

P3-92-230

Л.В.Мицына, Г.С.Самосват

ОБ АНОМАЛЬНОМ РАССЕЯНИИ Р-НЕЙТРОНОВ ЯДРАМИ ТЕЛЛУРА

Направлено в журнал "Ядерная физика"

1992

После нашей предыдущей статьи [1], продолжившей систематические измерения средних нейтронных резонансных параметров большой группы ядер (см. библиографию в [1]), для масс А>124 оказались исследованными три природных смеси изотопов: Те, Хе и Nd. Определяемые из средних дифференциальных сечений упругого рассеяния нейтронные силовые функции s⁰, s¹_{1/2}, s¹_{3/2} для s-, p_{1/2}-p_{3/2}-нейтронов и радиусы рассеяния R₀ для s-нейтронов у всех трех элементов довольно плавную зависимость от А, обнаруживают экстраполируемур из области более легких исследованных ядер, расположенных на шкале А плотнее. И только поведение радиусов рассеяния для нейтронной р-волны R₄ оказалось неожиданным: значение R, для Те явно выпадает вниз на 15-20 ошибок. Желая подробнее исследовать этот эффект, мы провели измерения с двумя тяжелыми и наиболее доступными изотопами теллура.

Измерения

Использовалась та же методика измерений, что и в работе [1], только в качестве рассеивателей на местах стальных баллонов с газами были установлены четыре цилиндрических контейнера из алюминия толщиной 0,2 мм - один пустой и три заполненных порошками ¹²⁸те (98,6% обогащения), ¹³⁰те (99,6%) и B_4C (последний как стандарт с известным сечением рассеяния). Было выполнено две серии измерений: первая - с контейнерами диаметром 2 см, а вторая - 3 см. Количество порошков ¹²⁸те, ¹³⁰те и B_4C в первой серии было 27,26 и 32 г и во второй -50, 50 и 64 г, соответственно. Столбики порошков имели высоту примерно 9 см и во время "своей" экспозиции целиком находились в нейтронном пучке.

Всего в первой серии было сделано 504 10-минутных экспозиций, по 42 для каждого из четырех контейнеров и каждого из углов рассеяния: 45,90 и 135°. Во второй серии эти числа составили соответственно 852 и 71. Весь измерительный процесс, включая перемещения рассеивателей и детектора нейтронов,

> Мозеканскиный институт инститик вссяедования БИБЛИОТЕНА

проводился в автоматическом режиме с помощью ЭВМ типа СМ-1300 и прерывался для контроля и вывода результатов один раз в сутки.

Результаты

Преобразование накопленных времяпролетных спектров рассеиваемых нейтронов в дифференциальные сечения рассеяния

$$\sigma(\vartheta, E) = \frac{\sigma_{s}(E)}{4\pi} \left[1 + \sum_{i=1}^{2} \omega_{i}(E) P_{i}(\cos\vartheta) \right],$$

где ϑ -угол рассеяния, Е-энергия нейтронов, и извлечение из последних нейтронных силовых функций и радиусов рассеяния проводились так же, как в [1] и цитируемых там работах. Полученные дифференциальные сечения в виде их параметров σ_s , ω_1 и ω_2 , пересчитанные в систему центра масс, представлены на рис.1 и 2, где из-за экономии места ω_1 и ω_2 даны только для

Рис.2. Параметры анизотропии рассеяния для ¹²⁸те, полученные с рассеивателями Ø20 мм (кружки) и Ø30 мм (кресты). Кривые – см. текст.

¹²⁸Те, ибо они почти одинаковы у обоих изотопов. Результаты, полученные в первой серии измерений (диаметр рассеивателей 20 мм), изображены кружками, а во второй серии (30 мм) – крестами.

В таблице приведены значения силовых функций и радиусов рассеяния, дающие наилучшее описание экспериментальных точек. Со способом получения этих значений можно познакомиться в работе [2]. Укажем эдесь лишь связь радиусов рассеяния $R'_{j}=R[1-(21+1)R''_{j}]$ с параметрами вклада далеких уровней R''_{j} ; радиус ядра брался в виде $R=1,35A^{1/3}$ фм. Параметры $\bar{\Gamma}'_{j}/\bar{D}_{j}$, учитывающие радиационный захват, оценены по данным из [3]; они слабо влияют на другие параметры и оставались фиксированными.

3

B основной подгонке параметров участвовали экспериментальные точки обеих серий и варьировались пять параметров. В дополнительной подгонке мы зафиксировали для обоих ядер R4=-0,23 - на "нормальном" уровне близких по массе ядер. Результаты этой подгонки даны в таблице в скобках вслед за основными результатами. О качестве соответствия найденных параметров эксперименту можно судить по значениям 2² на одну точку в таблице и по кривым на рисунках (сплошным для основной подгонки, пунктирным - для дополнительной). Заметим, что подгонки по отдельным сериям приводили, естественно, к несколько различающимся значениям параметров, средние от которых близки к значениям из таблицы.

Таблица

Параметр	¹²⁸ Te	¹³⁰ Te
10 ⁴ · Γ _{γ0} / D ₀	2.7	1.0
10 ⁴ · $\bar{\Gamma}_{\gamma_1} / \bar{D}_{_1}$	8.0	3.0
10 ⁴ · s ⁰	0.04±0.03 (0.28±0.03)	0.00±0.02 (0.10±0.04)
10 ⁴ ·s ¹ /2	2.7±1.0 (11.9±1.0)	2.5±0.8 (10.3±1.2)
10 ⁴ ·s ¹ _{3/2}	1.66±0.26 (1.14±0.38)	1.47±0.26 (0.91±0.44)
R ₀ ', фм	6.29±0.16 (4.55±0.14)	6.28±0.10 (5.09±0.16)
R ₁ ', фм	6.19±0.31 (11.50)	6.31±0.31 (11.56)
x ²	1.7 (3.4)	1.8 (4.7)

Обсуждение

На рис. 3 и 4 темными точками изображены полученные нами ранее данные о р-волновых нейтронных параметрах ядер: 3p_{1/2}и 3p_{3/2}-максимумы нейтронной силовой функции и характерный ход радиуса R₁[']. Результаты для ¹²⁸те и ¹³⁰те показаны на рисунках

Рис. 3. Экспериментальные эначения р-нейтронной силовой функции. Светлые кружки – для изотопов Те в основной подгонке, кресты – в дополнительной.

светлыми точками для основной подгонки и крестами — для дополнительной. В принципе могло случиться, что при основной подгонке итерации остановились в ложном минимуме χ^2 , а в истинном минимуме аномалии R_i' нет. Однако это опровергается результатами дополнительной подгонки. В самом деле, χ^2 в ней больше, чем в основной, энергетический ход σ_{si} противоречит экспериментально наблюдаемому, а эначения $S_{i/2}^i$ неразумно большие. Таким образом, формулируя основной вывод настоящей работы, мы вправе утверждать, что радиусы р-рассеяния на ¹²⁸те и ¹³⁰те примерно на 50% меньше, чем на ядрах соседних элементов, и на 25% – по сравнению с ядрами естественного теллура. Тогда, учтя результат $R_i'=8, i\pm0, 2$ фм для Те, можно предсказать, что шесть более легких изотопов, составляя около

Рис.4. Экспериментальные эначения радиуса р-рассеяния. Светлые кружки - для изотопов Те в основной подгонке, кресты - в дополнительной.

34% в смеси, должны иметь в качестве своего среднего величину R₄′≅12 фм, т.е. как раз "нормальную" величину.

Что касается теоретической интерпретации аномалии, то этот типично нестатистический эффект можно было бы объяснить образованием в промежуточных ядрах Te¹²⁹ и Te¹³¹ некоторых простых, или входных, состояний со спинами 1/2 и (или) 3/2, соответствующих энергии падающих нейтронов ~0,3 МэВ и имеющих ширины в десятки или сотни кэВ. Мы попытались чисто феноменологически оценить их параметры, предположив, что Te есть смесь двух "изотопов", один из которых имеет входное состояние 3/2 и концентрацию 66%.

На рис.5 представлены наши старые данные для Те из работы [4] до 250 кэВ и данные из [5] выше 350 кэВ. Перепад

экспериментальных точек ω_1 в районе 300 кэВ как раз характерен для интерференции р-резонанса с потенциальным в-рассеянием. Кривые 1,2 и 3 на рисунке, соответствующие трем вариантам такого резонанса, рассчитывались из выражения сечения

 $\sigma(\vartheta, E) = \sigma_1(R_0', R_1', S^0, S_{1/2}^1, S_{3/2}^1) + 0.66\sigma_2(E_0, \Gamma_n, \Gamma_\gamma),$

Где функция σ_1 - сечение, усредненное по резонансам, а σ_2 - сечение для изолированного резонанса (выражения для σ_1 и σ_2 можно найти в работе [2]). Нейтронную и радиационную ширины Γ_n и Γ_{χ} как аргументы функции σ_2 в случае входного состояния обозначают Г[↑] и Г[↓]. При этом ширина Г[↓]=const отвечает переходу в компаунд-состояния, а Г[↑] ~ $E^{3/2}$ (для р-состояния) соответствует переходу во входной канал. Все аргументы σ_1 для всех кривых одинаковы, причем R_1^{σ} =-0.23, т.е. $R_1' \cong 11.5$ фм. Кривая 4 получена при σ_2 =0 и отвечает отсутствию аномалии в р-рассеянии.

6

Для надежного установления природы обнаруженного нами явления необходимы дальнейшие эксперименты с изотопами теллура и другими близкими по массе ядрами.

Литература

- 1. Говоров А.М.и др. ЯФ, 1991, т. 54, с. 1192.
- 2. Самосват Г.С. ЭЧАЯ, 1986, т. 17, с. 713.
- Mughabghab S.F. et.al. Neutron Cross Sections, v.1, pt.A, Academic Press, 1981.
- 4. Зо Ин Ок и др. Сообщение ОИЯИ РЗ-85-133, Дубна, 1985.
- 5. Smith A.B., Hayes R., Nucl. Phys., 1967, v. A93, p. 609.

Рукопись поступила в издательский отдел I июня 1992 года. Мицына Л.В., Самосват Г.С. Об аномальном рассеянии р-нейтронов ядрами теллура

Из измерений дифференциального сечения рассеяния нейтронов с энергиями до ~ 300 кэВ при трех углах на изотопах ¹²⁸Те и ¹³⁰Те определены нейтронные силовые функции S⁰, S¹_{1/2}, S¹_{3/2} и радиусы рассеяния R⁶₀ и R⁷₁ для s- и р-волн. Как и для изученной ранее природной смеси изотопов Te, радиусы р-рассеяния существенно меньше, чем у соседних ядер, но так, что средний R⁷₁ для остальных изотопов Te, по-видимому, "нормален". Иллюстрируется возможность объяснить аномалию образованием входных состояний у составных ядер ¹²⁹Te и ¹³¹Te со спинами и четностями 1/2⁻ и (или) 3/2⁻.

P3-92-230

P3-92-230

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1992

Перевод авторов

Mitsyna L.V., Samosvat G.S. About Anomalous Scattering of p-Neutrons by Te-Nuclei

The neutron strength functions S^0 , $S_{1/2}^1$, $S_{3/2}^1$ and scattering radii R_0^c and R_1^c for s- and p-waves were calculated from differential neutron scattering cross-sections of 1^{28} Te and 1^{30} Te isotopes measured at up to ~ 300 keV neutron energies for three different angles. As for earlier investigated natural isotope mixture of Te the radii of p-scattering are essentially less than for neighbouring nuclei, while average R' for the rest isotopes of Te is, apparently, "normal". The possibility is demonstrated to explain this anomaly through door-way states being formed in 1^{29} Te and 1^{31} Te compound nuclei with spins and parities $1/2^-$ and (or) $3/2^-$. The investigation has been performed at the Laboratory of Neutron Dhysics.

ratory of Neutron Physics, JINR. Preprint of the Joint Institute for Nuclear Research. Dubna 1992