightarrow 2_0)$ |                     | $B(E2;2_2\rightarrow 4_0)$ |        | $B(E2; 4_2 \rightarrow 6_0)$ |  |  |
|---|----------------------------|---------------------------------|---------|----------------------------|---------------------|----------------------------|--------|------------------------------|--|--|
|   | B (E2;2                    | 2 <sup>→</sup> 2 <sub>0</sub> ) | B(E2;4  | 2→4 <sub>0</sub> )         | B(E2;2 <sub>2</sub> | → 2 <sub>0</sub> )         | B(E2;4 | $2 \rightarrow 4_0$ )        |  |  |
| Ì | exp                        | th                              | exp     | th                         | exp                 | th                         | exp    | th                           |  |  |
|   | 0,526                      | 0,548                           | 0,143   | 0,189                      | 0,053               | 0,090                      | 0,116  | 0,224                        |  |  |

-

Таким образом, для отношения приведенных вероятностей

| Таблица 2 | (продолжение) |
|-----------|---------------|
|-----------|---------------|

e \_ 3

|    | K = 0                |                     | <sup>164</sup> Er | K =                  | =2                  |
|----|----------------------|---------------------|-------------------|----------------------|---------------------|
| J  | E <sub>J</sub> (exp) | E <sub>J</sub> (th) | J                 | E <sub>J</sub> (exp) | E <sub>J</sub> (th) |
| 2  | 91,4                 | 90,8I               | 2                 | 860,3                | 885,53              |
| 4  | 299,5                | 300,05              | 3                 | 946,3                | 957,82              |
| 6  | 614,3                | 620,34              | 4                 | 1058,3               | 1057,82             |
| 8  | 1024,3               | I037,63             | 5                 | II97,5               | II75,32             |
| I0 | 1517,6               | I532 <b>,5</b> 0    | 6                 | <b>I358,</b> 3       | 1357,08             |
| DE | 10 · 0               |                     |                   |                      |                     |

| $\frac{B(E2;2_2 \rightarrow B(E2;2_2 \rightarrow f))}{B(E2;2_2 \rightarrow f)}$ | $(2^{0})^{2}$ | $\frac{B(E2; 4_2)}{B(E2; 4_2)}$ | $\rightarrow 2_0)$ | $\frac{B(E2;2_2 \rightarrow 4_0)}{B(E2;2_2 \rightarrow 2_0)}$ |       |  |
|---------------------------------------------------------------------------------|---------------|---------------------------------|--------------------|---------------------------------------------------------------|-------|--|
| exp                                                                             | th            | exp                             | th                 | exp                                                           | th    |  |
| 0,446                                                                           | 0,410         | 0,073                           | 0,072              | 0,112                                                         | 0,132 |  |

| 1 | 6 | 6 | Eı |
|---|---|---|----|
|   |   |   |    |

|    |                      | 5                   | 13 - 2 |                      |                     |  |
|----|----------------------|---------------------|--------|----------------------|---------------------|--|
| J  | E <sub>J</sub> (exp) | E <sub>J</sub> (th) | J      | E <sub>J</sub> (exp) | E <sub>J</sub> (th) |  |
| 2  | 80,6                 | 78,24               | 2      | 785,9                | · 811,91            |  |
| 4  | 265,0                | 260,60              | 3      | 859,4                | 874,35              |  |
| 6  | 545 <b>,</b> 4       | 546,44              | 4      | 956,2                | 957,89              |  |
| 8  | 9II <b>,</b> 2       | 934,45              | 5      | 1075,3               | 1061,70             |  |
| 10 | I344 <b>,</b> 0      | I42I,66             | 6      | I2I5,9               | II87,97             |  |

K = 0

| $B(E2;2_2 \rightarrow 0_0) B(E2;4_2 \rightarrow 2_0)$ |                                                        |       |       | $B(E2;2_2 \to 4_0)$           |       | $B(E2; 4_2 \rightarrow 6_0)$ |       |       |
|-------------------------------------------------------|--------------------------------------------------------|-------|-------|-------------------------------|-------|------------------------------|-------|-------|
|                                                       | $B(E2;2_2 \rightarrow 2_0)  B(Ez;4_2 \rightarrow 4_0)$ |       |       | B(E2; $2_2 \rightarrow 2_0$ ) |       | $B(E2;4_2 \rightarrow 4_0)$  |       |       |
|                                                       | exp                                                    | th    | exp   | th                            | exp   | th                           | exp   | th    |
|                                                       | 0,538                                                  | 0,527 | 0,175 | 0,170                         | 0,097 | 0,095                        | 0,254 | 0,243 |

E2-переходов, т.е. для  $\frac{2_2 \rightarrow 0}{2_2 \rightarrow 2_0}$ ,  $\frac{4_2 \rightarrow 2_0}{4_2 \rightarrow 4_0}$ ,  $\frac{2_2 \rightarrow 4_0}{2_2 \rightarrow 2_0}$  н

т.д. мы получаем громоздкие выражения, которые приводить не будем. Существенно, однако, что эти выражения зависят только от параметра  $\lambda$ .

5. При помощи формул /22/, /24/ и выражений для отношения приведенных вероятностей E2 -переходов параметры  $\mu$ ,  $\kappa$  и  $\lambda$  были определены примерно для 30 ядер / maбл. 1/. Следует отметить, что параметр  $\lambda$  мало меняется от ядра к ядру и в этом смысле оператор  $\Omega_1 - \lambda \Omega_2$  в /13/ является одним и тем же для всех ядер. Параметр  $\kappa$  также меняется не очень сильно, но параметр  $\mu$  испытывает большие изменения. Это легко понять, имея в виду, что член  $\mu Q^2$  дает основной вклад в момент инерции и в основном определяет деформацию ядра.

Сравнение результатов рассматриваемой нами версии схемы SU(3) с экспериментальными данными для некоторых ядер показано в *щабл. 2.* Видно, что оператор /13/ правильно описывает энергетический спектр деформированных четно-четных ядер и вместе с тем дает разумные значения для относительных вероятностей E2-переходов.

Авторы благодарят Г.Н.Афанасьева за обсуждения и С.Р.Аврамова за помощь при численных расчетах. Один из них /П.Р./ приносит благодарность проф. В.Г.Соловьеву за поддержку и гостеприимство в ОИЯИ.

## Литература

- 1. Elliot J.R. Proc.Roy.Soc., 1958, A245, 128.
- 2. Harvey M. Advances in Nucl. Phys., v. 1, Plenum Press, N.Y., 1968.
- 3. Halbert E.C. e.a. Advances in Nucl. Phys., v. 4, Plenum Press, N.Y., 1970.
- 4. Афанасьев Г.Н., Аврамов С.Р., Райчев П.П. ЯФ, 1972, 16, 53.
- 5. Райчев П.П. ЯФ, 1972, 16, 1171.
- Bargmann V., Moshinsky M. Nucl. Phys., 1960, 18, 697; 1961, 23, 177.

Рукопись поступила в издательский отдел 22 июля 1977 года.