

СООБЩЕНИЯ ОБЪЕДИНЕННОГО Института Ядерных Исследований

Дубна

95-551

5.51-95

P3-95-551

Н.А.Гундорин, Ю.Н.Копач, С.А.Тележников, В.И.Фурман

СПЕКТРОСКОПИЯ ГАММА-ИЗЛУЧЕНИЯ ОСКОЛКОВ ДЕЛЕНИЯ ²³⁹Рu ТЕПЛОВЫМИ И РЕЗОНАНСНЫМИ НЕЙТРОНАМИ НА ИМПУЛЬСНОМ ПУЧКЕ НЕЙТРОНОВ РЕАКТОРА ИБР-30

Введение

Исследования взаимодействия нейтрона с ядром в отдельных резонансах служат источником новой информации, необходимой для описания механизма распада составного ядра. Экспериментальные данные об особенностях деления, идущего через резонансные компаунд-состояния нужны для выяснения природы каналов и мод деления. Они могут оказаться полезными для понимания динамики процесса деления.

В ряде работ наблюдались особенности массового распределения осколков деления ядер ²³³U, ²³⁵U и ²³⁹Pu резонансными нейтронами. В одной из последних работ этого направления [1] изучалось массовое распределение осколков деления ²³⁵U тепловыми и резонансными нейтронами, как в отдельных резонансах, так и в интервале энергий от 0,3 до 25,6 эВ. Как пишут авторы, этот интервал совпадает с интервалом, изученном в работе [2], где наблюдался рост выхода асимметричного деления примерно на 6% для массы 133 и около 14% для массы 131 относительно деления на тепловых нейтронах. В работе [1] были найдены различия как для асимметричного так и для симметричного деления. Выход осколков с массовыми числами от 114 до 122, соответствующих симметричному делению, оказался ниже примерно на 15%. Для асимметричного деления в области масс от 84 до 96 и от 140 до 152 отмечено уменьшение выхода, а для масс от 96 до 108 и от 128 до 140 - выход возрастает. Полученные в работе данные приведены на рисунке 1. В верхней части его показаны экспериментальные точки и компоненты массовоого распределения, соответствующие трем различным модам деления на тепловых нейтронах. В нижней части приведена разность массового распределения для резонансных и тепловых нейтронов. Максимальные отклонения выхода для асимметричного деления составляют примерно 4%, а общий вид разности говорит о том, что для деления резонансными нейтронами два максимума находятся ближе друг к другу, чем для тепловых нейтронов.

По мнению авторов работы [1] их результаты согласуются с данными более ранних работ, проводимых с использованием ядерных взрывов в качестве источника нейтронов. В них наблюдались еще большие отличия в массовом распределении осколков деления тепловыми и резонансными нейтронами для другого ядра – ²³⁹Pu. Возможности применения эффективной методики работы [1], использующей двойную ионизационную камеру, сильно ограничены при изучении этого ядра вследствие его высокой α-активности.

С целью получения дополнительных данных об особенностях резонансного деления в настоящей работе проведены сравнительные измере-

Ouscause when exercises BIREBOSHKONH KHEKSER **5H5**NHOTEKA

распределение осколков деления о тепловыми нейтронами. Внизу - разность массовых распределений для резонансных и тепловых нейтронов. Рисунки взяты из работы [1].

ния спектров мгновенного гамма-излучения осколков деления ²³⁹Pu тепловыми и резонансными нейтронами. Примерение метода гамма-спектроскопии при изучении деления этого ядра [3] позволяет идентифицировать осколок с абсолютным разрешением по массе и заряду. Известные интенсивности переходов ротационной полосы возбуждений для четночетных осколков ряда делящихся ядер, поправленные на коэффициент внутренней конверсии, используются при этом для определения абсолютного выхода осколков.

Проведение экспериментов

Эксперименты проводились на импульсном реакторе ИБР-30, работавшем в сочетании с ускорителем ЛУЭ-40. Частота импульсов нейтронов составляла 100 гц, а длителиность – 4 мкс. Для измерений был использован γ-спектрометр на основе быстрой ионизационной камеры деления [4], содержащей в качестве мишени 1.6 г. изотопа плутония-239, и Ge(Li)-детектора, включенных на совпадения. Пролетная база, на которой проводились измерения, составляла 57 м, разрешение по

2

времени пролета нейтрона – 61 нс/м, энергия рецикличных нейтронов – 0.17 эВ. В ходе измерений проводился многомерный анализ, подобный описанному в работе [5], с регистрацией трех параметров на каждое событие: времени пролета нейтрона, вызвавшего деление, энергии γкванта (E_{γ}), испущенного осколком и временного интервала между регистрацией осколка и γ-кванта (τ). При этом интервал энергий регистрируемых нейтронов составлял (0,2 ÷ 220) эВ, гамма-квантов – E_{γ} = (100 ÷ 2300) кэВ, а диапозон временного параметра τ – 1 мкс. Относительная эффективность Ge(Li)-детектора составляла 12%, а энергетическое разрешение для энергии 129 кэВ – 1.7 кэВ.

Поскольку падающие на мишень нейтроны с энергией ниже 0.17 эВ в условиях эксперимента были рецикличными, для выделения делений, инициирумых тепловыми нейтронами, не удалось воспользоваться времяпролетной методикой, а применялся метод кадмиевой разницы. Кадмиевое отношение составляло величину 0.213.

Каждая из 4-х проведенных в экспериментах серий состояла из пары измерений, в одном из которых в пучке падающих на мишень нейтронов помещался кадмиевый фильтр. При сравнении измеренных в такой паре спектров гамма-квантов погрешность относительных результатов будет меньше чем при сравнении абсолютных данных из-за отсутствия вклада погрешности эффективности гамма-спектрометра.

Обработка данных

В связи с недостаточной статистической представительностью измеренных гамма-спектров для отдельных резонансов, при обработке результатов проведенных экспериментов проводился интегральный сравнительный анализ гамма-излучения осколков из теплового и резонансного деления, где в качестве резонансного взят интеграл по спектру нейтронов от 0,3 до 220 эВ. В дальнейшем будем использовать следующие обозначения: спектры, полученные из набора с фильтром, будем называть спектрами (n_{res},f)-реахции, спектры, полученные из набора без фильтра, спектрами (n_{sum},f)-реакции. Здесь индекс "sum" означает суммарное взаимодействие с резонансными и тепловыми нейтронами. Интенсивности γ-квантов из соответствующих спектров будем называть интенсивностями (n_{res},f)-реакции и интенсивностями (n_{sum},f)реакции. Из разницы этих интенсивностей при учете кадмиевого отношения будут получены интенсивности (n_{th},f)-реакции, т. е. интенсивности для деления плутония тепловыми нейтронами.

На первом этапе обработки проводилась сортировка накопленных в экспериментах многомерных данных с построением 8-ми двухмерных

матриц Е_γ × τ с размерностью 4096×1024, интегрированных по времени пролета нейтронов. Представленная в таком виде информация удобна для хранения и дальнейшей обработки, т. к. позволяет получать одномерные спектры гамма-квантов в любом интервале параметра τ. Интегральный спектр по этому параметру, представляющий спектр временных совпадений камера делния – гамма-детектор, показан на рисунке 2.

Рис.2. Интегральный спектр параметра т, полученный в первой серии измерений: N – число отсчетов, n – номер канала (цена канала 1.1 нс).

События, зарегистрированные слева от пика совпадений, являются случайными совпадениями, а справа – на случайные совпадения накладываются истинные запаздывающие совпадения с гамма-квантами с уровней, имеющих время жизни больше 14 нс.

Для различных интервалов значений параметра τ строились гамма-спектры случайных (первый интервал – слева от пика) и истинных совпадений (второй интервал – правая часть спектра, включающая пик сопадений). Спектр-1 и спектр-2, соответствующие этим интервалам для одного из измерений первой серии, представлен на рисунке 3. В спектре случайных совпадений проявляются пики, сопутствующие α-распаду ядра ²³⁹Pu.

При обработке полученных таким образом спектров применялась подгоночная программа SPANAL [6]. Программа находит на спектре несимметричные пики. Форма пиков задана как гауссовское распределение, свернутое с экспонентой, убывающей в сторону меньших энергий. Поэтому каждый пик имеет следующие параметры: положение, площадь,

Рис.3. Гамма-спектры, полученные в измерениях без фильтра в первой серии: 1 – спектр случайных совпадений (спектр-1), 2 – суммарный спектр истинных и случайных совпадений (спектр-2). N – число отсчетов, п – номер канала.

полуширина и асимметрия. Подгонялся спектр-1 и находился полином для асимметрии. Далее спектр, получившийся в результате этой подгонки, нормировался согласно ширинам интервалов по т спектра-1 и спектра-2 и вычитался из спектра-2. Таким способом получается спектр-3, очищенный от примеси случайных совпадений. Спектр-3 из измерения без фильтра в первой серии показан на рис.4. Видно,что пики находятся на высоком фоне колоколообразного вида. Для подгонки спектров такого типа нужны дополнительные предположения о форме подложки. При обработке спектров-3 из всех наборов использовалось предположение, что подложку можно описать плавной кривой, не имеющей локальных особенностей шириной 30-50 каналов. Так как спектр-3 является разностью спектра-2 и подогнанного спектра-1, при подгонке спектра-3 в качестве спектра дисперсий использовался спектр-2. Наибольшую сложность представляет подгонка начального участка спектра до 600 кэВ (в районе 600 кэВ видна ступенька от неупругого рассеяния быстрых нейтронов на Ge). В программе SPANAL подложка ищется в виде парабол на заданных участках. На границах сшиваются значения парабол и их производных. При подгонке интервала от начала до 600 кэВ программа работала с фиксированными полушириной и асим-

4

Рис.4. Гамма-спектр истинных совпадений, полученный в измерении без фильтра в первой серии измерений. Подписи над пиками – энергии у-переходов в кэВ. Плавная кривая – подложка, полученная при подгонке. N – число отсчетов, n – номер канала.

метрией. Задавалось 6-7 участков для парабол. В качестве границ участков на спектре задавались точки, предположительно лежащие на уровне фона. Для двух наборов каждой серии задавались одинаковые границы участков. Подгонка части спектра с энергией выше 600 кэВ проще, так как там подложка монотонно убывает. В программе SPANAL задавалась чувствительность поиска пиков 2ΔS, т. е. искались пики, площади которых были больше удвоенной ошибки площади. Далее в тексте спектр-1 будем называть спектром случайных совпадений, а спектр-3 -- спектром истинных совпадений.

Для определения энергии найденных пиков в каждой серии измерений делалась калибровка по линиям: 94,65; 129,28; 375,02 и 413,69 кэВ из распада ²³⁹Pu, а также 1778,90 кэВ из захвата нейтронов на Al и 2223,25 кэВ из захвата на водороде.

Далее был произведен отбор пиков на спектрах истинных совпадений для дальнейшего анализа. Для этого из Твблиц работы [7] были выбраны 32 четно-четных осколка, выходы которых превышают значение 0.3%. Это значение было выбрано из следующих соображений. Максимальные выходы осколков в изучаемой реакции равны 3% - 5%. Чтобы получить значения этих выходов с точностью не хуже 10%, надо знать возможные вклады в площади пиков тех осколков, выходы которых 0,3%. В табл. І приводятся данные об отобранных осколках: значения рекомендованных выходов из работы [7], энергии возбуждений уровней 2+, 4⁺ и 6⁺ и ссылки на соответствующие работы. Значения рекомендованных выходов осколков получены в работе [7] расчетным путем на основании определенной модели. В качестве исходиых данных были взяты 108 экспериментальных значений выходов осколков при делении ²³⁹Ри тепловыми нейтронами с их ошибками, и в результате были получены значения выходов и их ошибок больше чем 830 осколков. В таблице знак * стоит около тех значений выходов, которые брались из экспериментов, остальные значения получены расчетным путем. Из данных табл. I были определены энергии переходов $2^+ \rightarrow 0^+$, $4^+ \rightarrow 2^+$ и $6^+ \rightarrow$ 4⁺. Энергия 4041 кэВ из распада ¹³²Sn была отброшена, так как этот диапазон энергий у-квантов в экспериментах не регистрировался, энергии ниже 150 кэВ не рассматривались, так как из-за сложности спектров в этой области энергий трудно получить надежную информацию о площадях пиков. Из полученных таким образом 82 переходов в спектре с наибольшей статистикой было обнаружено 45 переходов. Переходы 602, 605 и 620 кэВ из анализа были исключены, так как они находятся в спектрах на ступеньке от реакции Ge(n,n'y), и из-за малой статистики в измерениях с фильтром эту ступеньку не удалось надежно обработать при подгонке. Пик 511 кэВ не обрабатывался, так как энергия перехода в ¹⁰⁶Мо совпадает с энергией аннигиляции позитрона.

Так как в списке энергий некоторые переходы имеют близкие значения энергии, разрешение Ge(Li)-детектора не позволило их разделить, и площади ряда пиков на спектрах отражают суммарные интенсивности переходов из разных осколков.

В табл. II приведены данные о соответствующих осколках для че-

6

Табл. I. Данные о четно-четных осколках, отобранных для анализа

			Энерг	ия уровня	J^π, кэ В	
OCK	олок	Выход, %	2+	4+	6+	Ссылки
		[7]				· · ·
Se	84	0.31(03)	1455.110			8
Kr	88	0.79(03)*	775.310	1643.870		9
Kr	90	1.18(05)*	707.130			10
Kr	92	0.34(02)*	769.000			11
Sr	92	1.06(06)*	814.980			11
Sr	94	3.12(16)*	836.910	2146.000		12
\mathbf{sr}	96	1.90(09)*	814.930			13
Sr	98	0.33(12)*	144.225	433.770	867.300	14
Zr	96	0.55(10)*	1750.900	2857.900	3483.200	13
Zr	98	2.85(14)*	1222.830	1843.340	2490.920	14
Zr	100	4.76(24)*	212.531	564.491	1062.400	15
Zr	102	1.19(12)*	151.770	478.410	965.200	16
Mo	102	1.68(12)*	295.920	743.030	1327.130	16
Mo	104	4.12(21)*	192,300	561.000	1081.000	17
Mo	106	2.05(10)*	171.548	522.400	1034.200	18
Ru	108	1.24(06)*	242.230	665.140	1238.000	19
Ru	110	0.50(06)	240.670	663.800	1239.900	20
Sn	128	0.59(07)	1168.830	2000.350		21
Sn	130	0.85(17)*	1221.260	1995.660	2257.000	22
Sn	132	0.49(09)*	4040.800	4415.800	4715.200	23
Те	132	2.36(07)*	973.900	1670.710	1774.140	23
Те	134	4.70(52)	1279.700	1576.800	1692.000	, 24
Те	136	0.66(19)	605.910	1029.000	1381.000	25
Xe	136	3.02(36)	1313.030	1694.390	1891.710	25
Xe	138	4.08(33)*	588.825	1072.530	1554.000	26
Xe	140	1.55(09)*	376.657	834.287	1416.000	27
Ba	140	0.90(18)	602.345	1130.580		27
Ва	142	3.27(36)	359.596	834.810	1466.100	28
ва	144	2.09(23)	199.326	530.240	961.900	29
Ce	146	0.95(11)	258.470	668.330	1171.300	30
Ce	148	1.09(12)	158.468	453.430	839.700	31
Nd	152	0.38(04)	75.900	240.600	487.900	32

тырех таких пиков. Ожидаемая интенсивность, определяемая количеством гамма-квантов на акт деления, здесь и далее вычислялась согласно известным экспериментальным данным о заселенности нижних уровней ротационной полосы для четно-четных осколков. Измеренные в ряде работ интенсивности переходов между ними для различных делящихся ядер, выраженные в процентах, представлены ниже.

	8* -	6*		6* -	4*	•	4* -	2*	2+ -	0+			
²³⁵ U(n _{res} ,f)			40	:		70	:	100		(3-,4-)	[3	3];
²⁴⁸ Cm(sf)	11	: .		39	:		74	:	100		(0+)	[3	4];
²⁵² Cf(sf)	20	:	• •	45	:		75	:	100		(0+)	[3	51.

В круглых скобках указаны значения спина и четности делящегося ядра. В дальнейшем нами использовались данные работы [35]. Поскольку одна из интенсивностей в сложных пиках является доминирующей, то весь пик приписывался соответствующему ей осколку, а ожидаемая интенсивность пика принималась суммарной.

Полученные в работе данные о некоторых осколках оказались не полными, так как часть пиков была найдена не во всех четырех сериях. Некоторые пики не были найдены в измерениях с фильтром из-за недостаточной статистики. В этом случае ожидаемая интенсивность представлялась ее оценкой - значением ошибки площади подложки в соответствующем интервале спектра. Такие оценочные значения были включены в анализируемые результаты.

Получение результатов и их обсуждение

Полученные значения площадей и их ошибок для выбранных пиков, найденные при подгонке восьми спектров истинных совпадений, анализировались с целью получения ответа на два вопроса:

 Существуют ли различия в выходе осколков деления ²³⁹Рu резонансными и тепловыми нейтронами?

2. В какой степени выход наблюдаемых в эксперименте осколков деления ²³⁹Ри согласуется с рекомендованными данными [7]?

Анализ данных, связанный с первым вопросом, проводился в несколько этапов.

На первом этапе были получены относительные интенсивности выбранных пиков во всех восьми спектрах истинных совпадений. Для этого площади пиков нормировались на величину площади пика 129 кэВ из распада ²³⁹Рu, найденную при подгонке спектра случайных совпадений в

ношения R для двух наборов гауссовских величин и вычисляется его ошибка Q. Для каждого пика вычислялась величина $p_k = \frac{(R_k - 1)^2}{O_s^2}$.

Предполагалось, что ошибка Q_k имеет гауссовский характер. В работе выбран уровень достоверности гипотезы 95%. Он используется во всех пунктах, где применялся метод наименьших квадратов, и где рассматривался χ^2 -критерий оценки гипотезы. Полученное значение p_k сравнивалось с величиной 3,841 (95%-ный уровень для числа степеней свободы n=1). Значения p_k для пяти пиков, превышающих эту величину. приведены в табл.III.

Табл.III Результаты сравнения относительных и абсолютных интенсивностей I_S и I_r в реакциях (n_{sum},f) и (n_{res},f), соответственно, для шести пиков до и после коррекции

Осколок Ј ^π	t→J [#]		до/после коррекции		тип коррек-			
		Еү,кэВ	Pk	sk	ции	1 ₅ ,%	Ir,%	
Sn 130 6+	$\rightarrow 4^+$	261	6.87	4.95	00		- <u>-</u>	
			6.87	4.95		0.96(11)	0.42(22)	
Mo 102 2+	→0 ⁺	296	5.34	7.28	01			
			0.18	2.11		2.07(16)	.2.79(47)	
Zr 100 4 ⁺	→2 +	352	9.46	4.56	30			
			6.57	2.47		5.07(42)	4.26(31)	
Xe 140 2+	→0 ⁺	377	4.28	9.21	30			
			2.85	6.49		1.33(24)	2.28(28)	
Xe 138 6+	$\rightarrow 4^+$	482	12.35	4.64	20			
			1.52	0.41		2.00(43)	1.66(30)	
Kr 90 2+	→ 0 ⁺	708	2.75	3.86	00			
			2.75	3.86		1.92(19)	2.77(39)	

На втором этапе вычислялись абсолютные интенсивности выбранных пиков I_γ с использованием следующих выражений: N_ν × (1 + α)

$$I_{\gamma} = \frac{N\gamma \times (1 - k_{\gamma})}{N_{f} \times \epsilon_{\gamma} (E_{\gamma})}$$

И

N

$$f = \frac{1}{m_{Pu} \times r_{\alpha} \times I_{129} \times \epsilon_{\gamma} (129) \times \Delta \tau}$$

11

Табл. II. Состав сложных пиков

	Осколок	$J_{1}^{\pi} \rightarrow J_{f}^{\pi}$	Е _ү , кэВ	Ожидаемая ин- тенсивность, %
	Ce 148	4+→2+	294.962	0.82(09)
	Mo 102	2 ⁺ →0 ⁺	295.920	1.68(12)*
Сумма	Мо 102	2 ⁺ →0 ⁺	296	2.50(15)*
	Mo 106	4 ⁺ →2 ⁺	350.852	1.54(08)*
	Zr 100	4+→2+	351.960	3.57(18)*
	Te 136	6 ⁺ →4 ⁺	352.000	0.30(08)
Сумма	Zr 100	4 ⁺ →2 ⁺	352	5.40(21)*
	Sn 130	4 ⁺ →2 ⁺	774.400	0.64(13)*
-	Kr 88	2 ⁺ →0 ⁺	775.310	0.79(03)*
Сумма	Kr 88	2 ⁺ →0 ⁺	775	1.43(13)*
	Sr 96	2 ⁺ →0 ⁺	814.930	1.90(10)*
	Sr 92	2 ⁺ →0 ⁺	814.980	1.06(06)*
Сумма	Sr 96	2 ⁺ →0 ⁺	815	2.96(12)*

соответствующем наборе. При нормировке учитывалась ширина интервалов по т, из которых были получены спектр случайных совпадений и спектр истинных совпадений. В ошибку относительной интенсивности входит ошибка площади пика, относительная интенсивность которого рассчитывается, и ошибка площади нормировочного пика. Обозначим относительные мнтенсивности в двух наборах каждой серии v_{5k}^i и v_{rk}^i . Здесь индекс і означает номер серии, индекс k -- номер перехода, индекс "s" означает набор без фильтра, а индекс "r" -- набор с фильтром. Для того, чтобы обнаружить смещение v_{rk}^i относительно v_{5k}^i в одну сторону во всех сериях, методом наименьших квадратов искалось наилучшее значение отношения $R_k = (v_{rk}^i / v_{5k}^i)_i$. Для решения этой нелинейной задачи на языке FORTRAN-77 была создана подпрограмма RELAT, в которой методом итераций ищется наилучшее значение от-

где N_γ -- площадь пика в спектре истинных совпадений, интенсивность которого определяется, α -- коэффициент внутренней конверсии для данного γ-кванта, $\epsilon_{\gamma}(E_{\gamma})$ и $\epsilon_{\gamma}(129)$ -- абсолютные эффективности детектора для энергий E_{γ} и 129 кэВ, N_f -- эффективное число делений, N₁₂₉ -- площадь пика 129 кэВ в спектре случайных совпадений, k_{α} -- поправка, учитывающая чувствительность камеры деления к α -частицам из естественной радиоактивности ²³⁹Pu, m_{Pu}= 1,6 г -- количество Pu в мишени, r_{α} =2,27*10⁹ г⁻¹с⁻¹ -- удельная активность Pu, I₁₂₉ = 6,2*10⁻⁵ -- интенсивность линии 129 кэВ, $\Delta \tau$ -- ширина временного интервала по τ , для спектра случайных совпадений.

В табл. IV приведены значения эффективного числа делений N_f для каждого из восьми измерений.

Табл.IV. Число делений N_f × 10⁻⁸

Номер серии	(n _{sum} ,f)	(n _{res} ,f)
1	3.25	0.64
2	1.91	0.64
3	0.89	0.19
4	2.70	0.85

В ошибку абсолютной интенсивности входит ошибка абсолютной эффективности для энергии 129 кэВ, которая равна 3%, и ошибка абсолютной эффективности для данной энергии. Для всех энергий эта ошибка принималась равной 5%. Поэтому к ошибке относительной интенсивности квадратичным образом добавлялась ошибка 6%. Были получены усредненные по сериям значения абсолютной интенсивности каждого пика в измерениях без фильтра и в измерениях с фильтром (I_{sk} и I_{rk}). Они сравнивались между собой. Среднеквадратичное отклонение двух измеренных величин при предположении, что они имеют одно среднее значение, выражается так:

$$\chi = \frac{I_1 - I_2}{\sqrt{p_1^2 + p_2^2}} .$$
 (1)

Здесь I₁ и D₁ -- первая величина и ее ошибка, а I₂ и D₂ -- вторая величина и ее ошибка. Для каждого перехода k вычислялась величина $s_k = \chi^2$, которая получается из выражения (1) при предположенин, что интенсивности пиков в измерениях без фильтра и в измерениях с фильтром одинаковы. Для шести пиков получаются величины s_k , превышающие значение 3,841. В табл.III для этих пиков наряду с s_k приводятся значения p_k , полученные на первом этапе анализа. После анализа абсолютных интенсивностей в табл.III добавлено значение p_k для пика 708 кэВ.

Анализ отклонений I_s и I_r от их средних по сериям значений показал, что для 15 пиков получился слишком большой разброс для I_s , или I_r , или I_s и I_r одновременно.В связи с этим на третьем этапе проводилась коррекция I_s и I_r , имеющих большой разброс. Применялась коррекция трех типов:

1. Одна из интенсивностей отбрасывается и в дальнейшем анализе не участвует. Такая коррекция применялась только для значений I_r в той серии, в которой при подгонке спектра истинных совпадений соответствующий пик не был найден и было использовано оценочное значеение.

2. Исключается из анализа интенсивность, больше, чем на две среднеквадратичные ошибки удаленная от среднего значения, а ошибка среднего значения остальных интенсивностей несколько завышается.

3. Среднее значение не меняется, а его ошибка увеличивается на коэффициент у:

$$y = \sqrt{c_2 / n}$$

Здесь с₂ -- значение χ^2 отклонений абсолютных интенсивностей от их среднего значения, а n -- число величин, участвующих в усреднении. На этот же коэффициент увеличиваются ошибки интенсивностей, участвующих в усреднении.

Таким образом были скорректированы интенсивности 13 пиков в реакции (n_{sum}, f) и 5 пиков в реакции (n_{res}, f) . После коррекции увеличились ошибки интенсивностей. Ошибки 16 интенсивностей увеличились в 1,5 ÷ 3 раза. После коррекции снова были расчитаны значения p_k и s_k . В табл.III указан тип коррекции и новые значения p_k и s_k . В колонке "тип коррекции" первое число определяет коррекцию I_s , а второе -- коррекцию I_r . Величина "0" означает, что коррекция не проводилась. Как видно из табл.III, для пиков 261 и 708 кэВ коррекция не проводилась, и p_k и s_k остались неизменными. Величины p_k и s_k пиков 296 и 482 кэВ уменьшились и стали меньше 95%-ного уровня достоверности. Для пика 352 кэВ осталось увеличенным значение p_k , а для пика 377 кэВ осталось увеличенным значение s_k . В двух последних колонках табл.III приведены усредненные по сериям интенсивности пиков в реакциях (n_{sum}, f) и (n_{res}, f) после коррекции. Интенсивности ции. Такое различие может быть связано с недостаточной корректностью подгонки спектров истинных совпадений. Так как спектры в наборе с фильтром во всех циклах имеют меньшую статистику, чем в наборе без фильтра из-за меньшего количества найденных пиков уровень фона в спектрах истинных совпадений из набора с фильтром может пройти несколько выше, и площади найденных пиков окажутся заниженными. Такую вазможность нельзя исключить для пика 261 кэВ. Отличие интенсивности пика 352 кэВ нельзя объяснить таким эффектом, так как соседние с ним пики 331, 360 и 369 кэВ имеют интенсивности, хорошо совпадающие в реакциях (n_{sum}, f) и (n_{res}, f).

Таким образом проведенный сравнительный анализ относительных и абсолютных значений интенсивности гамма-линий, соответствующих выходу четно-четных осколков, показал, что 4 из 41-ой наблюдаемой гамма-линии выходят из 95%-ного коридора совпадающих в тепловом и резонансном делении. При этом погрешность полученных после коррекции значений составила (15-30)%.

С целью сравнения полученных в работе данных с рекомендованными [7] из абсолютных интенсивностей выбранных пиков в реакциях (n_{sum}, f) и (n_{res}, f) $(I_s u I_r)$ были вычислялись абсолютные интенсивности у-переходов для осколков деления тепловыми нейтронами (I_t) согласно формуле:

$$I_{t} = \frac{I_{s} - k_{cd} \times I_{r}}{1 - k_{cd}}$$
 (2)

Здесь k_{Cd} = 0,213 -- кадмиевое отношение.

В табл. V приведены абсолютные интенсивности γ -переходов I_r и I_t, полученные в настоящей работе, ожидаемые интенсивности I_W, полученные на основе рекомендованных данных о выходе осколков деления ²³⁹Pu тепловыми нейтронами из работы [7] и величины χ_k , которые вычисляются по выражению (1) при сравнении величин I_t и I_W. Из табл.V видно, что многие значения χ_k по абсолютной величине превышают 1,960, что говорит о том, что соответствующие значения выходят из 95%-ного коридора совпадающих. В табл.VI приводится сводка всех результатов анализа величин χ_k для трех групп переходов: число точек, попадающих в коридор ±1,960, число точек выше этого коридора и число точек ниже этого коридора.

Из табл. V видно, что большинство ожидемых интенсивностей, близких к 1%, отличаются от измеренных. Поэтому это значение можно считать оценкой чувстительности использованного метода в условиях проведенного эксперимента. Анализируя даные таблицы V, следует принять во внимание седующие обстоятельства.

1. При обработке спектров истинных совпадений использовалось

Табл.V.Абсолютные интенсивности γ-переходов из реакций (n_{res},f) (I_r) и (n_{th},f) (I_t), полученные в настоящей работе, ожидаемые интенсивности из (n_{th},f)-реакции по данным [7] (I_W), и значения χ, полученные при сравнении I_t и I_W. Интенсивность определяется количеством γ-квантов на акт деления

Осколок	$J_1^{\pi} \rightarrow J_f^{\pi}$	Eγ	Ir	. ^I t	IW	x
Kr 88	2 ⁺ →0 ⁺	775	0.74(53)	1.09(34)	1.43(13)*	-0.93
Kr 90	2 ⁺ →0 ⁺	707	2.77(39)	1.70(25)	1.18(05)*	2.01
Sr 94	$2^+ \rightarrow 0^+$	837	2.07(38)	2.52(27)	3.12(16)*	-1.93
sr 94	$4^+ \rightarrow 2^+$	1309	0.92(66)	0.93(38)	2.34(12)*	-3.58
Sr 96	2 ⁺ →0 ⁺	815	1.22(40)	1.25(25)	2.96(11)*	-6.25
Zr 98	2 ⁺ →0 ⁺	1223	1.78(46)	2.03(29)	2.85(14)*	-2.51
Zr 98	$6^+ \rightarrow 4^+$	648	0.64(38)	1.45(26)	1.28(06)*	0.61
Zr 100	$2^+ \rightarrow 0^+$	213	4.68(29)	4.98(24)	4.76(24)*	0.68
Zr 100	$4^+ \rightarrow 2^+$	352	4.26(31)	5.36(46)	5.40(21)*	-0.08
Zr 100	$6^+ \rightarrow 4^+$	498	1.21(28)	1.19(20)	2.14(11)*	-4.18
Zr 102	2+→0+	152	2.03(23)	2.23(18)	1.19(12)*	4.93
Zr 102	6 ⁺ →4 ⁺	487	1.22(29)	1.61(20)	0.53(05)*	5.10
Mo 102	$2^+ \rightarrow 0^+$	296	2.79(47)	2.11(24)	2.50(15)*	-1.38
Mo 104	$2^+ \rightarrow 0^+$	192	5.61(31)	5.80(26)	4.12(21)*	5.10
Mo 104	$4^+ \rightarrow 2^+$	369	2.72(28)	2.46(21)	3.09(16)*	-2.45
Mo 104	$6^+ \rightarrow 4^+$	520	1.50(29)	1.72(21)	1.86(09)*	-0.61
Mo 106	$2^+ \rightarrow 0^+$	172	3.47(25)	2.90(37)	2.05(10)*	2.22
Ru 108	2+→0+	242	2.14(24)	2.40(18)	1.24(06)*	6.06
Ru 108	6+→4+	573	1.76(33)	1.51(22)	0.56(03)*	4.21
Ru 110	$2^+ \rightarrow 0^+$	241	1.19(21)	1.27(15)	0.50(06)	4.71
Sn 130	6 ⁺ →4 ⁺	261	0.42(21)	1.10(16)	0.38(08)*	4.13
Te 132	$2^+\rightarrow 0^+$	974	2.35(41)	2.01(43)	2.36(07)*	-0.82
Te 132	4+→2+	697	2.82(38)	2.13(26)	1.77(05)*	1.34
re 134	2+→0+	1280	3.71(49)	4.32(35)	4.70(52)	-0.60
Fe 134	$4^+ \rightarrow 2^+$	297	4.41(33)	4.41(44)	3.52(39)	1.50
Ke 136	2 ⁺ →0 ⁺	1313	1.23(51)	0.94(30)	3.02(36)	-4.41
Ke 136	$4^+ \rightarrow 2^+$	381	2.12(27)	1.57(20)	2.26(27)	-2.04
Ke 136	$6^+ \rightarrow 4^+$	197	2.40(37)	2.19(25)	1.36(16)	2.76
Ke 138	2+→0+	589	3.58(75)	4.19(53)	4.08(33)*	0.19
Ke 138	4 ⁺ →2 ⁺	484	2.63(31)	2.20(38)	3.06(25)*	-1.92
Ke 138	$6^+ \rightarrow 4^+$	481	1.66(30)	2.15(53)	1.84(15)*	0.57
Ke 140	2+→0+	377	2.28(28)	1.13(31)	1.55(09)*	-1.33

Табл.V. (Продолжение)

Осколок	J ^π ≟→J ^π Í	Eγ	Ir	It	IW	χ
Xe 140	6+→4+	582	1.01(33)	1.47(23)	0.70(04)*	3.38
Ba 142	2+→0+	360	2.77(28)	3.01(57)	3.27(36)	-0.39
Ba 142	4+→2+	475	2.49(29)	1.87(37)	2.45(27)	-1.27
Ba 144	2+→0+	199	2.76(24)	2.52(18)	2.09(23)	1.51
Ba 144	4+→2+	331	1.76(25)	2.45(34)	1.57(17)	2.33
Ba 144	6 + →4+	432	1.12(26)	1.63(19)	0.94(10)	3.21
Ce 146	2+→0+	258	0.86(23)	1.24(27)	0.95(11)	0.99
Ce 146	4+→2+	410	0.70(25)	1.04(18)	0.71(09)	1.66
Ce 148	2+→0+	158	5.10(34)	4.99(30)	1.09(12)	12.15

предположение, что подложку можно описать плавной кривой, не имеющей локальных особенностей шириной 30 - 50 каналов. Если на самом деле ряд пиков находится на локальном плавном "холме", такая подгонка даст завышенные значения площадей. Из табл.V видно, что все пики на участке 170 - 220 кув имеют завышенные по сравнению с I_W значения I_t . В нижней части рис.4 показан этот участок спектра истинных совпадений из первого цикла с подогнанной кривой подложки. Из рисунка видно, что пик 172 кув достаточно изолирован, и большое значение его площади не может быть связано с локальным выбросом подложки. Остальные пики могут лежать на локальном "холме", но в спектре есть ясные ограничения на высоту этого "холма", и оценки показывают, что площади пиков могут уменьшиться примерно на 10%, что недостаточно для объяснения различий I_t и I_W для этих пиков.

Табл.VI. Результаты сравнения значений It и Iw из табл.V

	2+→0+	4 ⁺ →2 ⁺	6+→4+	Bce
Выше коридора	7	1	6	14
В коридоре ±1,960	11	6	3	20
Ниже коридора	3	3	1	7
Любое значение	21	10	10	41

2. Превышение значений It над ожидаемой интенсивностью Iw,

может быть связано с тем, что в указаные пики дают вклад переходы из других осколков или фоновые. Так завышенное значение I_t пика 172 кэВ можно объяснить вкладом перехода 170,5 кэВ из ⁹⁸У [14], выход которого по данным [7] 2,25%. Завышенное значение I_t пика 192 кэВ можно связать с переходом 191,1 кэВ из ⁹²Rb [11], выход которого 1,62%.

3. Наличие в табл.V значений It меньших, чем ожидаемые IW, может быть связано с проявлением допплеровского эффекта. Оценки показывают, что допплеровское расширение пиков из осколков, с энергией ≈100 МэВ, равно 4,5%. Поэтому γ-кванты, вылетающие из движущегося ядра, могут иметь энергию, сильно отличающуюся от энергии γквантов, вылетающих из покоящегося ядра, и события, связанные с этими γ-квантами, могут не попадать в соответствующий пик на спектре. Степень влияния допплеровского эффекта определяется геометрией спектрометра и временем жизни соответствующего уровня ядра-осколка. Влияние допплеровского эффекта на получаемые таким методом результаты требует специального рассмотрения.

4. Наконец, значительная часть рекомендованных выходов в работе [7] получена расчетным путем. Поэтому к ним надо относиться с известной осторожностью. Например, значение выхода ¹⁰⁴Мо из работы [7] 4,12% значительно расходится с результатом работы [36] --5,19%, что ближе к полученному в настоящей работе значению

Заключение

В работе проведены сравнительные измерения интенсивности характерного гамма-излучения, соответствующего выходу четно-четных осколков деления ²³⁹Рu тепловыми и резонансными нейтронами, разработан алгоритм анализа экспериментальных данных с целью обнаружения предпологаемых особенностей.

Найденные различия для некоторых гамма-линий не могут служить основанием для надежных выводов в связи со сложностью обработки аппаратурных гамма-спектров, недостаточной точностью и значительным разбросом полученных значений. При сравнении измеренных абсолютных интенсивностей гамма-излучения, сопутствующего делению на тепловых нейтронах, с интенсивностями, ожидаемыми из рекомендованных данных работы [7], найдено много существенно отличающихся значений. Причиной различий могут служить наряду с погрешностями обработки спектров, качество которых определяется параметрами спектрометра, влияние Допплер-эффекта, недостаток спектроскопических данных об осколках деления и возможная неточность рекомендованных значений выхода осколков, полученных расчетным путем.

Для проверки полученных результатов требуется существенное повышение точности и надежности экспериментальных данных путем улучшения качества используемого гамма-спектрометра.

Авторы благодарны доктору Уве Госу за предложения по определению эффективного числа делений, А.Б.Попову за полезные обсуждения и Ю.И.Колгину за помощь при проведении экспериментов.

Работа выполнена при поддержке Российского Фонда фундаментальных исследований (гранты 93-02-16039 и 94-02-05121).

Литература

- 1. Hambsch F.J. e.a. Nucl. Phys., 1989, v. 491A, p. 56.
- Van Assche P. e.a. In: Proc.Intern. Conf. on radioactivity in nuclear spetroscopy, Nashville, USA. New York: Gordon and Breach, 1972, p. 573.
- 3. Гундорин Н.А. Сообщение ОИЯИ Р15-94-53. Дубна, 1994.
- 4. Богдзель А.А. и др. Препринт ОИЯИ РЗ-90-395. Дубна, 1990.
 Bogdzel A.A. e.a. Nucl.Instr.and Meth., 1994, v.343A, p.545.
 5. Антонов С.А. и др. Сообщение ОИЯИ 13-85-701. Дубна, 1985.

6. Тележников С.А. Сообщение ОИЯИ Р10-81-358. Дубна, 1981.

- 7. Wahl A. ADNDT, 1988. v. 39, p. 1.
- 8. Muller H.-W. NDS, 1989, v. 56, p. 551.
- 9. Muller H.-W. NDS, 1988, v. 54, p. 1.
- 10. Ekstrom L.P., Lyttkens-Linden J. NDS, 1992, v. 67, p. 579.
- 11. Baglin C.M. NDS, 1992, v. 66, p. 347.
- 12. Tuli J.K. NDS, 1992, v. 66, p. 1.
- 13. Peker L.K. NDS, 1993, v. 68, p. 165.
- 14. Singh B. NDS, 1992, v. 67, p. 693.
- 15. Singh B., Szucs J.A. NDS, 1990, v. 60, p. 1.
- 16. De Frenne D., Jacobs E. NDS, 1991, v. 63, p. 373.
- 17. Blachot J. NDS, 1991, v. 64, p. 1.
- 18. De Frenne D. e.a. NDS, 1988, v. 53, p. 73.
- 19. Blachot J. NDS, 1991, v. 62, p. 803.
- 20. De Frenne D., Jacobs E. NDS, 1992, v. 67, p. 809.
- 21. Kitao K. e.a. NDS, 1983, v. 38, p. 191.
- 22. Sergeenkov Yu. V. NDS, 1989, v. 58, p. 765.
- 23. Sergeenkov Yu. V. NDS, 1992, v. 65, p. 277.
- 24. Sergeenkov Yu. V., Sigalov V. M. NDS, 1981, v. 34, p. 475.
- 25. Tuli J.K. NDS, 1994, v. 71, p. 1.
- 26. Tuli J.K. NDS, 1993, v. 69, p. 69.

- 27. Peker L.K. NDS, 1987, v. 51, p. 395.
- 28. Peker L.K. NDS, 1991, v. 63, p. 647.
- 29. Tuli J.K. NDS, 1989, v. 56, p. 607.
- 30. Peker L.K. NDS, 1990, v. 60, p. 953.
- 31. Peker L.K. NDS, 1990, v. 59, p. 393.
- 32. Peker L.K. NDS, 1989, v. 58, p. 93.
- 33. Богдзель А.А. и др. Препринт. ОИЯИ Р-3-87-862. Дубна, 1987.
- 34. Hotchkis M.S. e.a. Phys.Rev.Lett., 1990, v.64, p.3123.
- 35. Cheifetz E. e.a. Phys.Rev., 1971. v. 4C, p. 1913.
- 36. Kaufmann J. e.a. Z.Phys., 1992. v. 341A, p. 319, Kaufmann J. e.a. Private Communication.

Рукопись поступила в издательский отдел 29 декабря 1995 года.