92-346

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P3-92-346

Г.П.Георгиев, Ю.В.Григорьев¹, Ю.С.Замятнин, Г.В.Мурадян², Л.Б.Пикельнер, Х.Файков-Станчик, Н.Б.Янева³

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ НЕЙТРОННЫХ РЕЗОНАНСОВ ¹⁴⁹Sm МЕТОДОМ СПЕКТРОМЕТРИИ МНОЖЕСТВЕННОСТИ _Y-КВАНТОВ

¹ФЭИ, Обнинск ²Российский научный центр "Курчатовский институт", Москва ³ИЯИЯЭ БАН, София

Даннная работа является завершением цикла измерений, проведенных для изотопов Sm, методом спектрометрии множественности у-квантов. Эти исследования позволили существенно пополнить ряд характеристик нейтронных резонансов, особенно таких, как спины и радиационные ширины, которые представляют большой интерес в изучении механизма процесса радиационного захвата нейтронов и у-распада возбужденных ядер. Для исследованного нами нуклида¹⁴⁹Sm, Г₂ были известны только до энергии 80 эВ , при значительном разбросе их значений от 50 до 150 мэВ /1,2 / . Такие большие флуктуации Г в этом районе массовых чисел неожиданны, и поэтому было целесобразно определить их заново, тем более, что кроме разброса значений Г, наблюдался систематический их рост с увеличением энергии резонансов.

ИЗМЕРЕНИЯ И ОБРАБОТКА ДАННЫХ

Все измерения выполнены в бустерном режиме работы реактора ИБР-30 с размножением, равным 200 / в этом случае ширина нейтронного импульса равна 4 мкс /, при средней мощности около 10 кВт, частоте 100 Гц и разрешении 8 нс/м. Времяпролетные спектры захвата и рассеяния нейтронов были получены многосекционным сцинтилляционным детектором типа "Ромашка" /3-5/, состоящим из 16 независимых секций-кристалов NaJ(T1) и расположенным на 500 метровой пролетной базе.

Образец ¹⁴⁹Sm представлял собой окись самария с обогащением 94,6% и толщиной 2,47*10²⁰ ат/см² по основному изотопу. Для уменьшения фона от рециклических нейтронов применялся фильтр из карбида бора /10 мм/ и Cd /1 мм/. Для каждого акта захвата нейтрона регистрировались время пролета нейтрона и кратность совпадений зарегистрированных у-квантов.

Chute Willie BHCINTYT HURRORSCOR XGR **EHSINOTEHA**

Акт захвата нейтрона фиксировался в памяти только тогда, когда суммарная энергия зарегистрированных детектором у-квантов находилась в пределах от 2 до 8 МэВ. Порог регистрации импульсов каждой секции детектора составлял 0,1 МэВ . Сочетание метода времени пролета и спектрометрии множественности позволяло одновременно получить 8 времяпролетных спектров захвата соответствующих совпадениям у-квантов . разной кратности . Параллельно велась регистрация актов рассеяния нейтронов. Для этого внутри детектора размещался борный |n-y|-конвертор, и рассеянные нейтроны регистрировались по одиночным моноэнергетическим у-квантам с энергией 0,48 МэВ от реакции ¹⁰В(п, αγ). Подробно установка и методика эксперимента представлены в работах / 4,5 /. Примеры полученных спектров захвата и рассеяния приведены на рис.1

Рис 1. Времяпролетные спектры радиационного захвата и рассеяния нейтронов для ¹⁴⁹Sm. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Одновременные измерения времяпролетных спектров захвата и рассеяния позволили для значительного числа резонансов произвести оценку нейтронных и радиационных ширин. Как известно, площади под резонансными пиками в спектре захвата и рассеяния нейтронов описываются соответственно :

$$S_{\gamma} = F(E) \epsilon_{\gamma} A \Gamma_{\gamma} / \Gamma$$
, (1)

 $S_n = F(E) \epsilon_n A \Gamma_n / \Gamma,$ (2)

где F(E) – поток нейтронов резонансной энергии E на единичный интервал энергии за время измерений на всю площадь образца , A – площадь, соответствующая резонансному провалу на кривой пропускания , ε_n и ε_γ – эффективность актов рассеяния и захвата нейтронов.

Зная, например, соотношение S_n/S_γ , $\varepsilon_n/\varepsilon_\gamma$ и Γ_n , можно получить радиационные ширины. Отношение эффективностей $\varepsilon_n/\varepsilon_\gamma$ в случае изотопа ¹⁴⁹ Sm равно 0,58±0,08. Оно находилось из эксперимента, путем проведения нормировки по пяти низколежащим, хорошо разрешенным и сильным резонансам, для которых довольно точно известны Γ_γ и $\Gamma_n/2/$. При этом считалось, что, благодаря высокой эффективности регистрации γ -квантов, ε_γ и ε_n практически не меняются от резонанса к резонансу. В основном нейтронные ширины брались из работы /2/. В случае

появления сомнений в их величине или при получении значений Γ_{γ} , сильно отличающихся от средних, было проведено независимое определение Γ_n (для 7 резонансов). Для большинства из них величины Γ_n совпали в пределах ошибки измерений с данными /2/, но для двух резонансов при энергии 40,2 эВ и 134,1 эВ значения Γ_n существенно отличались.

При определении параметров резонансов в значения́ S_у и S_п вводились поправки ,учитывающие вклады регистрации актов захвата в канале рассеяния / 4% / и актов рассеяния в канале захвата /от 5% до 15% в зависимости от энергии нейтронов/.

Значения энергий резонансов и радиационных ширин, полученных в области энергии до 270 эВ, приведены в таблице 1 и сравниваются с данными работы /2/. Из таблицы видно ,что удалось определить около 40 ранее неизвестных радиационных ширин. Можно также заметить их значительно меньшие флуктуации по сравнению с данными/2/ и отсутствие систематической тенденции роста значений ширин с увеличением энергии возбужденных состояний. Так, характеризующее величину флуктуации число степеней свободы v, рассчитанное по известному соотношению $\nu = 2 \bar{\Gamma}_{\chi}^2 / (\Gamma_{\chi}^2 - \bar{\Gamma}^2)$ /6/, увеличилось с 21,7 ± 3,1 55,4 + 7,8 . Однако приведенная величина v не отражает истинного числа степеней свободы, так как дисперсия Г_ является суммой дисперсий истинной физической дисперсии и дисперсии ,связаной с ошибками эксперимента. В связи с этим истинная дисперсия существенно меньше наблюдаемой , а число и на самом деле значительно больше указанных значений. Полученная средняя величина радиационной ширины для 51

резонанса равна (75 ± 3) мэВ, что несколько меньше по сравнению со средней в /2/ (88 мэВ) и совпадает с < Γ_{γ} > для 147 Sm .

Кроме радиационных ширин, определялись еще спины резонансов по методу множественности у-квантов. Зная площади под резонансными пиками для 8 разных кратностей и определяя среднюю кратность совпадений у-квантов <K> для каждого резонанса, мы получили две группы резонансов, четко разРезонансные параметры 149 Sm

Sm

Таблица 1

	E(эB)	J	Г _п (мэВ)	Г _ү (мэВ)	Г _ү (мэВ) [*]
_	1	2	3	4	5
-	15,85	3		· · · ·	
	17,14	4	2		94 <u>+</u> 5
	23,2	4	•		72 <u>+</u> 9
	24,7	<u>- 1</u>			
	25,26	3		63 <u>+</u> 9 ⁵	86 <u>+</u> 6
	26,1	4			90 <u>+</u> 5
	28,0	3	с. "С ⁴		
	29,9	3		1 - 14 1	÷:
	30,8	4		55 <u>+</u> 9	73 <u>+</u> 7
	33,9	4	5,4 ± 0,4	47 <u>+</u> 8	67 <u>+</u> 12
	40,2	3	18 <u>+</u> 2	56 ± 9	110 <u>+</u> 22
	41,3	3		74 <u>+</u> 16	109 <u>+</u> 9
	44,3	4		80 <u>+</u> 12	115 <u>+</u> 10
	45,1	4		61 <u>+</u> 12	52 ± 11
	49,5	3		54 <u>+</u> 10	
	50,5	3			
	51,6	4		73 <u>+</u> 13	77 <u>+</u> 8
	57,5	4		67 <u>+</u> 10	128 <u>+</u> 12
	59,7	4		73 <u>+</u> 12	123 <u>+</u> 12
	60,84	3			
	62,1	4		71 <u>+</u> 13	110 ± 12
	64,78	_			•
	68,3	4		60 <u>+</u> 11	
	70,76	3		77 <u>+</u> 14	115 <u>+</u> 10
	72,1	3			
	73,1	4	s .	81 <u>+</u> 18	158 <u>+</u> 20
	74,7	4		57 <u>+</u> 11	
	75,4	3		85 <u>+</u> 14	
	76,8	4			

1234512345 $83,9$ 4 67 ± 11 $174,6$ 3 $177,9$ 4 64 ± 12 912 ± 21 $90,8$ 4 75 ± 13 $177,9$ 4 64 ± 12 912 ± 21 912 ± 21 $92,3$ 3 99 ± 19 $95,6$ (4) 97 ± 18 $185,12$ 3 99 ± 17 $95,6$ (4) 97 ± 18 $188,1$ 4 95 ± 21 95 ± 21 $96,3$ 3 75 ± 14 $192,9$ 4 $98,21$ 4 75 ± 8 114 ± 22 $197,5$ 3 64 ± 17 $104,4$ $ 203,7$ 3 79 ± 15 112 $104,4$ $ 203,7$ 3 79 ± 15 $107,1$ 3 64 ± 16 $210,9$ 4 61 ± 19 $109,1$ 4 59 ± 11 $214,7$ 3 61 ± 15 $111,3$ 3 18 ± 2 49 ± 11 $225,5$ 4 $117,05$ 3 91 ± 19 $230,1$ $ 121,8$ (4) $234,$ (4)	
$83,9$ 4 67 ± 11 $174,6$ 3 $87,7$ 3 $177,9$ 4 64 ± 12 $90,8$ 4 75 ± 13 $179,9$ (4) 53 ± 5 112 ± 21 $92,3$ 3 99 ± 19 $185,12$ 3 99 ± 17 $95,6$ (4) 97 ± 18 $188,1$ 4 95 ± 21 $96,3$ 3 75 ± 14 $192,9$ 4 $98,21$ 4 75 ± 8 114 ± 22 $194,8$ (4) $99,63$ 4 40 ± 5 84 ± 15 $197,5$ 3 64 ± 17 $101,7$ 3 64 ± 16 $201,1$ $201,1$ $111,3$ 3 64 ± 16 $210,9$ 4 61 ± 19 $107,1$ 3 64 ± 16 $210,9$ 4 61 ± 19 $111,3$ 3 18 ± 2 49 ± 111 $218,1$ 4 41 ± 15 $111,3$ 61 ± 15 $111,3$ 61 ± 15 $111,3$ 118 ± 2 49 ± 111 $218,1$ 4 41 ± 15 $228,2$ 4 1	
$87,7$ 3177,94 64 ± 12 $90,8$ 4 75 ± 13 $179,9$ (4) 53 ± 5 112 ± 21 $92,3$ 3 99 ± 19 $185,12$ 3 99 ± 17 $95,6$ (4) 97 ± 18 $185,12$ 3 99 ± 17 $96,3$ 3 75 ± 14 $192,9$ 4 $98,21$ 4 75 ± 8 114 ± 22 $194,8$ (4) $99,63$ 4 40 ± 5 84 ± 15 $197,5$ 3 64 ± 17 $101,7$ 3 64 ± 16 $203,7$ 3 79 ± 15 $107,1$ 3 64 ± 16 $210,9$ 4 61 ± 19 $109,1$ 4 59 ± 11 $214,7$ 3 61 ± 19 $111,3$ 3 18 ± 2 49 ± 11 $218,1$ 4 -1 $115,2$ 4 74 ± 16 $225,5$ 4 $119,4$ 3 $119,4$ 3 91 ± 19 $230,1$ -1 $230,1$ -1 $121,8$ (4) $122,3$ 4 94 ± 18 $237,8$ 3	
90,8475 \pm 13179,9(4)53 \pm 5112 \pm 2192,3399 \pm 19185,12399 \pm 1795,6(4)97 \pm 18188,1495 \pm 2196,3375 \pm 14192,9498,21475 \pm 8114 \pm 22194,8(4)99,63440 \pm 584 \pm 15197,5364 \pm 17101,73-201,1203,7379 \pm 15107,1364 \pm 16210,9461 \pm 19109,1459 \pm 11214,7361 \pm 15111,3318 \pm 249 \pm 11218,14115,2474 \pm 16225,54119,4391 \pm 19230,1-121,8(4)237,83	
92,3399 \pm 19185,12399 \pm 1795,6(4)97 \pm 18188,1495 \pm 2196,3375 \pm 14192,9498,21475 \pm 8114 \pm 22194,8(4)99,63440 \pm 584 \pm 15197,5364 \pm 17101,73-198,3201,1-104,8461 \pm 20203,7379 \pm 15107,1364 \pm 16210,9461 \pm 19109,1459 \pm 11214,7361 \pm 15111,3318 \pm 249 \pm 11218,14115,2474 \pm 16225,54117,05391 \pm 19230,1-121,8(4)237,83-125,3494 \pm 18237,83	
95,6(4)97 \pm 18188,1495 \pm 2196,3375 \pm 14192,9498,21475 \pm 8114 \pm 22194,8(4)99,63440 \pm 584 \pm 15197,5364 \pm 17101,73-198,3201,1198,3104,4203,7379 \pm 15107,1364 \pm 16210,9461 \pm 19109,1459 \pm 11214,7361 \pm 15111,3318 \pm 249 \pm 11218,14-115,2474 \pm 16225,54-119,4391 \pm 19230,1122,8(4)-234,(4)-125,3494 \pm 18237,83-	
$96,3$ 3 75 ± 14 $192,9$ 4 $98,21$ 4 75 ± 8 114 ± 22 $194,8$ (4) $99,63$ 4 40 ± 5 84 ± 15 $197,5$ 3 64 ± 17 $101,7$ 3 $192,9$ 4 $192,9$ 4 $104,4$ - $197,5$ 3 64 ± 17 $104,8$ 4 61 ± 20 $203,7$ 3 79 ± 15 $107,1$ 3 64 ± 16 $210,9$ 4 61 ± 19 $109,1$ 4 59 ± 11 $214,7$ 3 61 ± 19 $109,1$ 4 59 ± 11 $218,1$ 4 $115,2$ 4 74 ± 16 $225,5$ 4 $117,05$ 3 91 ± 19 $230,1$ $ 121,8$ (4) $234,$ (4) $125,3$ 4 94 ± 18 $237,8$ 3	
98,21475 \pm 8114 \pm 227194,8(4)99,63440 \pm 584 \pm 15197,5364 \pm 17101,73-198,3201,1203,7379 \pm 15104,4203,7379 \pm 15107,1107,1364 \pm 16210,9461 \pm 19109,1459 \pm 11214,7361 \pm 15111,3318 \pm 249 \pm 11218,14115,2474 \pm 16225,54117,053-228,24119,4391 \pm 19230,1-121,8(4)-234,(4)125,3494 \pm 18237,83	
99,63440 \pm 584 \pm 15197,5364 \pm 17101,73201,1201,1104,8461 \pm 20203,7379 \pm 15107,1364 \pm 16210,9461 \pm 19109,1459 \pm 11214,7361 \pm 15111,3318 \pm 249 \pm 11218,14115,2474 \pm 16225,54117,05391 \pm 19230,1-121,8(4)-234,(4)125,3494 \pm 18237,83	
$101,7$ 3198,3 $104,4$ - $201,1$ $104,8$ 4 61 ± 20 $107,1$ 3 64 ± 16 $107,1$ 3 64 ± 16 $109,1$ 4 59 ± 11 $111,3$ 3 18 ± 2 $115,2$ 4 74 ± 16 $117,05$ 3 $119,4$ 3 $119,4$ 3 $125,3$ 4 94 ± 18 $237,8$	
$104, 4$ - $201, 1$ $104, 8$ 4 61 ± 20 $203, 7$ 3 79 ± 15 $107, 1$ 3 64 ± 16 $210, 9$ 4 61 ± 19 $109, 1$ 4 59 ± 11 $214, 7$ 3 61 ± 15 $111, 3$ 3 18 ± 2 49 ± 11 $218, 1$ 4 $115, 2$ 4 74 ± 16 $225, 5$ 4 $117, 05$ 3 91 ± 19 $230, 1$ $ 121, 8$ (4) 94 ± 18 $237, 8$ 3	
$104,8$ 4 61 ± 20 $203,7$ 3 79 ± 15 $107,1$ 3 64 ± 16 $210,9$ 4 61 ± 19 $109,1$ 4 59 ± 11 $214,7$ 3 61 ± 15 $111,3$ 3 18 ± 2 49 ± 11 $218,1$ 4 $115,2$ 4 74 ± 16 $225,5$ 4 $117,05$ 391 \pm 19 $230,1$ - $121,8$ (4) $234,$ (4) $125,3$ 4 94 ± 18 $237,8$ 3	
$107,1$ 3 64 ± 16 $210,9$ 4 61 ± 19 $109,1$ 4 59 ± 11 $214,7$ 3 61 ± 15 $111,3$ 3 18 ± 2 49 ± 11 $218,1$ 4 $115,2$ 4 74 ± 16 $225,5$ 4 $117,05$ 391 ± 19 $230,1$ - $119,4$ 3 91 ± 19 $234,$ (4) $125,3$ 4 94 ± 18 $237,8$ 3	
$109,1$ 4 59 ± 11 $214,7$ 3 61 ± 15 $111,3$ 3 18 ± 2 49 ± 11 $218,1$ 4 $115,2$ 4 74 ± 16 $225,5$ 4 $117,05$ 3 $228,2$ 4 $119,4$ 3 91 ± 19 $230,1$ - $121,8$ (4) $234,$ (4) $125,3$ 4 94 ± 18 $237,8$ 3	
111,33 18 ± 2 49 ± 11 $218,1$ 4 115,24 74 ± 16 $225,5$ 4 117,053 91 ± 19 $230,1$ $-$ 119,43 91 ± 19 $234,$ (4) 121,8 (4) 94 ± 18 $237,8$ 3	
115,24 74 ± 16 $225,5$ 4117,053 $228,2$ 4119,43 91 ± 19 $230,1$ -121,8(4) $234,$ (4)125,34 94 ± 18 $237,8$ 3	
$117,05$ 3 $119,4$ 3 91 ± 19 $121,8$ (4) $125,3$ 4 94 ± 18 $237,8$	
119,43 91 ± 19 $230,1$ $-$ 121,8(4) $234,$ (4)125,34 94 ± 18 $237,8$ 3	•
121,8 (4) 125,3 4 94 \pm 18 237,8	
$125,3$ 4 94 ± 18 $237,8$ 3	
130,1 (4) $240,0$ (3) $61 + 17$	e se te de j
134,1 (4) 127 ± 9 88 ± 14 244,3 4 105 ± 20	
138,7 3 $-$ 3 $-$ 3 $-$ 17	
141,0 3	
144,2 (4) 58 \pm 15 254,8 3 85 \pm 17	
145,8 - 258,7 4 93 + 19	
147,1 4 76 \pm 13 260,6 4	
149,4 3 263,2 4 82 + 16	
$154,8$ 4 82 ± 17 $265,8$ (3) (3) (3) (3)	
157,4 3 61 ± 14 268,9 4	
158,5 3	a da anti- a da anti-
168,2 3 61 ± 14	
173,4 3 * Данные работы /1/	n de General de la composition

личающиеся по средней кратности, которые принадлежат разным спинам 3 и 4 (рис 2).

Наша идентификация спинов в большинстве случаев совпадает с данными, приведенными в /2/, кроме нескольких резонансов. По нашим данным, для резонансов 138,7 и 149,4 эВ значение спина З является более правильным, чем приведенное в /2/ значение 4, для нескольких резонансов значения спинов определены впервые.

Рис 2. Распределение средней кратности для резонансов ¹⁴⁹Sm.

Обработка спектров захвата и рассеяния нейтронов велась по программе ANS /7/, которая была специально разработана для этого типа задач.

ЛИТЕРАТУРА

А.Б.ПОПОВ и др. Ядерная физика, т. 32, вып. 3(9), 1980, стр. 603.
 S.F. Mughabghab Neutron Cross Section, v1, Part B, Academic Press, 1984.

3.Г.В.Мурадян. Атомная энергия ,т 50,вып 6,1981,стр. 394. 4.Г.П.Георгиев и др. Сообщение ОИЯИ,РЗ-88-555,Дубна,1988,

- 5.N.Janeva et al. Nuclear Instruments Methods in Nuclear Research A313,1992,p.266,
- 6.L.Lason et al.Communications IF UL 10(39),Lodz,1990.
- 7.B.I.Ivanov, J.Rosek, JINR Communication, E 10-90-434, Dubna, 1991.

Рукопись поступила в издательский отдел 13 августа 1992 года. Георгиев Г.П. и др. P3-92-346 Определение параметров нейтронных резонансов ¹⁴⁹Sm методом спектрометрии множественности у-квантов

Методом спектрометрии множественности у-квантов на нейтронном спектрометре ЛНФ ОИЯИ с использованием многосекционного детектора типа "Ромашка" проведены измерения захвата и рассеяния нейтронов для обогащенного изотопа ¹⁴⁹Sm. Получены спины и радиационные ширины резонансов в области до 300 эВ. Определено около 40 новых радиационных ширин.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1992

Перевод авторов

Georgiev G.P. et al. P3-92-346 Determination of Neutron Resonance Parameters in ¹⁴⁹Sm by the γ -Multiplicity Spectrometry Method

The neutron radiative capture and scattering measurements for enriched isotope ¹⁴⁹Sm are performed on neutron spectrometer LNPh JINR by a γ -rays multiplicity method using the multisectional 4π -detector "Romashka". Spins and radiative widths of neutron resonances are obtained up to 300 eV. 40 new radiative widths are determined.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1992