ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

25/4-77 P4 - 10336

1604/2-74 С.И.Виницкий, Л.И.Пономарев, И.В.Пузынин, Т.П.Пузынина, Л.Н.Сомов

B-488

11 11 11

.....

ВЫЧИСЛЕНИЕ УРОВНЕЙ ЭНЕРГИИ µ -мезомолекул изотопов водорода в адиабатическом представлении задачи трех тел

P4 - 10336

С.И.Виницкий, Л.И.Пономарев, И.В.Пузынин, Т.П.Пузынина, Л.Н.Сомов

ВЫЧИСЛЕНИЕ УРОВНЕЙ ЭНЕРГИИ µ -мезомолекул изотопов водорода в адиабатическом представлении задачи трех тел

Направлено в "Physics Letters"

Сореднальная вистнух адерных сставдования БИБЛИОТЕКА Виницкий С.И. и др.

P4 - 10336

Вычисление уровней энергии µ -мезомолекул изотопов водорода в адиабатическом представлении задачи трех тел

Вычислены энергии связи всех состояний µ -мезомолекул ppµ, pdµ, ptµ, ddµ, dtµ иttµ с абсолютной точностью ~ 0,1 эВ. Для молекулы pdµ приведен подробный расчет.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1976

Vinitsky S.I. et al.

P4 - 10336

The Calculation of the Energy Levels of the Hydrogen Isotope μ -Molecules in the Adiabatic Representation

The binding energies of all the states of μ -mesomolecules $pp\mu$, $pd\mu$, $pt\mu$, $dd\mu$, $dt\mu$, and $tt\mu$ are calculated.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research

Dubna 1976

🕑 1976 Объединенный институт ядерных исследований Дубна

1. Вычисление уровней энергии μ-мезомолекул водорода представляет интерес по крайней мере в двух отношениях.

Во-первых, знание их необходимо для последовательного описания всей цепочки мезомолекулярных процессов, происходящих при торможении и атомном захвате μ^- -мезонов в смеси изотопов водорода. В свою очередь, подробное знание этой цепочки процессов существенно для аккуратной интерпретации экспериментов по изучению слабого взаимодействия μ^- -мезонов с ядрами изотопов водорода, а также для вычисления скоростей ядерных реакций синтеза в μ -мезомолекулах. /Последний обзор этих процессов содержится в монографии /1//.

Во-вторых, μ -мезомолекулы являются частным случаем системы трех тел, взаимодействующих по закону Кулона. Расчеты таких систем представляют особый интерес, поскольку они относятся к единственному потенциалу взаимодействия, справедливость и границы применимости которого в атомной физике не вызывают сомнений.

2. Известны два основных метода вычисления энергий связи μ -мезомолекул: вариационный и адиабатический /полная библиография таких вычислений вплоть до 1973 г. приведена в обзорах^{/2/} /. До сих пор в адиабатических расчетах использовалось двухуровневое приближение, и поэтому при нахождении энергий основного состояния мезомолекул их точность ~ $(m_{\mu}/M_{p})^{2}$ уступала точности вариационных расчетов. В последнее время, однако, в адиабатическом представлении задачи трех тел разработана последовательная схема вычислений, которая позволяет находить энергии уровней мезомолекул с относительной точностью ~10⁻⁴ и выше $^{/3/}$. В настоящей работе этим методом вычислены энергии всех известных состояний μ -мезомолекул изотопов водорода и проведено сравнение полученных значений с наилучшими вариационными расчетами.

3. В аднабатическом представлении волновые функции $\Psi_{n \tau}$ (\vec{r} , \vec{R})мезомолекулы в состоянии с квантовыми числами ($n\tau$) разлагаются по полному набору решений Φ_{jm} (\vec{r} ; R) задачи двух центров квантовой механики ^{/4/}, т.е. по волновым функциям μ^{-} -мезона, движущегося в поле двух закрепленных ядер M_a и M_b, удаленных друг от друга на расстояние R. Для состояний с полной четностью $\lambda_{=+}$ (-)^J и полным моментом J это разложение схематически можно представить в виде

$$\Psi_{\mathbf{n}\tau} (\vec{\mathbf{r}}, \vec{\mathbf{R}}) = \sum_{j} \frac{1}{\mathbf{R}} [F_{ja}(\vec{\mathbf{r}}; \mathbf{R}, \Theta, \Phi) \chi_{ja}(\mathbf{R}) + F_{jb}(\vec{\mathbf{r}}; \mathbf{R}, \Theta, \Phi) \chi_{jb}(\mathbf{R})], \qquad (1/$$

где

$$F_{ja}(\vec{r}; R, \Theta, \Phi) = [2(1+\delta_{om})]^{-1/2} [\Phi_{jm}^{(a)}(\vec{r}; R)D_{mmJ}^{J}(\Phi, \Theta, 0) +$$

$$+ \Phi_{\mathbf{j}(-\mathbf{m})}^{(\mathbf{a})}(\vec{\mathbf{r}};\mathbf{R}) \mathbf{D}_{(-\mathbf{m})\mathbf{m}_{\mathbf{J}}}^{\mathbf{J}}(\Phi,\Theta,0)], \qquad /2/$$

и аналогично для $F_{jb}(\vec{r}; R, \Theta, \Phi)$. Здесь $D_{mmJ}^{J}(\Phi, \Theta, 0)$ нормированные D - функции Вигнера $^{/5/}, \Phi$ и Θ - угловые переменные вектора \vec{R} , соединяющего ядра M_a и M_b , а \vec{r} - радиус-вектор, соединяющий центр отрезка R и μ^- -мезон с массой m_{μ} . Функции

$$\Phi_{jm}^{(a)}(\vec{r};R) = \frac{1}{\sqrt{2}} \left[\phi_{jm}^{(g)}(\vec{r};R) - \phi_{jm}^{(u)}(\vec{r};R) \right],$$
/3/

$$\Phi_{jm}^{(b)}(\vec{r}; R) = \frac{1}{\sqrt{2}} [\phi_{jm}^{(g)}(\vec{r}; R) + \phi_{jm}^{(u)}(\vec{r}; R)]$$

выражаются через четное (g) и нечетное (u) решения задачи двух центров для состояний, задаваемых набором параболических квантовых чисел $j = [n_1 n_2 m]$ - в случае дискретного спектра и набором $j = [k n_2 m]$ - в случае непрерывного спектра /по классификации разъединенных атомов /4//. Сумма Σ включает суммирование по дискретному и интегрирование по непрерывному спектрам

$$\sum_{j} = \sum_{m=0}^{\infty} \sum_{n} \sum_{2}^{\infty} \sum_{k=0}^{\infty} + \sum_{m=0}^{\infty} \sum_{n} \sum_{2}^{\infty} \int_{1}^{\infty} dk. \qquad /4/$$

/Дополнительные подробности и обсуждение структуры решений можно найти в работе ^{/3/}/.

4. Полная энергия Е мезомолекул и волновые функции $\chi_{ja}(\mathbf{R})$ и $\chi_{jb}(\mathbf{R})$ находятся из бесконечномерной системы обыкновенных дифференциальных уравнений:

$$\sum_{j} \left\{ \left(\frac{d^{2}}{dR^{2}} + 2ME \right) \left(\frac{10}{01} \right) \delta_{ij} - \left(\frac{V_{ia, ja}^{J} V_{ia, jb}^{J}}{V_{ib, ja}^{J} V_{ib, jb}^{J}} \right) \right\} \left(\frac{\chi_{ja}}{\chi_{jb}} \right) = 0,$$

$$i = 1, 2, \dots \qquad (5/$$

Здесь

.

٠

$$M = M_0 / m^*$$
, $\frac{1}{m^*} = \frac{1}{m_\mu} + \frac{1}{4M_0}$; $\frac{1}{M_0} = \frac{1}{M_a} + \frac{1}{M_b}$

 $M_a \ge M_b$ и m_{μ} - массы ядер а и b и μ - мезона соответственно; все величины в системе уравнений /5/ приведены в единицах $h = e = m_{\mu}^* = 1$.

Эффективные потенциалы V_{ij}^J (R) имеют довольно сложную структуру, их явный вид и асимптотика приведены в работах ^{/6, 7/}, а численные значения найдены согласно алгоритмам, изложенным в работах ^{/8,9/}.

Используя параметр малости $(2M)^{-1}$, можно найти решение бесконечномерной системы /5/ по теории возмущений, для чего достаточно каждый раз решать только пару связанных уравнений для функций $\chi_{ia}(R)$ и $\chi_{ib}(R)$.

4

В этом случае вектор-столбец решений $\{\chi_j\}$ разбивается на пары состояний, причем

$$\{\chi_{j}^{}\} = \begin{pmatrix} \chi_{1a}^{(0)} \\ \chi_{1b}^{(0)} \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \chi_{2a}^{(1)} \\ \chi_{2b}^{(1)} \\ \vdots \\ \vdots \end{pmatrix} + \dots, /6a /$$

а полная энергия E системы трех тел $(M_{a}m_{\mu}M_{b})$ равна

$$E = E_0 + \epsilon^{(0)} + \epsilon^{(2)} + \dots,$$

$$E_0 = \frac{1}{2M} V_{1a,1a}^J (\infty) = -\frac{m^*}{2} (1 - \frac{1+2\kappa}{4M}), \qquad /66/$$

$$\kappa = (\mathbf{M}_{\mathbf{h}} - \mathbf{M}_{\mathbf{a}}) / (\mathbf{M}_{\mathbf{h}} + \mathbf{M}_{\mathbf{a}}),$$

где Е₀ равно энергии изолированного атома ($M_{a}m_{\mu}$) в аднабатическом представлении ^{/3/} Значение $\epsilon^{(0)}$ и функции $\chi^{(0)}_{1a}$ и $\chi^{(0)}_{1b}$ нулевого приближения находятся из системы уравнений /5/ при i = j = 1, значение $\epsilon^{(1)} = 0$, алгоритм вычисления поправок $\epsilon^{(2)}$ к энергии связи трех тел и поправок $\chi^{(1)}(R)$ к функциям $\chi^{(0)}(R)$ подробно изложен в работе^{/3/}

Энергия связи ϵ системы трех тел, отсчитанная от основного уровня энергии E_a изолированного атома тяжелого изотопа водорода, равна /в мезоатомных единицах $h = e = m_{\mu} = 1$ /

$$\epsilon = \frac{m^*}{m_{\mu}} E - E_a$$
, $E_a = -\frac{1}{2} \left(1 + \frac{m_{\mu}}{M_a} \right)^{-1}$. (7/

5. В табл. І приведены результаты вычисления энергии связи ϵ всех состояний мезомолекул изотопов водорода. Для сравнения даны также значения $\epsilon^{(0)}$ най-

Таблица 1а

Meso-	J =	D	J =I		J =2	J =3	Метод расчета
моле- Кула	v =0	ν =I	𝒴 =0	v =I	ν =0	ช = 0	
	253,09 ⁸)	107,23	^{;)} -		-	Вариационный
ррм	248	-	102	-	-	-	Адиабатиче- ский / 10/
	253, 12	-	I06, 26	-	-	-	Данная работа
	324,27 ⁸⁾	32,76 ⁸) _{226,55} 0)	-	-	Вариационный
ldju	323	32,9	224	0,7	83,6	-	Аднабатаче- скай/10/
	324,97	35,62	226,25	2,32	85,62	-	Данная работа
	361,4 ^{B)}	75,2 ^B)	288,72 ⁰)	_	-	Вариационный
tt,u	361	81,4	288	43, I	171	46,7	Аднасатече- ский /10/
	362,87	83,67	288, 93	45,0I	172,22	48, I3	Данная работа

^{*}При вычислениях использованы значения масс: m_µ = 206, 769, M_p = 1836, 109, M_d = 3670, 398, M_t = = 5496, 753 и атомная единица энергии ϵ_0 = 27, 2107 эВ. В этом случае энергии основного состояния мезоатомов pµ, dµ и tµ соответственно равны: E_{pµ} = 2528,43 эВ, E_{dµ} = 2663,14 эВ, E_ψ = 2711,18 эВ. Значения ϵ , полученные в вариационных расчетах, пересчитаны к новому значению ϵ_0 . Значения ϵ_{Jv} , полученные в работе^{/10/}, соответствуют значению $\epsilon^{(0)}$ данной работы.

a) Carter B.P. Phys. Rev., 1968, 165, 139.

b) Carter B.P. Phys.Rev., 1966, 141, 863.

c) Halpern A. Phys.Rev.Lett., 1964, 13, 660.

Таблица 1**б**

مر در مرد ا

Энергия связи ϵ_{Jv} (эВ) мезомолекул водорода с различными ядрами *

Мезо- моле- кула	J =0		J =I	J =2	Merozu
	v ⁻ =0	ν =I	v =0	τ =0	ресчета
	221,28 ⁸⁾	-	-	-	Веркационный
pdyu	214	-	89,7	-	Аднабатиче- скай ^{/10/}
	221,48	-	97,90	-	Данная работа
рtµ	2I3,0 ^{b)}	_		-	Варнационный
	206		9I,I	-	Аднабатический/10
	213,85	-	IOO ,44	-	Данная работа
dtµ	318,07 ^{a)}	32,95 ⁸⁾	_		Вариационный
	317	31,7	230	99,3	Адиасатече- скей/10/
	319,07	34,67	232, 23	I02,26	Данная работа

* Энергии связи ϵ_{Jv} отсчитываются от уровня энергии основного состояния более тяжелого изотопа водорода, т.е. от уровня $E_{d\mu}$ для молекулы $pd\mu$ и от уровня E_{μ} для молекул $pt\mu$ и $dt\mu$. Значения ϵ_{Jv} , полученные в работе /10/, соответствуют значению $\epsilon^{(0)}$ настоящей работы.

a) Carter B.P. Phys. Rev., 1968, 165, 139.

b) Carter B.P., Phys.Rev., 1966, 141, 863.

денные ранее в двухуровневом приближении /10/, а также наилучшие вариационные расчеты. Из приведенного сопоставления видно, что реализованный нами метод не уступает вариационным расчетам /11,12/ даже при вычислении энергий основного состояния мезомолекул. В случае возбужденных состояний адиабатические расчеты предпочтительнее. В частности, энергию слабосвязанного состояния (J=0, v=0) мезомолекулы dd_{μ} , которое с помощью вариационных расчетов не удалось даже обнаружить, предлагаемый метод позволяет вычислить с высокой точностью / ~10⁻⁵ от глубины эффективных потенциалов V_{ij}^{i} (R) /.

Таблица 2

Вклады $\epsilon_{jj}^{(2)}$ различных состояний $j = [n_1 n_2 m]$ дискретного спектра задачи двух центров в энергию основного (I=0, v=0) состояния мезомолекулы $pd\mu^*$.

j	[n _l n ₂ m]	$\epsilon_{j}^{(2)}, 10^{-4}$	<i>ϵ</i> ⁽²⁾ (эВ)
2	[100]	-2.44	-1.37
3	[010]	-3,89	-2,19
5	[200]	-0,44	-0,25
6	[110]	-0,68	-0,38
7	[020]	-0,00	-0,00
11	[300]	-0,16	-0,09
12	[210]	-0,27	-0,15
13	[120]	0,00	0,00
14	[030]	0,00	0,00
<i>€</i> (2) €дискр.	$=\sum_{j=2}^{l4} \epsilon_{j}^{(2)}$	-7,87	-4,43

* Нумерация ј соответствует принятой в работе^{/3/}. Состояния ј=[n₁n₂m] с m \neq 0 не вносят вклада в энергию уровней с J=0. При вычислениях использованы следующие значения масс частиц: m_µ = 206,769, M_p = 1836,109, M_d = 3670,398. Мезоатомная единица энергии ϵ_{μ} = 5626,33 эВ.

8

6. Поправка второго порядка $\epsilon^{(2)}$ к энергии связи включает вклад дискретного и непрерывного спектров задачи двух центров:

$$\epsilon^{(2)} = \epsilon^{(2)}_{\text{дискр.}} + \epsilon^{(2)}_{\text{непр.}},$$

 $\epsilon^{(2)}_{\text{дискр.}} = \frac{14}{\sum_{j=2}^{\Sigma}} \epsilon^{(2)}_{j},$

 $\Gamma \text{де}$

 $/8/$

$$f_{\text{Henp.}}^{(2)} = n \sum_{2=0}^{3} \int_{0}^{\infty} dk \ \epsilon \frac{(2)}{n_2 0} (k), \qquad (9/$$

причем для уровней энергии мезомолекул с полным моментом J = 0 состояния с $m \neq 0$ в суммы /8/ вклада не дают. В *табл. 2* и *3* приведена нумерация состояний $j = [n_1 n_2 m]$, значения $\epsilon^{(2)}$ и $\epsilon^{(2)}_{n_2 m} = \int_0^\infty \epsilon^{(2)}_{n_2 m} (k) d k$

при m ± 0 для состояния (J ± 0 , v ± 0) мезомолекулы pd μ . По *табл.* 4 можно проследить относительный вклад различных членов в сумме /6б/ в полную энергию E. На *puc.* 1 и 2 представлены волновые функции $\chi_1^{(0)}(\mathbf{R})$ и

Таблица З

Вклад $\epsilon_{n_{20}}^{(2)}$ различных состояний $j = [kn_2m]$ непрерывного спектра задачи двух центров в энергию связи состояния (I = 0, v = 0) мезомолекулы $pd\mu$

n ₂		$\epsilon_{n_2 o}^{(2)}$, 10 ⁻⁴	[€] (2) п2 ⁰ (эВ)
0		-1,67	-0,94
1		-3,03	-1,70
2 9		-0,71	-0,40
⁽²⁾ непр.	$= \sum_{n_2=0}^{3} \epsilon_{n_20}^{(2)}$	-5,49	-3,09

поправки $\chi_{i}^{(1)}(\mathbf{R})$ от высших состояний дискретного спектра задачи двух центров. Аналогичные поправки $\chi_{n20}^{(1)}(\mathbf{k},\mathbf{R})$ при различных значениях k приведены на *рис. 3*. На *рис. 4* и 5 представлены кривые $\epsilon_{n20}^{(2)}(\mathbf{k})$ и $\epsilon_{j}^{(2)}$ при различных значениях n₂ для основного состояния мезомолекулы pd μ .

7. Как известно, второй порядок теории возмущений /реализованный в данной работе/ дает к точной энергии связи основного состояния приближение снизу, в то время как вариационные расчеты дают приближение сверху. Отсюда следует двусторонняя оценка точности проведенных до настоящего времени вычислений энергий связи основного состояния мезомолекул. Из *таблицы 1* следует, что она составляет велнчины порядка долей электрон-вольта.

Следует также отметить удивительно хорошее согласие первых адиабатических расчетов, выполненных в приближении потенциала Морзе^{/14/}, с результатами настоящей работы.

При интегрировании системы уравнений /5/ использован метод вычислений, основанный на непрерывном аналоге метода Ньютона, в форме, реализованной в работах $^{/13/}$. Шаг разностной сетки при вычислении $\epsilon^{(0)}$ и $\chi_1^{(0)}(\mathbf{R})$ был выбран равным $\Delta \mathbf{R} = 0,025$, а при вычислении $\epsilon_j^{(2)}$ и $\chi_{1}^{(1)}(\mathbf{R})$ - равным $\Delta \mathbf{R} = 0,1$, что при интервале $0 \le \mathbf{R} \le \mathbf{R}_m = 60$ обеспечивало относительную точность интегрирования ~ $10^{-5} - 10^{-6}$ При вычислении вклада от непрерывного спектра величины $\epsilon_{n\,2m}^{(2)}$ (k) и $\chi_{n\,2m}^{(1)}$ (k, R) вычислялись с шагом $\Delta \mathbf{R} = 0,1$ по аргументу R на интервале $0, 1 \le \mathbf{R} \le 20$ в точках k = 0.2(0.1)1(0.2)2(1)10. Проведенные исследования точность приведенных значений энергии связи ограничена лишь порядком теории возмущений и может быть улучшена при учете третьего порядка, либо же непосредственным решением полной системы /5/.

Авторам приятно поблагодарить С.С.Герштейна за постоянный интерес к работе и обсуждения.

10

Таблица 4

Составляющие полной	энергии связи	основного
состояния (J =0, v =0)	мезомолекулы	$p d\mu$

And the second			
	M.a.e.	эВ	
$\frac{E_0}{\epsilon^{(0)}}$	-0,473250 -0,38114	-2662,66 -214,44	
(2)диск.	-0,000788	-4,43	
(2) к непр.	-0,000549	-3,09	
Ε	-0,512700	-2884,62	
E _a	-0,473335	-2663,14	
<i>€</i>	-0,039366	-221,48	

Вариационный расчет Carter'а (1968) для полной энергии дает значение E = -2884,42 эВ и соответственно для энергии связи є = -221,28 эВ при использовании пробной функции с 84 параметрами.

-0.1 Рис. 1. Волновые функции $\chi_{1a}^{(1)}(\mathbf{R})$, $\chi_{1b}^{(0)}(\mathbf{R})$ и поправки к ним $\chi_{j}^{(1)}(\mathbf{R})$. Видно, что амплитуды поправок на два порядка величины меньше амплитуды функций нулевого приближения.

Рис. 2. Поправки первого приближения (1) $\chi_{ja}(\mathbf{R}) \ u \ \chi_{ib}^{(1)}(\mathbf{R})$, определяющие вклад высших состояний і дискретного спектра задачи двух центров в полную энергию Е системы трех тел.

 \sim

Литература

- 1. Muon Physics, Ed. V. Hughes and Wu C.S. Academic Press, New York, 1975.
- Gerstein S.S., Ponomarev L.I. Mesomoltcular processes induced by μ⁻ and π⁻- mesons. In: Muon Physics, Ed. Hughes V. and Wu C.S., v.III,pp.141-233,Academic Press New York,1975; Bertin A.,Vitale A.,Placci A. La Rivista del Nuovo Cimento,1975, 5,423-97.
- 3. Виницкий С.И., Пономарев Л.И. Препринт ОИЯИ, P4-9839, Дубна, 1976.
- 4. Bates D.R., Reid R.H. In : Advances in Atomic and Molecular Physics. v.I. Academic Press, New York, London, 1968; J.D. Power Phil. Trans. Roy. Soc., London, 1973, A274, 663; Комаров И.В., Пономарев Л.И., Славянов С.Ю. Сфероидальные и кулоновские сфероидальные функции, Наука, М., 1976.
- 5. Nielson H.H. Encyclopedia of Physics, v.37, part 1, p.187, Springer-Verlag, Berlin, 1959.
- 6. Hunter G., Gray B.F., Prichard H.O.J.Chem. Phys, 1966, 45, 3806; Halpern A. Phys. Rev., 1969, 186, 14.
- 7. Faifman M.P., Ponomarev L.I., Vinitsky S.I. J.Phys. 1976, B 9,2255.
- 8. Пономарев Л.И., Пузынина Т.П. Препринты ОИЯИ, P4-3405, Дубна, 1966; P4-5040, Дубна, 1970.
- 9. Пономарев Л.И., Пузынина Т.П., Сомов Л.Н. Препринт ОИЯИ, Р4-9840, Дубна, 1976.
- 10. Пономарев Л.И., Пузынин И.В., Пузынина Т.П. ЖЭТФ, 1973, 65, 28.
- 11. Halpern A.Phys.Rev.Lett., 1964, 13, 660.
- 12. Carter B.P.Phys.Rev., 1966, 141, 863; 1968, 165, 139.
- 13. Ponomarev L.I., Puzynin I.V., Puzynina T.P.J.Comp. Phys., 1973, 21,1;

Пономарев Л.И., Пузынин И.В., Пузынина Т.П., Сомов Л.Н. Препринт ОИЯИ, Р4-9915, Дубна, 1976.

14. Беляев В.Б., Герштейн С.С., Захарьев Б.Н., Ломнев С.П. ЖЭТФ, 1959, 37, 1652.

Рукопись поступила в издательский отдел 28 декабря 1976 года.