C341.3a 5-245

4528/2-24

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

21/4-74

P4 - 10781

В.С.Барашенков, Ф.Г.Жереги

СИСТЕМАТИКА БАРЬЕРОВ ДЕЛЕНИЯ

P4 - 10781

В.С.Барашенков, Ф.Г.Жереги*

СИСТЕМАТИКА БАРЬЕРОВ ДЕЛЕНИЯ

Объединенный институт пасровах испледоцаний **BHEMMOTEKA**

* Институт прикладной физики АН МССР, Кишинев.

Для расчета вероятностей распада тяжелых возбужденных ядер, образующихся при столкновениях ионов с ядрами и в неупругих реакциях под действием быстрых частиц, необходимо знать высоту барьеров деления B_f при различных значениях A и Z /здесь и везде ниже A - массовое число, Z - заряд ядра, N=A-Z /.

Поскольку экспериментальная информация недостаточна, а теоретический расчет В_f очень сложен и не дает пока требуемой точности, в работах^{/1,2/} для описания барьеров деления было предложено полуфеноменологическое выражение

$$B_{f}(A,Z) = B_{f}^{o}(Z^{2}/A) - \Lambda(A,Z) + \delta(A,Z), \qquad /1/$$

включающее массовую поправку Камерона $\Lambda^{/3/}$. поправку на нечетно-четные эффекты δ и простую аналитическую аппроксимацию гладкой части В?.

Результаты, полученные с помощью /1/, хорошо согласуются с экспериментальными данными. Исключение составляет лишь область актиноидов, где имеются два набора экспериментальных значений B_f : медленно уменьшающихся с ростом Z, определенных по наблюдаемым периодам спонтанного деления /эти значения согласуются с аппроксимацией /1//, и практически постоянных / $B_f \approx 6,1\pm0,2$ МэВ /4//, полученных из измерений энергетической зависимости сечений деления. Такое различие, по-видимому, связано с тем, что в ядрах с $Z \ge 90$ барьер имеет сложную форму и описание деления очень тяжелых ядер на основе моделей с одногорбым барьером имеет характер приближенной фено-

менологической аппроксимации, параметры которой зависят от того, какие аспекты процесса рассматриваются в данном случае^{*}

В настоящей работе мы ставим задачу выяснить, какие значения барьеров следует использовать в расчетах деления тяжелых возбужденных ядер. Мы также рассмотрим, к каким изменениям приводит использование уточненной поправки Камерона из работы ^{/6/}. Эта поправка пригодна для более широкой области массовых и зарядовых чисел, что особенно важно для расчетов внутриядерных каскадов, где остаточные ядра имеют самые различные значения А и Z.

Поправку Л мы положим равной сумме оболочечных поправок для нейтронной и протонной компонент ядра S и парных энергий нейтронов и протонов P:

$$\Lambda(A,Z) = S(N) + S(Z) + P(N) + P(Z).$$
 /2/

Выражение для гладкой части барьера B_f° выберем теперь равным выражению для жидко-капельного барьера, а не просто некоторому феноменологическому выражению, как это делалось в работах ^{/1,2/}. Это дает большую уверенность в расчетах, т.к. при некоторых значениях А и Z феноменологическое выражение B_f° может оказаться весьма неточным из-за ошибок в использованных для его определения экспериментальных значениях B_f .

$$B_{f}^{\circ} = B_{f}^{\text{K.K.}} = a_{s} A^{2/3} \begin{cases} 0.83 (1-x)^{3}, 2/3 < x < 1 \\ 0.38 (3/4-x), 1/3 < x < 2/3, \end{cases}$$

где

$$x = (Z^2/A)(a_k/2a_s)[1-k(N-Z)^2/A^2]^{-1}$$

 $a_s = 17,944$ *МэВ*, $a_k = 0,7053$ *МэВ*, k = 1,7826 ⁷⁷ Поправка на нечетно-четные эффекты спаривания:

$$\delta(A,Z) = \begin{cases} 0, N - \text{четные} \\ \delta_{f}, A - \text{нечетное} \\ 2\delta_{f}, N - \text{нечетное}, Z - \text{четное}, \end{cases}$$

где $\delta_{\rm f} = 1,248 M \mathfrak{B}^{/25/*}$.

6

В табл. 1 собраны известные в настоящее время барьеры деления В f полученные из анализа различных экспериментальных данных, и соответствующие значения В f вычисленные по формулам /1/-/4/. Заметные различия / ~20%/ между расчетными и

Заметные различия / ~20%/ между расчетными и экспериментальными данными имеют место для двух самых легких ядер, Еu и Ho, однако барьеры B^{OKCR.} в этой области определяются весьма неточно. Менее понятным является превышение теоретических значений барьеров над экспериментальными для части изотопов Ra. Th и Pa.

Расчетные значения B_f демонстрируют очень слабую зависимость от A н Z при переходе к ядрам с большим числом нейтронов и медленное уменьшение барьера с ростом Z /см. *рис.* 1,2/.

Эти выводы не зависят от того, какая из двух возможных аппроксимаций используется для $\Delta(A,Z)$ * *.

* Результаты расчетов изменяются не сильно если в соответствии с работой '9' положить $\delta_f = 11/\sqrt{A}$ Однако построенная $\delta_f = 1,248$ МэВ дает несколько лучшее согласие с экспериментальными значениями В /при этом лучше получается наблюдаемое в опыте различие В для ядер с четными и нечетными массовыми числами/.

** В работах /1.2/ получено значительно лучшее согласие с $B_{f}^{OKCII.}$ для ядер Еu и Ho. Это обусловлено тем, что выражение для гладкой части B⁹ (A,Z) нормировалось на эти точки. Однако в самих значениях $B_{f}^{OKCII.}$ могут быть значительные погрешности. Барьеры B_{f} для Еu и Ho, полученные в работе ^{/30/}из сопоставления экспериментальных и некоторых модельных данных, также несколько превышают $B_{f}^{OKCII.}$

^{*} Если процесс деления описывать двугорбым барьером, то набор зависящих от Z значений В_f оказывается близким к известным сейчас экспериментальным значениям внешнего, а набор постоянных значений - к экспериментальным значениям внутреннего барьеров деления/см., напр., сводку значений В^{BHelll}_f и В^{BHypp./5, с.127//.}

Puc.1. Зависимость расчетных значений барьеров деления от числа протонов и нейтронов в ядре.

Для изотопов, указанных в *табл.* 1, различие барьеров В ^{теор} для поправок А из работ ^{/3,6/} невелико. Различия становятся более заметными для обедненных или сильно перегруженных нейтронами изотопов. В этих случаях использование данных работы ^{/6/} является, по-видимому, более предпочтительным.

На рис. З приведены отношения испарительной и делительной ширин Γ_n / Γ_f . вычисленные при двух различных предположениях о зависимости барьеров деления от Z: для барьеров, рассчитанных по формулам /1/-/4/, и постоянных барьеров $B_f = 6,2$ МэВ, полученных в работе ^{/4/}. Как видно, в случае тяжелых трансурановых ядер предположение о независяшем от A и Z барьере деления приводит к резкому и увеличивающемуся с ростом Z расхождению с экспериментом, в то время как выражение /1/ дает значения Γ_n / Γ_f . близкие к экспериментальным.

Это подтверждает вывод работ ^{/1,2/} о том, что аппроксимация /1/ может использоваться для расчета распадов возбужденных ядер при самых различных значениях Z, вплоть до тяжелых трансурановых ядер.

Рис. 2. Зависимость барьеров деления тяжелых ядер от Z^2/A . • - экспериментальные данные из работы /14/; Λ - барьеры деления, определенные по экспериментальным значениям $t_{1/2}$; \diamond - экспериментальное значение B_f для Ra. Пунктир - жидко-капельная зависимость $B_f^{K.K.}$ (Z^2/A), сплошные кривые - расчетные значения B_f^{Teop} для Th, U, Cm и Cf. В каждой паре верхняя кривая относится к изотопам с нечетным A, нижняя кривая - к изотопам с четным A.

Таблица І

Продолжение таблицы 1

Барьеры деления В_f /МэВ/

Ядро	β _f ^{Teop}	B ^{эксп}	Ядро	B f ^{Teop}	$\beta_{f}^{\mathfrak{SKCII}}$
¹⁴⁹ Eu ₆₃	39,4	32,5 <i>[</i> 8]	¹⁸⁸ Os ₇₆	23,8	23,9 [9]
^{I57} Ho ₆₇	31,6	26,5 [8]		24	23,7 /IO/ 4.2+0.5/II/
¹⁷³ Lu ₇₁	30,4	28,0 [9]	¹⁹⁰ <i>0</i> s ₇₆	24,8	25,1 /9/
		27,3 [10] 28,7 <u>+</u> 3 [11]	^{I85} Ir ₇₇	20.2	20.4 [8]
¹⁷⁵ Ta 73	25,9	25,I [9]	¹⁸⁷ Ir ₇₇	21,0	21,6 /12/
1797a ₇₃	27,7	26,3 [9] 26,2 [10] 27+3 [11]	¹⁸⁹ I7 ₇₇	2: 21,9	1,8 <u>+</u> 3,5/11/ 20,6 /9/
178 ₩ 74 179 ₩ 74	24,6 25,7	23,0+3,5 [11] 21,5 [12] 25,0+3,5 [11]	¹⁹¹ I7 ₇₇	23,0	$22\pm3 [11]$ $21,5 [9]$ $22,8 [10]$
¹⁸⁰ W ₇₄	25,3	23,2 [12] 25,7 [9] 28,7 <u>+</u> 3,5 [11]	190 PŁ 78	19,1 20.7	22,8 (10) 23 <u>+</u> 3 [11] 19,8 [8]
^{I8I} W ₇₄	26,3	25,0 [12] 24,6 [9]	¹⁹³ Pt ₇₈	21,9	20,9 [9]
¹⁸² W ₇₄	26,4	26,0 [9]	¹⁹⁴ Pt ₇₈	22,5	21,9 (9]
$^{I84}W_{74}$	27,I	26,7 [9]	¹⁹⁶ Pt ₇₈	24,3	24,3 [9]
¹⁸¹ Re 75	23,6	24,0 [12]	¹⁹¹ Pt ₇₉	18,7	18,4 [8]
185 Re 75	25,5	23, 0+3 ,3 <i>[</i> 11] 24,9 <i>[</i> 9]	¹⁹⁵ Pt ₇₉	21,2	19,5 [9]
186 Os 76	22,8	23,9 [9]	¹⁹⁷ Pt ₇₉	22,8	21,8 [9]
- 70	•	22,5 [10] 23.4+0.5/TT	194 Hg 80	18,3 19	9,4 <u>+</u> 3,5/11/
1870s 76	23,8	23,1 [9]	196 Hg 80	19,8	19,5 [9]
70	-	22,5 [10] 22,7 <u>+</u> 0,5[11]	80 و ^H ¹⁹⁸	21,4 21	21,3 (9) 1,8 <u>+</u> 1,5/11/

Ядро	Breop	B _f ^{эксп}	Ядро	Bf	В _f эксл
¹⁹⁹ Hg 80	22,8	21,1 [9]	232 Th $_{90}$	6,5	6,0 /II/ 5 40±0 22 /IB/
200 Hg 80	23,I	2 3, 0 [9]			6,3 [#]
²⁰¹ TČ ₈₁	22,6	20,4 [9]	, ²³³ Th 90	7,3	6,0 <u>+</u> 0,2 /11,4/
		$22,3\pm0,5$ /11 $22,5\pm1.5$ /13	234 Th 90	6,6	6,1 /11 /
198 °6 ₈₂	17,9	17,0 [8]	²³¹ Pa 91	6 ,I	7∕5,6 [¥]
207 BL 83	22,8	20,8 /9/ 21,2+0 5 /11	232 Pa 91	7,0	5,4 <u>+</u> 0,5 <i>[</i> 18] 6,25+0,11/19]
²⁰⁹ Bt ₈₃	24,I	22,6±0,5 /II	²³² U 92	5 ,3	5,4 [*]
208 Po	7 9.9	22,0 [9] 18 7 [9]	²³³ U ₉₂	6,I	5,8 [#]
2IU Po o t	21 2	т9 2+0.8 Гт4	,		5,5 (20)
1084	~1,~	20,0 [9]	1		5,8 <u>+</u> 0,1 /21/ 5,18 <u>+</u> 0,27/18]
211 Po 04	20.8	20,4 <u>+</u> 0,5 [11 18,1 [9]	¹ ²³⁴ U ₉₂	5,4	5,7*
* 04	,	21,5 /IO	1		6,0 (11) 5,2 [22]
212 Po 84	19,2	19,7 <u>+</u> 0,9 [11 18,1 [9]	1		5,3 <i>(23)</i> 5,31+0,27 <i>(</i> 18)
(TO) A		18,6 <u>+</u> 0,5 [11	235 24 02	6,2	> 5,8 [*]
²¹³ At ₈₅	17,4	[9] 15,2 16,8+0,5	1 52	ŗ	5,75[20]
²²⁵ Ra 88	8,5	6,5 <u>+</u> 0,5 /I5	i		5,31 <u>+</u> 0,27 (18)
226 Ra 88	7,9	8,5 <u>+</u> 0,5 [16	²³⁶ U 92	5,6	5,7 * 50/117/
²²⁷ Ra 88	8,5	8,5 <u>+</u> 0,5 [15	1		5,44[23]
229 Th 90	6,7	6,4 [4]	23771	63	5,8 [22] 6 1 [11]
230 Th 90	6,3	5,8 [#]	4 92	0,0	6,4 (20,4)
23T	n 0	c o [ما		

)

8

Продолжение таблицы 1

Продолжение таблицы 1

Ядро	B _f ^{reop}	β _f ^{эксн}	Ядро	B _f ^{reop}	B ^{arch}
238 U	5,5	5,6 *	²⁴³ Pu ₉₄	5,4	5,8 (II,4)
- 32	-	5,8 [20] 5,6 [24,25]	²⁴⁴ Pu ₉₄	4,8	5,0 * 5,4 <u>+</u> 0,3 <i>[</i> 11 <i>]</i>
²³⁹ U ₉₂	6,2	5,08±0,15/18/ 6,15/20/	²⁴⁵ Pu ₉₄	5,4	5,8 (4) 5,4 (II)
²⁴⁰ U ₉₂	5,5	5,7 [II]	⁹²⁴¹ Am 95	5,2	5,4 [*] 6,0 [24,
²³⁶ Np ₉₃	6,4	6,2 [26]			5,9 <u>+</u> 0,3 <i>[</i> II <i>]</i>
²³⁷ Np ₉₃	5,8	≥5,9 [¥] 5,6 <u>+</u> 0,3/II/ 5,5 <i>[</i> 26]	²⁴² Am ₉₅	5,9	5,4 * 6,35 <u>+</u> 0,12 <i>[</i> 19] 6,4 <i>[</i> 11,
238 Np 93	6,5	5,3 <u>+</u> 0,4 [18] 5,98 <u>+</u> 0,12[19] 6,0 [26]	243 Am	5 ,I	24,25/ 5,4 [#] 6,2 [4, 24,25]
²³⁹ N _{P 93}	5,7	>5,2 * 5,6 [26]	²⁴⁰ Cm 96	4,6	6,3 <i>[</i> II] 4,4 *
236 Pu 94	4,7	4,8 [*]	242 Cm oc	4,5	4,5 [*]
238 Pu 94	4,8	5 ,0[*]	244 Cm 96	4,4	4,5 [*]
²³⁹ Pu ₉₄	5,5	5,6 [*] 6,I [4]	²⁴⁵ Gm 96	5 , I	6,4 [4] 6,2 [11]
		5,8 [11] 5,31 <u>+</u> 0,25 [18]	246 Cm 96	4,4	4,5 [*]
²⁴⁰ Pu 94	4,7	4,9 [#] 5,9 [II]	²⁴⁷ Cm 96	5 , I	6.2 [4] 5,9 [II]
241 -	F F	4,8 [23]	248 Cm 96	4,4	4,5 [*]
Pu 94		6,2 [22] 5,9 /II	²⁴⁹ Gm 96	5,0	6,2 [4] 5,5 [II]
242 Pu 94	4,7	5,0 [#]	²⁵⁰ Cm 96	4,0	4,I [*]
- 54		5 ,8<u>+</u>0,3/ II]	²⁴⁹ Bk ₉₇	, 4,9	4,8 [×]
					5,9 [11]

	T	eop	а эксп	Πno		Bateop	Всэксп
ндро ого	Bg		p	255 .			> 3.4 [¥]
²⁵⁰ BK	97	5,4	5,8 [17]	256	*10I	4 ,0	>o o#
²⁴⁶ cf	98	4,2	4,0 [*]	200 M	d _{IOI}	4,9	~3,3 × ×
²⁴⁸ ((98 [°]	4,3	4,2 [*]	257 _M	d _{IOI}	-	>3,4*
-249 C(າ ດ8	4,9	5 ,0[*]	252	102	3,6	≥2,8 [*]
250	? <u>0</u> 9	4,2	4,2 [¥]	254	102	3,5	≥3,3 *
252 c1	98	3,8	3,9 [*]	25 6	102	3,0	≥3,I *
²⁵³ C	f 98	4,I	5,8 [4] 5,3 +0,3 [II]				
254 C	f 98	-	3,5 [*]	•			
256 C	f 98	-	< 3,2 [*]				
²⁵³ E	s 99	4,3	4 ,4 [#]				
²⁵⁴ E	s 99	4,6	5 ₹4,6 [*]				
²⁵⁵ E	s 99	-	4,I [*]				
²⁴⁴ F•	100	4,4	2,4 [*]				
246 6	100	4,3	3 2,8 [*]				
248 _{F1}	1 00	4,	I 3,3 [#]				
250 _{Fi}	I 00	4,	I 3,7 [*]				
252 _F	™ 100	4,	I 3,9 [#]				
254	⁻ n 100	3,	7 3,6 [#]	==	====#		
2 55	- 100	З,	9 4,I [*]		*) _{Bi}	ичисленс	по формуле $\beta_{f} =$
256 ₁	Fm 100	-	3,2 [*]	О, лы	125(2. [полу]	1,5+ 9 распада	(спонтанное деление)
257	• • IOO	-	3,9 [*]	7	-/2 E	ЗЯТЫ ИЗ	обзора (5/ .
258	Fm 100	-	2 ,3[*]				

Рис. 3. Отношение испарительной и делительной ширин для ядер с $Z \ge 90$. Сплошные кривые - расчет с использованием барьеров деления /1/-/4/; энергия возбуждения ядер $E^* = 11$ МэВ. Пунктир - соответствующий расчет с постоянным, не зависящим от A и Z барьером деления. Точками нанесены усредненные экспериментальные данные из работ $27-29^{-1}$.

Литература

- Barashenkov V.S. e.a. Nucl. Phys., 1973, A206, p.131.
- 2. Барашенков В.С. и др. ЭЧАЯ, 1974, 5, с.479.
- 3. Cameron A.G.W. Canad. J. Phys., 1957, 35, p. 1021.
- 4. Воротников В.Е. АЭ, 1972, 33, с.995.
- 5. Горбачев В.М., Замятин Ю.С., Лбов А.А. Взаимодействие излучений с ядрами тяжелых элементов и деления ядер. Атомиздат, М., 1976.

- 6. Tzuran J.W., Cameron A.G.W. In: Proc. of the Cutern Conf. on the Properties of Nuclei Far from the Region of Beta/Stability. Leysin, 1970, v.1, p.275.
- Myers W.D., Swiatecki W.J. Ark.Fyz., 1967, 36, p.593.
- 8. Sikkeland T.S. Phys. Rev., 1964, 135B, p.669.
- 9. Игнатюк А.В. и др. ЯФ, 1975, 21, с.1185.
- 10. Thompson S.G.Цитируется по работе Hasse B.W. Ann. Phys., 1971,68, p.377.
- 11. Vandenbosch R., Huizenga J.R. Nuclear Fission. Acad. Pres., N.Y., 1973.
- 12. Sikkeland T.S. e.a. Phys. Rev., 1971, 3C, p.329.
- 13. Burnett D.C. e.a. Phys. Rev., 1964, 134B, p.952.
- 14. Иткис М.Г. и др. ЯФ, 1972, 16, с.258.
- 15. Бабенко Ю.А. и др. ЯФ, 1968, 7, с.269.
- 16. Жагров Е.А., Немилов Ю.А., Илицкий Ю.А. ЯФ, 1968, 7, с.264.
- 17. Воротников П.Е. и др. ЯФ, 1969, 10, с.726.
- 18. Hill D.L., Wheeler J.A. Phys.Rev., 1953, 89, p.1102.
- 19. Воротников П.Е. ЯФ, 1969, 9, с.538.
- 20. Хайд Э., Перлман И., Сиборг Г. Деление ядер. Атомиздат, М., 1969.
- 21. Воротников П.Е. и др. ЯФ, 1970, 12, с.474.
- 22. Halpern I. Ann. Rev. Nucl. Sci., 1959, 9, p.245.
- 23. Northrop J.A., Stones R.H., Boyer K. Phys.Rev., 1959, 115, p.1277.
- 24. Wilkins B.D., Unik J.P., Huizenga J.R. Phys.Lett., 1964, 12, p.243.
- 25. Viola V.E., Wilkins B.D. Nucl. Phys., 1966, 82, p.65.
- 26. Bishop C.J. e.a. Nucl. Phys., 1972, 198A, p.161.
- 27. Sikkeland T., Ghiorso A., Nurmia M.J. Phys.Rev., 1968, 172, p.1232.
- 28. Ванденбош Р., Хейзенга Дж. В кн.: Труды второй международной конференции по мирному использованию атомной энергии, т.2. Атомиздат, М., 1959, с.366.
- 29. Gavron A. e.a. Phys. Rev., 1976, 13C, p.2374.
- 30. Каманин В.В., Карамян С.А. ОИЯИ, Р7-10061, Дубна, 1976.

Рукопись поступила в издательский отдел 24 июня 1977 года.