СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

C3435 A-724

"/x - 78 P3 - 9815

3954/2-76 А.Антонов, Н.Балабанов, Ю.М.Гледенов, Пак Хон Чер, Ю.П.Попов

исследование реакции (n, α) на изотопах молибдена и рутения в резонансной области энергий

P3 - 9815

А.Антонов, Н.Балабанов, Ю.М.Гледенов, Пак Хон Чер, Ю.П.Попов

ИССЛЕДОВАНИЕ РЕАКЦИИ (n, α) НА ИЗОТОПАХ МОЛИБДЕНА И РУТЕНИЯ В РЕЗОНАНСНОЙ ОБЛАСТИ ЭНЕРГИЙ

1. Введение

На пучках нейтронов от импульсного реактора ИБР-ЗО ЛНФ ОИЯИ проводится систематическое изучение реакции (п, α) на резонансных нейтронах в области атомных ядер 60 < A < 190 /см., напр., работу /1/ /.

В настоящей работе приведены результаты измерения полных α -ширин на изотопах 95 Мо, 99 Ru и 101 Ru.

Наблюдение реакции (n, a) в области А $\simeq 100$ означает дальнейшее расширение круга исследованных ядер, что представляет существенный интерес при изучении структуры высоковозбужденных состояний, стимулирует развитие теорий, описывающих их, и может оказаться полезным при подборе параметров оптического потенциала. Кроме того, данные по реакции (n, a) на ядрах $A \leq 100$, входящих в состав конструкционных материалов реакторов, являются необходимыми для оценки накопления в них гелия, что весьма желательно учесть при расчетах мощных реакторов /2/.

Ранее Ю.П.Попов и М.Флорек^{/3/} провели измерение реакции (n, a) на изотопе ⁹⁵Мо и получили первые оценки полных a -ширин для трех резонансов. Наши измерения, проведенные с лучшим /в 3 раза/ временным разрешением, существенно дополняют их данные.

Реакция (n, a) на изотопах рутения наблюдалась впервые.

2. Эксперимент

Измерения были выполнены с помощью многосекционной пропорциональной камеры ^{/4/} на пучках нейтронов от импульсного реактора ИБР-ЗО, работавшего в качестве бустера с линейным ускорителем электронов. Спектрометрия нейтронов осуществлялась по методу времени пролета.

3

С целью получения наибольшей информации использовались различные режимы работы реактора /размножение 100 и 200/, а также различные пролетные базы /30 и 85 м/.

Мишени представляли собой тонкие слои вещества, нанесенные на алюминиевые подложки методом осаждения. Параллельно с исследуемыми изотопами проводилось измерение на мишени из ¹⁴⁷ Sm, которая использовалась в качестве калибровочной. Более подробные сведения об условиях измерений и характеристики использованных нами мишеней приведены в *табл.* 1.

3. Результаты измерений

На рис. 1-3 представлены полученные временные спектры выхода *a*-частиц из реакции (n, *a*) на образцах ⁹⁵ Мо, естественного рутения и ⁹⁹ Ru, соответственно.

Рис. 1. Выход a -частиц из реакции (n, a) на ⁹⁵Мо в зависимости от времени пролета нейтронов. E_n - энергия нейтронов в эВ.

Ядро- Е матень в	ад соедя- іеная	Ea, MaB	Толщина слоя пзотопа, IO ^{I9} яцер/см ⁴	Кол-во слоев	Обогащение по основно- му изотопу, %	Полная площадь мишеней, см ²	Временнос разреженис, нсек/м	Время изме- тас час	Средняя мощность реактора, кВт
Молибден-95	MoO ₃	6,12	9 , 1	ω	95,5	7200	35	270	3,5
Рутений естествен- ный	металл	I	2,7	4	I	3600	45	061	IO
Р утений- 99	металл	6,55	I,55	н	94,6	006	45 90	96 190	10 5
Рутений-101	металл	5,57	1,2	2	93,5	1800	4 5 I20	60 60	01 01

эксперимента

Условия

Таблица

Рис. 2. Выход a -частиц из реакции (n, a) на естественной смеси изотопов рутения в зависимости от времени пролета нейтронов. E_n - энергия нейтронов в эВ. Стрелками без индексов отмечены резонансы, наблюдавшиеся в реакции ⁹⁹ Ru $(n, a)_{101}$ /см. рис. 3/. На вставке - часть временного спектра Ru(n, a) ⁹⁸ Mo /табл. 1, строка 4/.

Рис. 3. Выход а-частиц из реакции (n, a) на ⁹⁹ Ru в зависимости от времени пролета нейтронов. Е_п - энергия нейтронов в эВ.

Значения полных *а*-ширин вычислялись из суммарных отсчетов *а*-частиц в отдельных резонансах способом, аналогичным описанному, например, в работе ^{/5/}, и приведены в *табл.* 2. Для вычислений полных *а*-ширин везде, где специально не оговорено, использовались параметры нейтронных резонансов из работы ^{/6/}. Для абсолютной калибровки *а*-ширин параллельно регистрировался выход *а*-частиц в резонансах ¹⁴⁷ Sm с $E_0 = 3,42$ и 83,7 *эВ*, полные *а*-ширины которых измерены с хорошей точностью ^{/5,7/}.

Таблица	2
---------	---

Значения	полных	а	-ширин
----------	--------	---	--------

		⁹⁵ Mo		⁹⁹ Ru	,		¹⁰¹ Rı	,
E •, ∂B	J	Γ _{ct} × 10 [°] , əB	E •, ∌B	J	Γ _{ec} x 10 [°] , 9Β	Е , әВ	J	Г_{st} ×10⁶ , ∋В
44,7 469,7 554,4 898,4 980,7 1144,6 1950,5 (2430)	3 (<i>l</i> =I) 2 2 2 2 2 -	$0,025\pm0,010$ 12 ± 5 $5,3\pm2,0$ 16 ± 5 46 ± 17 38 ± 15 23 ± 14 $7 30$	10,05 25,22 57,11 81,62 104,09 198,86 342,17	3 3 2 3 2 2 2	0,18±0,06 0,07±0,03 €0,3 5,8±1,3 0,94±0,13 5±3 (2,4)	66,82 336,8 346,2	2 2 2 2	0,3±0,I (0,08) [≆]

х/Приведено среднее значение.

Ошибки в Γ_a включают в себя статистические ошибки счета *a*-частиц и неопределенности в соответствующих резонансных параметрах, входящих в формулу для вычисления Γ_a ; ошибки калибровки не включены. 3.1. Молибден-95

Измерены значения полных *а*-ширин для семи резонансов. Для трех из них получены более точные значения Γ_a по сравнению с данными работы^{/3/}; *а*-ширины резонансов с $E_0 = 44.7$; 469,7; 980,0; 1950,5 *эВ* и нижняя оценка *а*-ширины резонанса в области $E_n \simeq 2430$ *эВ* приводятся впервые в настоящей работе.

Поскольку у резонанса с $E_0 = 44,7$ эВ спин 3⁺, то *a*-распад в основное состояние дочернего ядра⁹² Zr запрещен. Следовательно, зарегистрированные нами *a*частицы обусловлены либо переходами на возбужденные состояния ⁹² Zr, либо двухступенчатой реакцией (n, γa), или тем и другим одновременно. Это дает возможность получить верхнюю оценку величины $\Gamma_{\gamma a}$ /см. ниже/.

Резонанс с $E_0 = 469,7 \ \mathcal{B}$ по данным работы ^{/6/} предположительно является р - резонансом. Если это так, то это первое наблюдение Р - резонанса в реакции (n, a), и в этом случае спин его должен быть 1 или 3.

В области энергин нейтронов $E_n < 1,5 \ \kappa > B$ параметры нейтронных резонансов достаточно хорошо известны, й выделение отдельных резонансов не представляет большой сложности. Однако при $E_n > 1,5 \ \kappa > B$ разрешение по энергии нейтронов в наших измерениях становится недостаточным для надежного выделения пиков, и возникают трудности при оценке вклада соседних резонансов. Этим объясняется большая экспериментальная ошибка Γ_a для резонанса с $E_0 = 1950,5 \ > B$. Для области $E_n >$ > 2,15 $\kappa > B$ нет данных о параметрах нейтронных резонансов. Поэтому можно только отметить, что и там в отдельных резонансах наблюдается выход a -частиц из реакции (n, a), а для сильного резонанса, проявившегося в области 2430 > B, привести нижнюю оценку Γ_a , которая получена в предположении $\Gamma_n \simeq \Gamma$.

3.2. Изотопы рутения

Выполнено несколько измерений как на естественной смеси изотопов рутения, так и на обогащенных изотопах. Несмотря на то, что имеющиеся у нас количества обогащенных изотопов были весьма невелики для такого рода измерений /2,6 г ⁹⁹ Ru и 5 г¹⁰¹ Ru /, получено 9 значений полных α -ширин.

Из расчетов проницаемостей кулоновского барьера для a-частиц ожидалось, что наиболее благоприятным для наблюдения реакции (n, a) на резонансных нейтронах является изотоп ⁹⁹ Ru. Действительно, эксперимент подтвердил это.

Из измерений на образце ⁹⁹ Ru получено по три значения Γ_{α} для резонансных состояний со спинами 2⁺и 3⁺, на образце ¹⁰¹ Ru - α -ширина резонанса с $E_0 = 66,82$ *эВ*.

Значения а-ширин, полученные из измерений на образцах ⁹⁹ Ru и естественного рутения, находятся в хорошем согласии друг с другом, за исключением области Е_п ~ 340 *эВ / рис. 2* и *3/*. Имеется некоторый "избыточный " счет а - частиц в этой области в случае измерения на образце из естественного рутения, объяснить который можно, например, предположив вклад сильного как по нейтронной, так и по а-ширинам резонанса другого изотопа рутения. Расчеты проницаемостей показали, что только два изотопа / ⁹⁶ Ru и ¹⁰¹ Ru / могут дать заметный вклад в величину выхода а-частиц из реакции (n, *a*). Для резонансов в области Е_n ≃34О *эВ*, с учетом наличия там одного резонанса ⁹⁹ Ru и двух ¹⁰ Ru с благоприятным для а-переходов в основное состояние дочернего ядра спином 2^+ , получается качественное согласие результатов различных измерений. Для вычисления значений полных а-ширин использовались параметры нейтронных резонансов, приведенные в работах /6,8-10/, а также временной спектр выхода у - лучей из реакции (n, y), полученный с хорошим разрешением на образце естественного рутения. Последний использовался нами для определения нейтронных ширин резонансов, не приведенных в ^{/6,8/}. Отметим, что интерпретация результатов в области En = 340 эВ осложняется еще из-за искажения потока нейтронов резонансом марганца с Е₀ = = 337 эВ, имеющегося в алюминиевых заглушках вакуумного нейтроновода.

3.3. Средние значения а-ширин

В табл. З приведены экспериментальные значения средних *а*-ширин $\langle \Gamma_a \rangle^{3\text{КСП}}$ для изотопов ⁹⁵ Мо, ⁹⁹ Ru и ¹⁰¹ Ru, а также средние *а*-ширины, рассчитанные по оптической /OM/^{11/} и кластерной /KM/^{12/} моделям. Приведенные погрешности величин $\langle \Gamma_a \rangle^{3\text{КСП}}$ обусловлены в основном ошибкой усреднения по небольшому числу резонансов /считалось, что полные *а*-ширины подчиняются χ^2 -распределению с $\nu_{3\varphi\varphi} \approx 1^{13/}$ /.

T	аб	л	иц	а	3
---	----	---	----	---	---

Средние значения полных а-ширин

ядро милень	J'n	Число резонан-	< 1, 3 KCN 10°,	<[~, ~, ~, 10°,	< [~, 10°,
		СОВ	эB	ə B	əB
⁹⁵ Mo	2+ 3+	4 I	26 ± 18 (0,025)	22 0,25	2 1 0,19
⁹⁹ R u	2+ 3+	3 3	4,4±3, 6 0,4±0,3	I4 0,33	10 0,25
^{IOI} Ru	2+	3	0,15±0,12	0,07	0,05

Величина $\langle \Gamma_{\alpha} \rangle^{3\text{КСШ}} = /26 \pm 18/.10^{-6} \, _{95}B$, полученная по четырем *a*-ширинам резонансов ⁹⁵Мо со спином 2⁺, хорошо согласуется с результатами первых измерений ^{/3/}. Хорошее согласие экспериментальных и теоретических средних значений полных *a*-ширин имеется для резонансов ⁹⁵Мо с $J^{\pi} = 2^{+}$ и ⁹⁹Ru с $J^{\pi} = 2^{+}$ и 3⁺. Разногласию в случае резонанса ⁹⁵Мо с $J^{\pi} = 3^{+}$ серьезного значения пока придавать не следует, поскольку здесь "средняя" величина получена по одному резонансу.

3.4. Силовые функции мягких у - переходов

Определенный интерес представляет изучение а - распада резонансов ⁹⁵ Мо с $E_0 = 44,7$ зВ н ⁹⁹ Ru с $E_0 =$ = 10,05 эВ. Это состояния со спином 3 + и, следовательно, а - переходы в основное состояние дочерних ядер с $I^{\pi} = 0^{+}$ запрещены законом сохранения четности. По-· СКОЛЬКУ ЭНЕРГЕТИЧЕСКАЯ ЩЕЛЬ МЕЖДУ ОСНОВНЫМ И ПЕРВЫМ возбужденным состояниями дочерних ядер ~ 0.8-0.9 МэВ и вероятность а-переходов на первый возбужденный уровень более чем в 100 раз меньше, чем в основное состояние, существенный вклад в экспериментально определяемые значения Газыно опдавать процесс (п, $\gamma \alpha$). В этом случае /особенно для резонанса ⁹⁵ Мо с Е₀ = 44,7 *эВ*, α -ширина которого, по-видимому, меньше среднего, т.е. и а₁-переход ослаблен/ можно получить близкую к реальной верхнюю оценку значения $\Gamma_{\nu \, \alpha}$, которое вследствие суммирования по многочисленным промежуточным состояниям является постоянной величиной для резонансов с данным спином /14/:

 $\Gamma_{\gamma \alpha} = \Gamma_{\alpha}^{\Im K C \Pi} - \sum_{i} \Gamma_{\alpha i} \leq \Gamma_{\alpha}^{\Im K C \Pi} ,$

где Γ_{a_i} - парциальная *а*-ширина, соответствующая переходу в i -ое возбужденное состояние дочернего ядра.

Пользуясь такой оценкой $\Gamma_{\gamma a}$, можно дать и верхнюю оценку силовой функции мягких γ -переходов между сложными высоковозбужденными состояниями $^{/14/3}$

$$\mathbf{S}_{\gamma} = \frac{2\pi}{\mathbf{D}} \cdot \frac{\Gamma_{\gamma}(\mathbf{B}_{\mathbf{n}})}{\mathbf{A}_{\gamma a}} \cdot \mathbf{1}_{\gamma a} \leq \frac{2\pi}{\mathbf{D}} \cdot \frac{\Gamma_{\gamma}(\mathbf{B}_{\mathbf{n}})}{\mathbf{A}_{\gamma a}} \cdot \Gamma_{a}$$

где А_{уа}- площадь под теоретической кривой *a*-спектра в реакции (n, ya).

В табл. 4 приведены значения силовых функций у -переходов между компаунд-состояниями, рассчитанные по приведенной выше формуле в предположении, что все у -переходы имеют только мультипольность E1 или M1. Расчеты А_{уа} сделаны сиспользованием проницаемостей, полученных по кластерной модели.

Таблица 4

Силовые функции мягких у -переходов

Ядро-	<i>Ε</i> _σ , aB	J×	Верхняя	Sr^x	10 ⁹
			Frex X 10 ⁶ , 9B	E1	M1
⁹⁵ Mo	44,7	3+	0,025	≤ 1 4 0	≰ 60
⁹⁹ Ru	IO, 05	3+	0,18	≤ 680	≰ 250

Согласно статистической теории, силовая функция S_{γ} должна слабо зависеть от массового числа. Наши оценки S_{γ} не противоречат этому положению статистической теории и близки по величине /особенно в случае 95 Мо / к значениям S_{γ} , приведенным в работе $^{/14/2}$:

 $S_{\gamma}(E1) = 50 \cdot 10^{-9}$, $S_{\gamma}(M1) = 25 \cdot 10^{-9}$.

Таким образом, проведенные нами исследования реакции (п, α) показали, что в области $95 \le A \le 101$ для описания α -распада компаунд-состояний в первом приближении можно пользоваться статистической теорией. Для описания средних α -ширин удовлетворительные результаты дает применение разработанной ранее оптической модели.

В заключение авторы считают своим приятным долгом выразить благодарность Л.Б.Пикельнеру и сотрудникам его группы за проведение измерения реакции (n, y) на естественной смеси изотопов рутения, В.И.Фурману за предоставление программы для расчета проницаемостей по кластерной модели, Т.С.Зваровой за изготовление мишеней и Н.С.Мелиховой за помощь в оформлении работы.

Литература

- 1. Ю.П.Попов. ЭЧАЯ, т. 2, 925 /1972/.
- Н.П.Балабанов, Ю.М.Гледенов, Ю.П.Попов, М.Флорек, В.И.Фурман. В сб. "Нейтронная физика". /Материалы 2-й Всесоюзной конференции по нейтронной физике, Киев, 1973/, ч. 3, стр. 126, Обнинск, 1974.
- 3. Ю.П.Попов, М.Флорек. ЯФ, 9, 1163 /1969/.
- 4. Н.П.Балабанов, Ю.П.Попов, К.Г.Родионов, В.Г.Семенов. ОИЯИ, Р13-6602, Дубна, 1972.
- 5. Н.П.Балабанов, Ю.М.Гледенов, Пак Хон Чер, Ю.П.Попов, В.Г.Семенов. ОИЯИ, РЗ-9099, Дубна, 1975.
- 6. Neutron Cross Sections. BNL-325, v.1, 3rd ed., 1973.
- 7. В.А.Втюрин, К. Недведюк, Ю.П.Попов, В.И.Салацкий. ОИЯИ, РЗ-8800, Дубна, 1975.
- 8. Von H.G. Priesmeyer, H.H.Jung. Atomkernenergie, 19, 111 /1972/.
- 9. C. Coceva, F. Corvi, P. Giacobbe, G. Carrado. Nucl. Phys., A117, 586 /1968/.
- 10. Kim Hi San, L.B. Pikelner, E.I.Sharapov, Kh.Sirazhet. Proc. Conf. on the Study of Nuclear Structure with Neutrons, Antwerp 1965.
- 11. В.И.Фурман, Ю.П.Попов, В сб. "Нейтронная физика". /Материалы Всесоюзного совещания по нейтронной физике, Киев, 1971/, ч. 1, стр. 159, Киев, "Наукова думка", 1972.
- 12. С.Г.Кадменский, В.И.Фурман. ЭЧАЯ, т.6, 469/1975/.
- 13. Ю.П.Попов, Р.Ф.Руми, М.Пшитула, М.Стэмпиньски. Acta Phys. Pol., B4, 275 /1973/.
- 14. Yu.P.Popov. In: Neutron Capture Gamma-Ray Spectroscopy, p. 379, RCN, Petten, Netherlands, 1975.

Рукопись поступила в издательский отдел 24 мая 1976 года.