ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

Н.П.Балабанов, Ю.М.Гледенов, Пак Хон Чер, Ю.П.Попов, В.Г.Семенов

3933/2-75

5-20

ПОЛНЫЕ Q-ШИРИНЫ НЕЙТРОННЫХ РЕЗОНАНСОВ ¹⁴⁷ Sm И ¹⁴⁹ Sm

13 x -75

P3 - 9099

P3 - 9099

Н.П.Балабанов, Ю.М.Гледенов, Пак Хон Чер, Ю.П.Попов, В.Г.Семенов

ПОЛНЫЕ **Q**-ШИРИНЫ НЕЙТРОННЫХ РЕЗОНАНСОВ ¹⁴⁷ Sm И ¹⁴⁹ Sm

,

Направлено в "Nuclear Physics"

объединенный институт насравах всследования БИБЛИОТЕКА Балабанов Н.П., Гледенов Ю.М., Пак Хон Чер, Попов Ю.П., Семенов В.Г.

Полные а - ширины нейтронных резонансов ¹⁴⁷ Sm и ¹⁴⁹ Sm Измерены выходы реакции (n, а) на изотопах ¹⁴⁷ Sm и ¹⁴⁹ Sm. Получены значения полных ^а -ширин или их верхние оценки более чем для 90 резонансов. Проведено сравнение средних ^а -ширин с предсказаниями оптической и кластерной моделей. В случае резонансов ¹⁴⁹ Sm со спином 4 получено значительно более узкое распределение полных _а -ширин по сравнению с ожидаемым по статистической теории.

P3 - 9099

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1975

О1975 Объединенный инспинут ядерных исследований Дубна

Введение

В настоящее время свойства нейтронных резонансов описываются на базе статистической теории, в основе которой лежит концепция компаунд-состояний Н.Бора. Однако в последнее время на опыте, чаще в области сравнительно легких ядер ($A \leq 100$), наблюдаются эффекты, не укладывающиеся в простую схему предельной статистической теории. Возможно, нейтронные резонансы не являются "чистыми" компаунд-состояниями, хотя и близки к ним, особенно в области тяжелых ядер. В связи с этим представляется интересным посмотреть, насколько хорошо описывает статистическая теория закономерности нового канала распада нейтронных резонансов – реакции (a, ∞).

К сожалению, из-за большого кулоновского барьера для ∞ частиц в средних и тяжелых ядрах сечения этой реакции крайне малы ($G(n, \alpha)/G(n, \epsilon) \leq 10^{-5}$), поэтому ее изучение представляет значительные экспериментальные трудности. ¹⁴⁷Sm и ¹⁴⁹Sm относятся к тому неширокому пока кругу ядер, у которых удается измерять выход реакции (n, α) на сравнительно большом числе резонансов.

Изучение α -распада резонансов ¹⁴⁷ Sm и ¹⁴⁹ Sm уже было предметом исследования в ряде работ /1-3/. В результате этого были определены полные α -ширины \approx 30 резонансов в низкоэнергетической области, а также исследованы спектры α -частиц от распада \approx 15 резонансов этих ядер.

В последнее время был достигнут прогресс в изучении резонансных параметров ядер ¹⁴⁷5*m* и ¹⁴⁹5*m* -нейтронных ширин и спинов в более широкой области энергии нейтронов ^{/4-6/}. С другой

Таблица І

стороны, развитие детекторов для регистрации α -частиц в реакции $(n \propto)$ /7,8/, а также повышение мощности источника нейтронов – импульсного реактора ИЕР-ЗО в режиме бустера с линейным ускорителем электронов, дали нам возможность вернуться к изучению этой реакции с лучшей статистической точностью и таким разрешением, с которым еще нередко исследуется реакция (n, γ) , имеющая на несколько порядков большее сечение.

В настоящей работе приводятся новые и уточненные данные о полных α -ширинах резонансов ^{I47}Sm и ^{I49}Sm и результаты анализа усредненных характеристик α -распада резонансных состояний с определенными спинами.

Методика измерения

Измерения выходов реакции (n, ∞) проводились на пучках нейтронов импульсного реактора ИЕР-30, работавшего в режиме бустера совместно с линейным ускорителем электронов. Спектрометрия нейтронов осуществлялась по методу времени пролета. В качестве детектора α -частиц, возникающих в реакции (n, α), использовалась многосекционная пропорциональная камера ^{/8/}. При измерения $149 S_m$ в камеру помещалась, кроме исследуемых мишеней, мишень из $147 S_m$ в качестве калибровочной. Мишени представляли собой слои окиси самария с обогащением по основному изотопу $\approx 97\%$, нанесенные на апыминиевые подложки методом осаждения. Подробные сведения об использованных мишенях и условиях измерения приводятся в таблице I.

Условия экс	перимента
-------------	-----------

Ядро- мишень	Ēα0, M 3 B	Обогащение изотопа, %	Толщина мишени мг/см~	Полная площадь мишени, см2	Временное разрешение, нсек/м	Время из- мерения, час
¹⁴⁷ Sm	9,8	96,4	9,0	9400	17	150
¹⁴⁹ Sm	9,3	96,9	9,I	6800	47	300

			Таблица	2		
Срелние	≪-ширины	резонансов	¹⁴⁷ Sm	И	¹⁴⁹ Sm	¥)

Ядро- мишень	Ĵ	Интервал энергии нейтронов, эВ	Число резо- нансов	< <i>Г</i> а≯, мкэВ	<	< /_x > ^{km} , mrəB
147 _C .	3-	0 - 300	20 (19)	2,3±0,6 (I,4±0,4)	5,1±0,4	4,8±0,5
Sm	4	0 - I40	I 0	0,38±0,12	0,72±0,07	0,44±0,04
149 _~	3-	0 - 70	13	0,2I±0,06	0,55±0,05	0,40±0,04
Sm	4	0 - 70	18	0,029±0,008	0,087±0,006	0,056±0,000

ж) Здесь и в последующих таблицах в скобках приведены значения, полученные при исключении резонанса с E_c = 183,7 эВ.

-5

Результаты измерения и обсуждение

I. Полные *х*-ширины нейтронных резонансов.

На рис. I и 2 приведены зависимости числа отсчетов ∞ -частиц от времени пролета нейтронов. Стрелками отмечены положения известных нейтронных резонансов, значения энергии которых взяты из работы /4/. Суммарные отсчеты ∞ -частиц N_{∞} в отдельных резонансах при учете изменения потока нейтронов с энергией и вероятности их захвата позволяют определить полные ∞ -ширивы.

Значения полных - - ширин вычислялись по формуле:

$$(\overline{\Gamma_{\alpha}})_{\kappa} = \frac{\underline{\varepsilon_{\sigma}} S_{\sigma}}{\underline{\varepsilon_{\kappa}} S_{\kappa}} \cdot \frac{\underline{\phi_{\sigma}}}{\varphi_{\kappa}} \cdot \frac{A_{\sigma} \overline{\Gamma_{\kappa}}}{A_{\kappa} \overline{\Gamma_{\sigma}}} \cdot \frac{(N_{\alpha})_{\kappa}}{(N_{\alpha})_{\sigma}} \cdot (\overline{\Gamma_{\alpha}})_{\sigma}, \qquad (\mathbf{I})_{\kappa}$$

где \mathcal{E} - эффективность детектора к α -частицам; \mathcal{S} - площадь мишени; A - площадь резонанса над кривой пропускания; φ поток нейтронов; Γ и Γ_{α} - полная и α -ширины резонанса; индексы \circ и κ означают калибровочный и исследуемый резонансы соответственно. Параметры нейтронных резонансов взяты из работ $^{/5}, 6/$ ж), а относительные значения потока нейтронов - из работы $^{/9/}$. Калибровка проводилась относительно резонанса $^{147}S_m$ с $E_o = 3,4$ зВ, полная α -ширина которого по данным $^{/1/}$ равна (2,5 ± 0,3) мкэВ же).

ж) Для резонанса ¹⁴⁷5*m* с $E_c = 160,8$ эВ мы взяли $J^{\pi} = 3^{-1}$ на основании наличия ∞ -перехода на основное состояние дочернего ядра ¹². Для резонанса ¹⁴⁹5*m* с $E_o = 50,5$ эВ в работах ¹⁵,6[/] приводятся различные значения спина. Мы предпочли $J^{\pi} = 3^{-1}$ ввиду большого значения ∞ -ширивы этого резонанса (см., например, ^{14/}). жж) Хотя в работе ¹⁰/приводится значение (1,8 ± 0,2) мкзВ, это не приводит к заметному различию в калибровке, если учесть, что величины $f_{\pi} = 2,5$ и 1,8 мкэВ были получены при значениях $2gf_n = 0,82$ ⁽²¹⁾ и 1,15 ⁽⁵⁾ мэВ соответственно.

Рис. I Временной спектр : (-частиц в реакции >m(n, x) /Vd Энергия нейтронов E_n в эВ.

Рис.2 Временной спектр ∞ -частиц в реакции $^{49}Sm(n, \alpha)^{46}Nd$. Энергия нейтронов E_n в эВ.

Улучшение разрешения дало нам возможность значительно повысить границу доступной для измерения энергии нейтронов и дополнительно разрешить несколько близлежащих резонансов. Для исследуемых ядер удалось удвоить число экспериментально измеренных полных \propto -ширин. Сравнение с известными ранее данными показывает, что для ¹⁴⁷S_m результать настоящей работы в области до 200 эВ хорошо согласуются с имеющимися данными ^{/2/}, а для ¹⁴⁹S_m - в области до 15 эВ с данными ^{/3/}.

Цужно отметить, что во временном спектре выхода реакции (n, α) на ^{I49} S_{in} проявился дублет в районе 9 зВ, состоящий из резонансов с $E_o = 8,9$ и 9,2 зВ. Используя временные спектры α -частиц в различных амплитудных окнах из работы ^{/3/}, можно приписать этим резонансам спины 4⁻ и 3⁻ соответственно. При измерениях нейтронных ширин резонанс с $E_o = 9,2$ зВ не был обнаружен, по-видимому, из-за малости нейтронной ширины. О возможном существовании этого дублета высказывалось в работе Бечваржа и др. ^{/II/} в связи с неоднозначностью спиновой идентификации, получающейся с помощью различных методов.

2. Средние значения полных од-ширин.

Расширение сведений об *О*-ширинах вместе с относительно полной спиновой идентификацией резонансных состояний исследуемых ядер позволяет более точно определить средние параметры, характеризующие *О*-распад, и провести более достоверное сравнение с теоретическими оценками отдельно для состояний со спинами 3⁻ и 4⁻.

Некоторую сложность в определении статистических свойств резонансов 147 Sm со спином 3⁻ вносит резонанс с $\hat{\mathcal{L}}_c$ = 183,7 эВ,

имеющий аномально большую ∞ -ширину $\int_{\infty}^{\infty} = (19,5 \pm 4,5)$ мкэВ. Эта величина в I4 раз больше среднего значения, рассчитанного по остальным I9 резонансам с $J^{\pi} = 3^{-}$, и существенно влияет на корреляционные и флуктуационные свойства экспериментальных ∞ -ширин (см. таблицы 2-5 и рис.3). Такой резонанс имеет специфический спектр ∞ -частиц /2/, состоящий практически только из ∞ -перехода в основное состояние конечного ядра. Эти и некоторые другие факты заставили нас предположить, что резонанс с $\mathcal{E}_{c} = 183,7$ эВ характеризуется сравнительно большим вкладом простого типа возбуждения, возможно, типа частица-частица. В связи с этим мн исследовали статистические свойства резонансов 1475m с $J^{\pi} = 3^{-}$ с учетом резонанса с $\mathcal{E}_{c} = 183,7$ эВ и без него.

В таблице 2 приведены экспериментальные значения $< \Gamma_{\infty} >^{3\kappa cn}$ для двух изотопов самария и средние сх-ширины, рассчитанные по оптической ($< \Gamma_{\infty} >^{c_{n'}}$)/12/ и кластерной ($< \Gamma_{\infty} >^{\kappa_{n'}}$)/13/ моделям:

$$\langle \Gamma_{\alpha} \rangle^{\overline{reop}} = \frac{D^{J}}{2\pi} \sum_{i\ell} P_{i\ell}^{\overline{reop}} , \qquad (2)$$

где h_{ce}^{\Box} - проницаемость потенциального барьера для α -частиц с орбитальным моментом ℓ ;

i - номер уровня дочернего ядра.

Ошибки в $< \overline{l_{\alpha}} > \frac{3\pi c^{\prime \prime}}{3\pi c^{\prime \prime}}$ включают в себя как статистические ошибки и неопределенности в параметрах отдельных резонансов, так и ошибки усреднения, связанные с ограниченным набором со-ширин. При теоретических расчетах средние значения расстояния между резонансными уровнями брались из работы $\frac{6}{.}$

			Габлица З		
Поведение полных	🛛 –ширин	резонансов	147 <u>5</u> m	в	различных
интервалах энерг	ии нейтрон	0В.			

		$E_n < 100$	эВ	100	$D = B < E_n$	<	200 эВ
J^{π}	Число резо- нансов	∑Г _∝ , мкэВ	< <i>Г_∝ ≯, р</i> мкэВ н	исло езо- ансов	∑ Г∝, мкэВ		< / _~ > [?] , mkə B
3	6	6,2±0,6	I,0±0,4	8 (7)	33±5 (14 ±3)		4,2 [±] 1,7 (2,0 [±] 0,9)
4	8	2,3±0,4	0 ,3± 0,I	6	3,5±1,8		0,6±0,4
3	. I4	8,5±0,8	0,6±0,2	I4 (I3)	37±6 (17±4)		2,6±I,I (I,3±0,7)

Tað	лица	4
-----	------	---

Значения эффективного числа степеней свободы для распределения полных 🔍 -ширин.

Ядро мишень	Ĵ ^π	Интервал энергим нейтронов, эВ	Число резо- нансов	у эксп эфф	ν эксп У эфф
	3-	0 - 300	20	I,2 ^{+0,7} -0,5	I,8
14 7 Sm			(19)	(2,6 ^{+2,0}) -I,0	
	4	0 - 140	10	6,5 ^{+I4,5} -3,5	2,5
149 "Sm	3-	0 - 70	13	3,0 ^{+2,5} -I,3	2,6
	4	0 - 70	18	7 + I3	2,5

Можно указать на удовлетворительное согласие между теоретическими и экспериментальными значениями средних α -ширин. Однако ожидаемые по кластерной модели значения оказались ближе к экспериментальным по сравнению с оптической моделью. Различие между средними значениями α -ширин, получаемыми по оптической и кластерной моделям, особенно заметно в случае резонансов со спином 4⁻. Это связано с тем, что по оптической модели в районе исследуемых ядер предсказывается некоторое усиление α -распада с четными значениями орбитального момента ℓ . В случае резонансов с $J^{\pi} = 4^{-}$, для которых α -распад в основное состояние дочернего ядра ($I^{\pi} = 0^{+}$) запрещен по закону сохранения четности, значительный вклад в полную α -ширину может вносить распад в состояние 3⁻, где реализуются четные значения ℓ . В кластерной модели такого усиления по ℓ не предсказывается.

Для резонансов ¹⁴⁷ Sm подтверждается отмечавшееся ранее существенное различие в значениях $\sum \int_{\infty} B$ интервалах $E_n < 100$ эВ и $100 < E_n < 200$ эВ, особенно для резонансов с $J^{J} = 3^{-1}$ (таблица 3). Обращают на себя внимание малые α -ширины в интервале $E_n < 100$ эВ. Интересно отметить, что такая аномалия не проявляется в поведении нейтронных ширин. Энергетическая зависимость нарастающей суммы $\sum \int_{n}^{\infty} dля \frac{147}{5m}$ хорошо аппроксимируется прямолинейной зависимостью /4,6/.

3. Распределение полных *о*-ширин

В работах /I4, I5/ показано, что при разумных, с точки зрения статистической теории, предположениях значения полных α - ширин резонансов с одинаковым спином можно описать χ^2 -распределением с эффективным числом степеней свободы

$$\mathcal{V}_{spp}^{chir} = \left(\sum_{i \in \mathcal{C}} P_{i \in \mathcal{C}}\right)^2 / \sum_{i \in \mathcal{C}} P_{i \in \mathcal{C}}^2 \qquad (3)$$

В случае χ^2 -распределения эффективное число степеней свободы может быть вычислено из экспериментально определяемых величин:

$$\mathcal{V}_{\beta,\rho\rho\rho}^{\beta,\kappa,n} = \frac{2 \langle \overline{\Gamma_{\alpha}} \rangle^2}{\langle \overline{\Gamma_{\alpha}}^2 \rangle - \langle \overline{\Gamma_{\alpha}} \rangle^2} \qquad (4)$$

На рис.З представлены интегральные распределения полных \propto -ширин резонансов ¹⁴⁷Sm и ¹⁴⁹Sm отдельно со спинами 3⁻ и 4⁻. Экспериментальные гистограммы сравниваются с χ^2 -рас-пределениями при $\mathcal{V}_{\rm эфф}$, рассчитанном по формуле (3). Значения проницаемости P_{ii} орались из /16/.

Для полных од-ширин резонансов ¹⁴⁷5^m наблюдается удовлетворительное согласие теоретических распределений (для одного и другого значений спина) с экспериментальными, особенно если отбросить резонанс с $E_o = 183,7$ эВ.

В случае резонансов ¹⁴⁹ S₇₇₇ хорошее согласие расчетного и экспериментального распределений имеется только для резонансов со спином 3⁻. Для резонансов со спином 4⁻ наблюдается значительное расхождение.

Значения $\mathcal{V}_{3\varphi\varphi}^{3\kappaco}$, которые наилучшим образом описывали бы экспериментальные распределения, можно, в принципе, определить по формуле (4). Однако ограниченный статистический набор ширин

Рис.3 Интегральные распределения полных *х*-ширин резонансов ¹⁴⁷*Sm* (верхняя часть) и ¹⁴⁹*Sm* (нижняя часть). Гистограммами показаны экспериментальные результаты, сплошными кривыми - ожидаемые распределения по статистической теории; пунктирная кривая рассчитана без учета резонанса с $\hat{E}_c = 183.7$ эВ. и их экспериментальные ошибки могут привести к некоторому смещению оценок $V_{3\varphi\varphi\varphi}^{3\kappacn}$. Кроме того, здесь трудно оценить ошибку в определении $V_{3\varphi\varphi\varphi}^{3\kappacn}$. Поэтому для определения $V_{3\varphi\varphi\varphi}^{3\kappacn}$ применялся статистический метод анализа, аналогичный использованному в работах /17,18/ при обработке парциальных γ -ширин.

Сравнение (таблица 4) экспериментальных значений $\mathcal{V}_{3ppp}^{3\kappacn}$ с сжидаемыми по статистической теории также показывает удовлетворительное согласие за исключением случая резонансов ¹⁴⁹ Sm со спином 4⁻.

К сожалению, в случае резонансов ¹⁴⁹ Sm со спином 4⁻ из-за больших экспериментальных ошибок использованный нами метод анализа не позволяет надежно определить значение $V_{2\gamma\gamma}^{3\kappacn}$ и границы доверительного интервала. Для 16 таких резонансов, расположенных в интервале энергии нейтронов до 70 эВ, по формуле (4) получено

 $\mathcal{V}_{3\varphi\varphi}^{3\kappa\alpha} = 12,6.$ Для оценки нижнего предела для $\mathcal{V}_{3\varphi\varphi\gamma}^{3\kappa\alpha}$ можно поместить значения ∞ -ширин двух пропущенных резонансов ($E_0 = 23,2$ и 24,6 эВ) на нулевом уровне (хотя верхние оценки для них не сильно отличаются от среднего значения), это приводит к $\mathcal{V}_{3\varphi\varphi\gamma}^{3\kappa\alpha} = 6,6$, что также значительно больше теоретического.

Для оценки достоверности такого заключения для ряда статистических наборов ширин, случайно выбираемых из совокупности с $\mathcal{V} = 2,5$, вичисляли \mathcal{V} по методу максимального правдоподобия. Из IOOO таких значений \mathcal{V} не было ни одного, большего I2,6, и только 2I превысило 6,6.

Здесь уместно отметить, что в работах /I,I5/, где распределения I5 полных α -ширин ^{I49} Sm проводились без разделения по

спинам суммой двух распределений, указывалось, что лучшую подгонку дает сумма распределений с $\gamma(3^-)=2,5$ и $\gamma(4^-)=20-60$. Однако малый набор *Д*-ширин и необходимость анализировать суммарное по спинам распределение не позволили тогда придти к определенным заключениям.

В настоящее время трудно указать определенную физическую причину такого сужения распределения «-ширин. Возможно, это связано с наличием некоторой корреляции волновых функций, ответственных за «-переходы на низколежащие состояния дочернего ядра ¹⁴⁶ Ма для исследуемых резонансных состояний. Можно упомянуть, что в последнее время и для случая парциальных у-ширин дискутируются вопрос о возможном превышении на 20-30 % по сравнению с V = I в этой же области атомных ядер /II/. В то же время «-ширины, вероятно, определяются в основном вкладом малонуклонных типов возбуждения, и, следовательно, для них более обычными могут быть отклонения от статистической теории.

Имеется еще одна причина, которая может привести к сужению распределения полных \propto -ширин $^{/22/}$. При измерении выхода α частиц без анализа их по энергии $\int_{\alpha}^{3\kappa cn} = \int_{\alpha} + \int_{\delta\alpha}$, где $\int_{\delta\alpha} -$ ширина двухкаскадного процесса (n, $\gamma\alpha$), который в отдельных случаях может давать заметный вклад в выход α -частиц. Величина $\int_{\delta\alpha}$ из-за сильного усреднения по промекуточным компаунд-состояниям должна быть константой для резонансов с определенным значением спина, что приведет к сужению распределения $\int_{\alpha}^{3\kappa cn}$ при $\int_{\delta\alpha} \simeq < \int_{\alpha} > .0$ днако из работы Эмсаллема и Асгара $^{/23/}$ $\int_{\delta\alpha} = (2,2 \pm 0,5) \cdot 10^{-9}$ зВ $\approx 0.1 < \int_{\alpha}^{3\kappa cn}$. Это может привести к уменьшению $\gamma_{3\varphi\varphi} = 7$, необходимо, чтобы $\int_{\delta\alpha} \gtrsim 0.6 < \int_{\alpha}^{3\kappa cn}$, что крайне маловероятно. 4. Корреляция между нейтронными и 🔍-ширинами.

Относительно полное изучение резонансных состояний ⁴⁷ S_m и ¹⁴⁹ S_m позволяет поставить вопрос о поисках корреляции между нейтронными и α -ширинами. Статистическая теория считает \int_{∞} и \int_{n}^{0} как характеристики независимых способов распада отдельного уровня составного ядра, флуктуирующие совершенно независимо. Нами были подсчитаны коэффициенты корреляции $rL_{f\alpha}, 2gf_{n}^{\circ}$] методом, указанным в работе ^{/19/}. Результаты расчета даны в таблице 5. Если из рассмотрения исключить резонанс¹⁴⁷ S_m с $E_0 = 183,7$ эВ, то результаты совместимы с предположением о нулевой истинной корреляции. Аналогичные выводы были сделаны в работе Бечваржа и др. ^{/20/}, где изучались корреляции между ширинами $f_{\lambda f}f$ и $f_{\lambda \alpha f}f$.

В заключение можно отметить следующее. По-видимому, справедливость статистической теории в описании реакции (л, с) следует признать ограниченной.

С одной стороны, она позволяет с точностью до фактора 2 - 3 предсказывать средние значения полных *с*-ширин, объясняет отсутствие корреляций с другими ширинами, в ряде случаев дает возможность оценить величину V_{3qpp} , характеризующую распределение полных ∞ -ширин.

С другой стороны, в эксперименте проявились эффекты, которые указывают на возможные откловения от предельной статистической теории. Это аномально большая величина V_{3907} для резонансов Smс $J^{\pi} = 4^{-}$; отличие $\langle I_{\infty} \rangle$ для различных интервалов энергии нейтронов в $I^{47}Sm$; аномальность характеристик резонанса Smс $E_o = 183,7$ зВ (см. также I^{2}).

В связи с этим было бы весьма интересно расширить диапазон

16

Таблица 5

Коэффициенты	корреляции между полны	ми \propto -ширина	ми Гх	И
приведенными	нейтронными ширинами	2g [nº .		

Ядро- мишень	Ĵ ["]	Число пар	Коэффициент корреляции $\Gamma \left[\overline{L}_{\alpha}, 2g \overline{L}_{\alpha} \right]$
147 _{-,} 5m	3	20 (19)	+ 0,6±0,2 (- 0,I ± 0,2)
0.	4	10	- 0,4 ± 0,3
149 _{C'}	3-	13	- 0,3 ± 0,3
Sm	4	15	$+ 0,2 \pm 0,4$

исследуемых резонансов, а также измерить спектры - - частиц 149 A Dr . / ^ж= 4[−] для в резонансах с

Авторы считают своим приятным долгом выразить благодарность Л.Б.Пикельнеру за ряд ценных замечаний, В.И.Фурману за предоставление результатов расчета по кластерной модели, А.В.Грачевой, В.Е.Рыжову и А.А.Аврамовой за изготовление мишеней и помощь при измерениях.

ЛИТЕРАТУРА.

- I. I.Kvitek, Yu.P.Popov. Nucl. Phys., A154, 177 (1970).
- Yu.P.Popov et al. Nuol.Phys., <u>A188</u>, 212 (1972).
 И.Винивартер, К.Недведок, Ю.П.Попов и др. ЯФ, <u>20</u>, 3 (1974).
- 4. Э.Н.Каржавина, А.Б.Попов. ОИЛИ, РЗ-5655, Дубна, 1971; ЯФ, 15, 40I (I972).
- ⁵• Neutron Cross Sections, BNL-325, Third Edition, vol.1, 1973. 6. Э.Н.Каршавина, Ким Сек Су, А.Б.Попов. ОИНИ, РЗ-6092, Дубна,
- 1971; ОИЯИ, РЗ-6237, Дубна, 1972.
- 7. Ю.П.Попов и др. В сб. "Нейтронная физика" (Материалы Всесовэного совещения по нейтронной физике, Киев, 1971), Ч.І, стр. 165. Издательство "Наукова думка", 1972.
- 8. Н.П.Балабанов, Ю.П.Нопов и др. ОИНИ, РІЗ-6602, Дубна, 1972.
- 9. В.В.Голиков и др. ОИЯИ. 3-5736, Дубна, 1971.
- IO. В.А.Вторин, К.Недведок, D.П. Попов, В.И. Салацкий. ОИЯИ, РЗ-8800, Дубна, 1975.
- II. F.Becvar, R.E.Chrien, O.A.Wasson. Nucl. Phys., A236, 173 (1974); Nucl. Phys., A236, 198 (1974).
- 12. В.И.Фурман, Ю.П.Попов. В сб. "Нейтронная физика" (Материалы Всесовзного совещания по нейтронной физике, Киев, 1971), Ч.І, стр.159. Издательство "Наукова Думка", 1972.
- 13. С.Г.Кадменский, В.И.Фурман. ЭЧАЯ, т.6, 469 (1975).

- 14. Ю.П. Нопов и др. Acta Phys. Pol., B4, 275 (1973).
- I5. D.H.HOHOB И Др. Nuclear Data for Reactors, vol.1, p.669, Vienna, IAEA, 1970.
- 16. А.Ф. Дадакина. Бюллетень информационного центра по ядерным данным, вып.3, стр.226, Атомиздат, 1966.
- 17. L.M.Bollinger et al. Phys.Rev., 132, 1640 (1963).
- 10 . D.L.Price et al. Nucl. Phys., A 127, 630 (1968).
- 19. Е.В.Гай, Н.С.Работнов. НФ, <u>6</u>, 1313 (1967).
- 20. Л.Алдеа, Ф.Бечварх и др. В сб. "Нейтронная физика" (Материалы II Всесовзной конференции по нейтронной физике, Киев, 1973), Ч.2, стр.289, Обнинск, 1974.
- BNL 325, Second Edition, Suppl. No.2, vol.IIC, 1966.
 П.Винивартер, К.Недведок, D.П.Попов и др. ОИЛИ, РЗ-6754, Дубна, 1972.
- 23. A.Emsallem, M.Asghar. Proc. of the Second Intern. Symp. on Neutron Capture Gamma-Ray Spectroscopy and Related Topics, September 2 - 6, 1974, Petten, Netherlands, p. 369.

Рукопись поступила в издательский отдел 29 июля 1975 года