ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

A- 537

1773/2-76

В.П.Алфименков, Л.Ласонь, Ю.Д.Мареев, О.Н.Овчинников, Л.Б.Пикельнер, Э.И.Шарапов

МАГНИТНЫЕ МОМЕНТЫ КОМПАУНД-СОСТОЯНИЙ РЕДКОЗЕМЕЛЬНЫХ ЯДЕР

10/0-70

P3 - 9497

P3 - 9497

В.П.Алфименков, Л.Ласонь, Ю.Д.Мареев, О.Н.Овчинников, Л.Б.Пикельнер, Э.И.Шарапов

МАГНИТНЫЕ МОМЕНТЫ КОМПАУНД-СОСТОЯНИЙ РЕДКОЗЕМЕЛЬНЫХ ЯДЕР

Направлено в "Nuclear Physics"

Объевнаенный инстатут вларных веследзений ЕМБЛЯЮТЕНА

Summary

The magnetic dipole moments μ_{I} of compound states (neutron resonances) in holmium and terbium have been obtained by the neutron resonance energy shift method. This shift ΔE (formula 2) is due to the polarization f_N of nuclei at ultralow temperature in hf magnetic fields H inside ferromagnetic samples. For cooling a ${}^{3}\text{He}/{}^{4}\text{He}$ refrigerator /7/ was used. Shifts of resonances (Fig. 2) in neutron transmission were measured by time-of-flight method $(L = 58.5 \text{ m}, \Delta t = 4 \mu \text{sec})$ at the booster at the pulsed reactor IBR-30 with 40 MeV Linac. The ΔE and μ_J -results are given in Table 3. The g-factors(g= μ/J) deduced from these data and those reported earlier /3, 5/ are presented in Fig. 4. The mean value $\bar{g} = 0.34+0.22$. The intrinsic dispersion $\Delta g = 0.51 \pm 0.20$ was obtained from the statistical treatment of data. Both, \vec{g} and Δg -values were compared with theoretical predictions in the frame of the thermodynamical approach /11,12/ and found to be consistent. Results point out to the distinct fluctuations of magnetic moments of neutron resonances.

Введение

Среди параметров, характеризующих атомное ядро. важное место занимает его магнитный момент. В настоящее время измерены магнитные моменты очень многих ядер, причем не только для основных, но и для возбужденных состояний. Однако все эти данные относятся к области возбуждения ядра значительно ниже энергии связи нейтрона. Между тем существует область хорошо изученных состояний ядер при энергии, близкой к энергии связи нейтрона /нейтронные резонансы/, в которой методами нейтронной спектроскопии получена общирная информация о положении уровней, их ширинах и спинах, но полностью отсутствовали данные о магнитных моментах этих состояний. Такие широко распространенные методы, как мессбауэровская спектроскопия или возмущенные угловые корреляции, не могли быть применены к высокоэнергетическим состояниям с временами жизни ~10⁻¹⁵с. Между тем сведения о магнитных моментах компаунд-состояний представляют значительный интерес, так как природа магнитных моментов этих состояний имеет сложный характер, и изучение их поставляет новую информацию о ядре.

Впервые на возможность измерения магнитных моментов нейтронных резонансов указал Ф.Л.Шапиро^{/1},^{2/}. Им было предложено использовать для определения магнитных моментов энергетический сдвиг резонансов в экспериментах с поляризованными нейтронами или поляризованными ядрами, возникающий за счет сверхтонкого взаимодействия магнитного момента ядра с внутриатомным магнитным полем. Величина энергетического сдвига резонанса ΔЕ /в сравнении со случаем отсутствия поляризации/ для пропускания поляризованных нейтронов через неполяризованную мишень определяется выражениями:

$$\Delta E = -\frac{1}{3} f_n H \{ [1 + 2/(2I + 1)] \mu_J - \mu_I \}, \quad J = I + 1/2$$

$$\Delta E = -\frac{1}{3} f_n H [(1 + 1/I) \mu_I - \mu_J], \quad J = I - 1/2, \qquad /1/2$$

а для пропускания неполяризованных нейтронов - через поляризованную ядерную мишень

$$\Delta E = -f_{N}H\{[1 - 1/(2I + 1)(I + 1)]\mu_{J} - \mu_{I}\}, J = I + 1/2$$

$$\Delta E = -f_{N}H(\mu_{J} - \mu_{I}), J = I - 1/2.$$
 /2/

Здесь H - магнитное поле на ядре, f_n и f_N - поляризация нейтронов и ядер, I и J - спины ядра-мишени и компаунд-ядра, μ_I и μ_J - магнитные моменты соответствующих состояний.

Сложность эксперимента связана в первую очередь с малостью наблюдаемого эффекта. Действительно, если принять максимально возможные величины поляризации, равные единице, и максимальное значение магнитного поля $H \simeq 10^7$ Э, которое может быть получено на ядрах некоторых редкоземельных элементов, то при разности $\mu_J - \mu_1 = \mu_N$ /один ядерный магнетон/ величина сдвига составит всего около 3.10⁻⁵ эВ. Этот сдвиг следует сравнивать с собственной шириной уровня, составляющей около 0,1 эВ.

Такие эксперименты были начаты несколько лет назад в Объединенном институте ядерных исследований^{/3/}. Из двух возможных вариантов эксперимента, отмеченных выше, нами был выбран метод пропускания неполяризованных нейтронов через поляризованную ядерную мишень. Метод измерения с поляризованными нейтронами, реализованный в Брукхейвене^{/4/}, осложнен побочными эффектами и, по-видимому, нуждается в доработке. В наших первых работах были получены значения магнитных моментов для нескольких резонансов ${}^{167}E_{\rm T}{}^{/3}$ и ${}^{161,\,163}D_{\rm y}{}^{/5}$. В настоящей работе были измерены магнитные моменты для резонансов ${}^{159}{\rm Tb}$ и ${}^{165}{\rm Ho}$, проведен статистический анализ данных по g-факторам и сравнение результатов с теорией.

Эксперимент

Измерения проводились по методу времени пролета на импульсном реакторе ИБР-ЗО с инжектором при длительности нейтронного импульса 4 мкс и пролетном расстоянии 58.5 м. Схема эксперимента приведена на рис. 1. В качестве мишени использовались пластинки из металлических тербия и гольмия толшиной соответственно 1.8.10²¹ и 0,6.10²¹ яд/см², ферромагнитные при температурах ниже 219 К и 20 К. Выбор ядер, с которыми проводились исследования, был обусловлен наличием удобных для измерения низкоэнергетических резонансов и большими внутренними магнитными полями / !! = = $3,1.10^6$ Э у тербия и $7,3.10^6$ Э у гольмия/. Последнее обстоятельство важно как с точки зрения величины сдвига AE, пропорционального H, так и для получения высокой поляризации ядер внутри доменов при охлаждении. При этом средняя поляризация по всей мишени в отсутствие внешнего поля равна нулю, что упрощает наблюдение сдвига резонансов.

Так как исследуемые резонансы тербия и гольмия, параметры которых $^{/6/}$ приведены в *табл.* 1, не перекрываются, оказалось возможным измерять прохождение нейтронов через обе мишени, стоящие в криостате одна за другой. Криостат с растворением ³He в ⁴He $^{/7/}$ обеспечивал стабильную температуру O,O4 K, при которой поляризация ядер внутри доменов $f_N \ge 0.98$. Для разрушения поляризации температура поднималась до 1,5 K. При этом остаточная поляризация составляла O,O8 для Tb и O,29 для Ho.

Переход от одной температуры к другой занимал около часа, что делало невозможным частое чередование измерений с поляризацией и без нее. В наших эк-

Рис. 1. Схема эксперимента. 1 - вакуумные нейтроноводы, 2 - коллиматоры, 3 - мишени из теллура и сурьмы, 4 - криостат, 5 - мишени из тербия и гольмия, 6 детектор нейтронов.

- m	-

Параметры	исследованных	резонансов
терс	бия и гольмия	

ядро-мишень	159 TB	159 TB	159 TB	¹⁶⁵ Ho	165 Ho
энергия Е, эВ	3,35	4,99	II,I	3,93	12,7
(n MoB	0,34	0,081	7,8	2,1	I0,5
Гу мэВ	80		87	85	
7	2	I	2	4	4

спериментах измерение с данной поляризацией продолжалось 12 час. В условиях редкого чередования особое внимание обращалось на контроль временной стабильности всей аппаратуры. Кроме того, учитывая малость измеряемого эффекта, необходимо было иметь возможность объективной оценки точности измерения сдвига ΔE .

Контроль временной шкалы анализатора осуществлялся с помощью реперных резонансов теллура и сурьмы, мишени из которых постоянно находились в пучке нейтронов, как это показано на *рис. 1.* Нейтроны, прошедшие через мишени, регистрировались жидкостным сцинтилляционным детектором^{/8/}, а временной спектр накапливался в анализирующей системе^{/9/}, созданной на базе малой вычислительной машины TPA-1001. Вся измерительная система обеспечивала возможность работы при загрузках около 3.10⁵ имп/с, что было необходимо для получения высокой статистической точности.

Спектр, полученный за 12 час. измерения, передавался на ЭВМ БЭСМ-4 и записывался на магнитную ленту для дальнейшей обработки. На *рис.* 2 показан участок такого спектра. После этого менялась температура мишеней в криостате, и измерение повторялось. Два спектра составляли пару для совместной обработки. Всего в ходе эксперимента была получена 31 пара таких спектров.

Рис. 2. Участок экспериментального спектра, полученного за 12 часов измерений. t - номерканала анализатора, ширина канала 2,5 мкс. N - число отсчетов на канал в единицах 10⁶.

6

7

Обработка экспериментальных данных и результаты

Обработка каждой пары спектров проводилась независимо от остальных. Это позволяло выявить возможные аппаратурные ощибки и давало объективный критерий для оценки точности результатов. Определение сдвига резонанса в спектре с поляризованными ядрами относительно его положения для неполяризованной мишени /точнее, для мишени с малой остаточной поляризацией/ производилось следующим образом. Пусть F; и F; число отсчетов в i -ом канале временного анализатора для двух рассматриваемых спектров. Различие в спектрах, помимо изучаемого сдвига, может быть обусловлено какими-либо изменениями во временных характеристиках аппаратуры, что приведет к сдвигу по оси абсцисс, или изменением мощности реактора, эффективности детектора, фона, что приведет к растяжению или сдвигу спектра по оси ординат.

Образуем теперь новый спектр в виде

$$F_{i}^{T} = (F_{i}^{*} - \frac{\partial F_{i}^{*}}{\partial t} \Delta t)k + \phi$$
 /3/

и будем искать минимум функционала

· · · ·

$$\chi^{2} = \Sigma (F_{i}^{\circ} - F_{i}^{T})^{2} w_{i}, \qquad /4/$$

варьируя параметры Δt , k и ϕ . В выражении /4/ w_i - статистический вес каждой точки, а сумма берется по всем каналам, включающим рассматриваемый резонанс.

Найденный таким образом параметр Δt характеризует временной сдвиг данного резонанса в одном спектре относительно другого. Такая обработка по методу наименьших квадратов проводилась для всех резонансов, как реперных, так и исследуемых. Среднее взвешенное значение $\langle \Delta t \rangle$ по реперным резонансам характеризовало сдвиг временной шкалы, обусловленный аппаратурными причинами. Разности $\tau_j = \Delta t_j - \langle \Delta t \rangle$, где ј - номер резонанса, для тербия или гольмия характеризовали сдвиги уровней, связанные с поляризацией ядер и сверхтонким взаимодействием. Описанная процедура применялась для обработки каждой из 31 пары спектров. Так как каждая пара спектров является полностью независимой от остальных, то полученные для j-го резонанса значения τ_j должны быть нормально распределены вокруг среднего значения $<\tau_j>$, вычисленного по всем парам, а ширина распределения дает объективную оценку точности измерений.

На рис. 3 приведены гистограммы для резонансов Tb /3,35 \mathcal{B} /, llo / 3,93 \mathcal{B} / и одного из реперных резонансов / Sb 6,24 \mathcal{B} /. Здесь же плавной кривой нанесено нормальное распределение со средним значением,

Рис. 3. Распределение экспериментальных значений временных сдвигов т для резонансов а/ Ть - 3,35 эВ, б/ 110 - 3,93 эВ, в/Sb - 6,24 эВ. Плавные линии нормальные распределения вокруг <т с дисперсией, обусловленной только статистикой числа отсчетов в спектрах.

равным $\langle \tau_j \rangle$, и дисперсией, найденной при расчете по методу наименьших квадратов на ЭВМ и учитывающей только статистику числа отсчетов в спектре. Видно, что ширина гистограммы хорошо согласуется с ожидаемой шириной нормального распределения, что указывает на отсутствие заметных систематических ошибок в измеренных спектрах.

В табл. 2 и 3 приведены экспериментальные данные о сдвигах для реперных резонансов и резонансов Tb и Ho. Ошибка среднего значения <7> вычислялась через дисперсию экспериментальных значений τ . Переход от временного сдвига к энергетическому проводился по известному соотношению $\Delta E = -2E_0 \tau/t$, где E_0 и t энергия резонанса и время пролета нейтрона.

8

Таблица 2

Экспериментальные данные о сдвигах реперных резонансов

ядро-мил	ень	123 Te	¹²¹ SB	121 SB	123SB	¹²³ Te
энергия	E, aB	2,33	6,24	15,4	21,6	24,I
<77	нс	-I,5±4,5	-I,7±I,8	0 ,2± I,0	-I,8±I,2	3,I±I,6

Таблица З

Экспериментальные данные о сденгах и магнитных моментах резонансов $^{159}\mathcal{TC}$ и $^{165}\mathcal{H}_{c}$.

ядро-мишень	159 TB	159 TB	159 TB	165 H₀	165 Ho
Es ab	3,35	4,99	II,I	3,93	12,7
<7, HC	-6,7±3,I	3,8 * 6,2	-I,8±2,2	-9,7±3,2	-0,2±1,4
∠∆€> mkəB	19 ± 9	-20±33	3I ± 39	36 ± 12	4 ± 30
Мј (яд.магн)	-0,2 ± 1,0	4,3 ±3 ,7	-I,7±4,4	I,8±0,7	3 ,9 ±1,9

Для нахождения магнитных моментов компаунд-состояний в выражение /2/ подставлялись экспериментальные значения NE и известные константы II и μ_1 . Для тербия $\mu_1 = 2,0$ и для гольмия $\mu_1 = 4,0$ ядерных магнетона/10/. Вместо ядерной поляризации f_N использовалась разность поляризаций при двух указанных выше температурах мишени. Полученные таким образом значения магнитных моментов приведены в *табл. 3.*

Обсуждение результатов

Экспериментальные данные настоящей работы вместе с полученными ранее в работах /3, 5/ сведены в *табл.* 4, где даны также значения g -факторов $g = \mu_J / J$ для всех изученных резонансов.

Экспериментальные данные по магнитным моментам и *9* -факторам нейтронных резонансов ядер

Ядро-продукт	E, BB	∫ ^и д,нт	Э
76-160	3,35	-0,2 ± 1,0	-0,I ± 0,5
TB -160	4,99	4,3 ± 3,7	4,3 ± 3,7
TG - 160	II,I	$-I,7 \pm 4,4$	-0,8 ± 2,2
84-162	2,72	-0,4 ± 0,7	-0,I3 ± 0,23
0 Dy-162	3,69	-I,8 ± 0,9	-0,90 ± 0,45
Dy - 162	4,35	0,5 ± 1,2	0,25 ± 0,60
24-164	I,7I	2,8 ± 0,5	I,40 ± 0, 25
Ho - 166	3,93	I,8 ± 0,7	0,45 ± 0,17
Ho-166	12,7	3,9 ± 1,9	0,98 ± 0,47
Er - 168	0,46	0,9 ± 0,4	0,22 ± 0,10
Er - 168	0,58	I ,8 ± 0,9	0,6 ± 0,3

Как видно из таблицы, точность измерения магнитных моментов невелика: минимальная ошибка составляет O,4 ядерного магнетона. Трудно ожидать значительного улучшения точности в дальнейшем, так как уже такая точность требует регистрации сдвига с ошибкой, не превышающей $/O,5 \div 1/.10^{-5}$ эВ для ядер с максимальным сверхтонким полем. Круг ядер, для которых возможны подобные измерения, помимо необходимости иметь поле на ядре порядка 10^{-6} э, ограничен и наличием низкоэнергетических резонансов у исследуемых ядер, так как с увеличением энергии нейтронов ошибка измерения энергетических сдвигов быстро растет. Все это приводит к выводу, что нельзя ожидать в ближайшие годы заметного увеличения числа исследованных уровней. Однако уже та информация о магнитных моментах компаундсостояний ядер, которая получена, позволяет провести сравнение с теоретическими оценками и сделать некоторые заключения.

В работах^{/11,12/} проведен расчет магнитных моментов возбужденных состояний деформированных ядер на основе термодинамического подхода и получены оценки для среднего значения g-фактора и величины флуктуаций вокруг среднего. Для деформированных ядер в редкоземельной области получены одинаковые средние значения $\bar{g} \approx Z/A \approx 0.4$, но различные среднеквадратичные отклонения от среднего: $\Lambda g \approx 0.50 \text{ в}^{/11}/\text{ и} \Lambda g \approx 0.25 \text{ в работе}^{/12/}$. В рамках проведенных расчетов результаты для соседних ядер не различаются, что позволяет нам при сравнении с теорией рассматривать все полученные экспериментальные результаты как единый статистический ансамбль.

Из рассмотрения значений g, приведенных в *табл.* 4 и на *рис.* 4, можно заключить, что различня между ними заметно больше, чем величина ошибки измерения. Это указывает на наличие флуктуаций g от резонанса к резонансу.

ь дальнейшем мы будем принимать, что наблюдаемая дисперсия g -факторов $D_{\rm H}$ складывается из двух независимых компонентов: истинной дисперсии $D_{\rm MC}$, обусловленной физической природой магнитных моментов, и дисперсией $D_{\rm OHH}$, связанной с ошибками измерения:

$$D_{\rm H} = D_{\rm MC} + D_{\rm OIII^{\bullet}}$$
 /5/

При вычислении среднего значения g необходимо принимать во внимание различную точность измерений для разных резонансов, т.е. брать взвешенные значения g_i. Учитывая наличие истинной дисперсии, в качестве весов принимались величины

$$w_i \sim (D_{MC} + \Delta g_i^2)^{-1},$$
 /6/

где Δg_i - ошибка измерения g_i .

Так как величина D_{ИС} заранее не известна, были использованы последовательные приближения. В качестве первого приближения для g было взято среднее ариф-

Рис. 4. Значения g-факторов всех исследованных резонансов.

метическое по 9 резонансам $\bar{g}(1) = 0,31$. Из рассмотрения исключены два резонанса тербия с энергией 4,99 и 11,1 эВ, так как их ошибки значительно превышают остальные и перекрывают весь диапазон флуктуаций величин g. С найденным значением $\bar{g}(1)$ была рассчитана для этих же резонансов наблюдаемая дисперсия

$$D_{H}(1) = \frac{1}{8} \sum_{i=1}^{5} (g_{i} - \overline{g}(1))^{2} = 0.45,$$

которая оказалась заметно больше, чем дисперсия, связанная с ошибками измерений для тех же резонансов

$$D_{OIII} = \frac{1}{9} \sum \Delta g_{i}^{2} = 0.12.$$

Отсюда была получена оценка для истинной дисперсии

$$D_{HC}(1) = D_{H}(1) - D_{OIII} = 0,33$$
.

Подставляя ее в выражение /6/, можно найти веса w_i и средневзвешенное значение $\overline{g(2)} = 0,33$. Этот результат не изменяется при включении двух исключенных выше резонансов тербия из-за их малого статистического веса.

Расчет дисперсии D_н с весами w_i

 $\mathbf{D}_{\mathbf{II}}(2) = \Sigma \left(\mathbf{g}_{\mathbf{i}} - \overline{\mathbf{g}}\right)^2 \mathbf{w}_{\mathbf{i}} / \Sigma \mathbf{w}_{\mathbf{i}}$

приводит к величине D_H(2) = О,38 для 9 резонансов. Следующее приближение дало практически совпадающие с предыдущим результаты

 $\overline{g} = 0,34 \text{ H} \text{ D}_{H} = 0,38,$

которые можно считать окончательными.

Обычная процедура оценки стандартной ошибки среднего значения из наблюдаемой дисперсии приводит к результату

 $\overline{g} = 0,34 \pm 0,22$.

Для оценки ошибки дисперсии воспользуемся соотношением

$$\Delta D_{\rm H} = \sqrt{\frac{2}{n-1}} D_{\rm H}.$$
 /7/

Соотношение /7/ справедливо для случайной выборки объемом n случайной величины, распределенной по нормальному закону с дисперсией D_H /см., например,/^{13/}/. В нашем случае эти условия можно считать приближенно выполненными, поскольку ошибки измерений меньше или равны величине истинных флуктуаций g.

Оценка по формуле /7/ дает $\Delta D_{\rm H} = 0,19$. Эта же ошибка может быть приписана и интересующей нас величине $D_{\rm MC}$ так как погрешность $D_{\rm OWI}$ значительно меньше. Окончательно получаем для истинной дисперсии $D_{\rm MC} = 0,26\pm0,19$ и для среднеквадратичного отклонения $\Delta g = 0,51\pm0,20$. Ошибка величины Δg получена как медианное значение из интервала ошибок $D_{\rm MC}$.

Сопоставим теперь экспериментальные и теоретические оценки. Среднее значение \bar{g} , полученное в эксперименте, совпадает с теоретической оценкой $g \approx 0.4$ и не нуждается в комментариях. Что касается разброса g-факторов, то экспериментальное значение Λ_g согласуется с оценкой 0.5 из работы /11/ и несколько выше значения 0.25, предсказанного в работе /12/. Однако в этой последней работе отмечалось, что значение 0.25 является минимальной оценкой, и были указаны пути ее

увеличения. Таким образом, полученные нами экспериментальные данные по магнитным моментам компаундсостояний ядер подтверждают теоретические оценки для средней величины g-факторов и указывают на сравнительно высокое значение флуктуаций магнитных моментов, хотя статистическая надежность последнего заключения оставляет желать лучшего.

В заключение считаем своим приятным долгом выраэнть признательность И.М.Франку за интерес к работе, Г.Г.Бунатяну за полезные обсуждения, Т.С.Афанасьевой, Б.А.Родионову, В.А.Вагову, Ш.Салан - за помощь в подготовке аппаратуры и проведении измерений.

Литература

- 1. F.L.Shapiro. "Research Applications of Nuclear Pulsed Systems" (Vienna, IAEA, 1967), p. 176.
- 2. F.L.Shapiro. "Polarized Targets and Ion Sources" (Saclay, CEA, 1967), p. 339.
- 3. В.П.Алфименков, Г.П.Жуков и др. ЯФ, 17, вып. 1, 13/1973/.
- 4. K.H.Beckurts and G.Brunhart. Phys.Rev., C1, 766 /1970/.
- 5. V.P. Álfimenkov et al. Phys. Lett., 53B, 429 /1975/.
- 6. "Neutron Cross Sections". BNL, Third Edition, 1/1973/.
- 7. В.П.Алфименков, О.Н.Овчинников. Препринт ОИЯИ, P8-9168, Дубна, 1975.
- 8. Х.Малэцки, Л.Б.Пикельнер и др. ОИЯИ, 13-6609, Дубна, 1972.
- 9. В.А.Вагов, В.Н.Замрий, Ш.Салаи. VII Международный симпозиум по ядерной элекронике. Будапешт-73, ОИЯИ, Д13-7616, Дубна, 1974, стр. 358.
- "Hyperfine Interactions in Excited Nuclei" (ed. G.Goldring and R.Kalish, New York, 1971), p.1255.
- 11. Р.Н.Куклин. ЯФ, 6, вып. 5, 969 /1967/.
- 12. Г.Г.Бунатян. ОИЯИ, Р4-8889, Дубна, 1975.
- 13. Д.Худсон. "Статистика для физиков", Москва, 1970.

Рукопись поступила в издательский отдел 29 января 1976 года.