СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА



18/11-75 **P3** 8904

C344.11 5-186

301712-750 А.Байорек, З.Георгиу, Д.А.Корнеев, Р.Куля, М.Попович, А.Д.Стойка

ОПРЕДЕЛЕНИЕ ФУНКЦИИ РАЗРЕШЕНИЯ ДЛЯ ДИФРАКТОМЕТРА ПО ВРЕМЕНИ ПРОЛЕТА

....



P3 - 8904

А.Байорек, З.Георгиу,\* Д.А.Корнеев, Р.Куля, М.Попович,\* А.Д.Стойка\*

# ОПРЕДЕЛЕНИЕ ФУНКЦИИ РАЗРЕШЕНИЯ ДЛЯ ДИФРАКТОМЕТРА

ПО ВРЕМЕНИ ПРОЛЕТА

BOLLAND BULLAN BULLAND

<sup>\*</sup> Институт атомной физики, Бухарест, Румыния.

Общая постановка вопроса о разрешении нейтронного дифрактометра по времени пролета, по существу, не отличается от постановки вопроса для обычного дифрактометра<sup>/1/</sup>: функция разрешения  $\mathbf{R}(\vec{X})$ , определенная в пространстве векторов рассеяния, есть функция прибора, свертка которой с сечением упругого рассеяния  $\sigma(\vec{Q})$ определяет измеренную интенсивность нейтронов на детекторе  $\mathbf{I}(\vec{Q})$ :

 $I(\vec{Q}) \propto \int \mathbf{R}(\vec{X}) \sigma(\vec{Q} + \vec{X}) d\vec{X}.$  (1)

Такая формулировка, в которой за переменную принимается не пролетное время, а отклонение  $\vec{X} = \vec{Q}' - \vec{Q}$ текущего вектора рассеяния  $\vec{Q}'$  от среднего  $\vec{Q}$ , удобна тем, что отделяет приборную часть в сечении рассеяния от физической и позволяет рассмотреть различные виды сечения упругого (и квазиупругого) рассеяния с одинаковым подходом. В частном случае дифракции на поликристалле достаточно знания одномерной, зависящей от пролетного времени функции разрешения. В случае монокристалла нужно знать трехмерную функцию  $R(\vec{X})$ . Эта функция была рассчитана одним из авторов/2/ с помощью развитого им метода вычисления функций разрешения в нейтронной спектрометрии <sup>/3/</sup>.

В настоящей работе представлены результаты экспериментальной проверки полученных в работе<sup>/2/</sup> формул. Дается подробное описание вычислительного метода в том виде, в котором он воплотился в расчетную программу, для сравнения экспериментальных данных с теоретическими результатами.

## 1. <u>Вычисление функции разрешения</u> в нормальном приближении

Рассматривается установка для дифракции по времени пролета на импульсном реакторе в геометрии, изображенной на рис. 1. Детектор поставлен под средним углом рассеяния  $2\theta_s$ . Возьмем момент времени  $T_0$  на анализаторе. При заданных средних расстояниях замедлитель - образец  $L_1$  и образец-детектор  $L_2$  значениям  $T_0$  и  $\theta_s$  соответствует средний вектор рассеяния  $\vec{Q} = \vec{K}_{10} - \vec{K}_{f0}$ , где  $\vec{K}_{10}$  и  $\vec{K}_{f0}$  - средние волновые векторы падающих и рассеянных нейтронов ( $\vec{K}_{10} = \vec{K}_{f0}$ ,  $Q = 2\vec{K}_{10} |\sin \theta_s|$ ).



Рис. 1. Геометрия установки для дифракции по времени пролета на импульсном реакторе. Указаны системы координат, использованные при расчетах. Цифрами 1,2,3 обозначены замедлитель, образец и детектор соответственно. Для построения функции разрешения в нормальном (гауссовом) приближении 3

$$R(\vec{X}) = R_0(2\pi)^{-3/2} |\{M_{ij}\}|^{1/2} e^{-\frac{1}{2}\sum_{i,j=1}^{\infty} ijX_iX_j}$$
(2)

необходимо рассчитать матрицу разрешения М. Удобнее найти сначала ее обратную, ковариационную матрицу  $M^{-1}$ , представляющую собой матрицу моментов второго порядка  $\langle X_j X_j \rangle$  функции разрешения. Для этого нужно выразить X через первичные переменные, а также задать ковариационную матрицу этих переменных  ${}^{/2/}$ . Первичные переменные – это текущие координаты  $\vec{r}_j$ точек, в которых происходит вылет нейтрона из замедлителя (j=0), рассеяние на образце (j=1) и поглощение в детекторе (j=2), а также временные переменные to и t<sub>2</sub>, где t<sub>0</sub> – момент вылета нейтрона из замедлителя, а t<sub>2</sub> – отклонение времени поглощения в детекторе от среднего времени T<sub>0</sub>. Вводится вектор V, имеющий в качестве составляющих v<sub>1</sub> эти переменные:

$$\mathbf{v}_{1} = \mathbf{x}_{0}; \mathbf{v}_{2} = \mathbf{y}_{0}; \mathbf{v}_{3} = \mathbf{z}_{0}; \mathbf{v}_{4} = \mathbf{x}_{1}; \mathbf{v}_{5} = \mathbf{y}_{1}; \mathbf{v}_{6} = \mathbf{z}_{1}; \mathbf{v}_{7} = \mathbf{x}_{2};$$
(3)

$$\mathbf{v}_8 = \mathbf{y}_2 ; \mathbf{v}_9 = \mathbf{z}_2 ; \mathbf{v}_{10} = \mathbf{t}_0 ; \mathbf{v}_{11} = \mathbf{t}_2 .$$

Системы координат выбраны, как показано на рис. 1. Все величины отсчитываются от нулевого среднего значения.

В линейном приближении связь между  $\vec{X}$  и  $\vec{V}$  выражается в виде  $\vec{X} = A\vec{V}$ , где A – матрица размером 3x11. Удобно ввести промежуточное преобразование  $\vec{X} = C\vec{U}$ ,  $\vec{U} = B\vec{V}$ , так что  $A = C \cdot B$ , где вектор  $\vec{U}$  имеет следующие составляющие:

$$\mathbf{u}_1 = \Delta \mathbf{K}_i / \mathbf{K}_{i0}; \mathbf{u}_2 = \gamma_i; \mathbf{u}_3 = \delta_i; \quad \mathbf{u}_4 = \gamma_f; \quad \mathbf{u}_5 = \delta_f \quad . \tag{4}$$

Здесь  $\Delta K_i = K_i - K_{i0}$  – отклонение модуля текушего волнового вектора падающих нейтронов,  $\vec{K}_i$  от среднего значения  $K_{i0}$ ;  $\gamma_i$ ,  $\delta_i$  – углы между  $\vec{K}_i$  и  $\vec{K}_{i0}$  в плоскости рассеяния и нормальной к ней, а  $\gamma_f$ ,  $\delta_f$  - те же углы между текущим волновым вектором  $\vec{K}_f$  рассеянных нейтронов и вектором  $\vec{K}_{f0}$ .

Элементы матрицы В размером 5x11 вычисляются путем элементарного рассмотрения реальной геометрии акта рассеяния при учете того, что в момент времени Т регистрируются те нейтроны, для которых выполняется соотношение

$$\Delta K_{i}/K_{i0} = (t_{0} - t_{2})/T + (\Delta L_{i} + \Delta L_{f})/L_{0}, \qquad (5)$$

где  $L_0 = L_1 + L_2$ . Отклонения  $\Delta L_i$  и  $\Delta L_f$  от средних пролетных расстояний рассчитываются через координаты  $x_j$ ,  $y_j$  в системах, изображенных на рис. 1. В результате получаются следующие отличные от нуля матричные элементы матрицы В:

$$b_{11} = -1/L_{0}; b_{15} = -2\sin\theta_{s}/L; b_{17} = -b_{11}; b_{1,10} = 1/T; b_{1,11} = b_{1,10};$$
  

$$b_{22} = -1/L_{1}; b_{24} = \sin\theta_{s}/L_{1}; b_{25} = \cos\theta_{s}/L_{1};$$
  

$$b_{33} = b_{22}; b_{36} = -b_{22};$$
(6)

$$b_{44} = \sin \theta_s / L_2; \ b_{45} = -\cos \theta_s / L_2; \ b_{48} = 1/L_2;$$

 $b_{56} = -b_{48}$ ;  $b_{59} = b_{48}$ .

Элементы матрицы С размером 3x5 получаются из рассмотрения акта рассеяния в обратном,  $\vec{Q}$  -пространстве. Выбрав систему отсчета с осью  $X_1$  вдоль  $\vec{Q}$ (рис. 2) и рассчитав составляющие вектора  $\vec{X}$ , получим<sup>/2/</sup> следующие отличные от нуля матричные элементы  $c_{ii}$ :



Рис. 2. Геометрия акта рассеяния в обратном пространстве. Указана система координат, в которой выражается функция разрешения.

$$c_{11} = 2\xi K_{i0} \sin \theta_{s}; c_{12} = -\xi K_{i0} \cos \theta_{s}; c_{14} = \xi K_{i0} \cos \theta_{s};$$

$$c_{22} = \xi K_{i0} \sin \theta_{s}; c_{24} = \xi K_{i0} \sin \theta_{s};$$

$$c_{33} = K_{i0}; c_{35} = -K_{i0}.$$
(7)

Здесь  $\xi = \operatorname{sign} \theta_s$  .

Ковариационная матрица первичных переменных S<sup>-1</sup> предполагается известной. В отсутствие соллеровских коллиматоров – это клеточно-диагональная матрица

$$S^{-1} = \{ P_0, P_1, P_2, \langle t_0^2 \rangle, \langle t_2^2 \rangle \},$$
 (8)

где  $P_{j}$  – ковариационные матрицы пространственных переменных  $x_{j}$ ,  $y_{j}$ ,  $z_{j}$  (j=0,1,2), относящихся к замед-лителю, образцу и детектору соответственно, а  $<\!t_{0}^{2}>$  и  $<\!t_{2}^{2}>$ – это временные дисперсии нейтронной вспышки и ширины канала анализатора соответственно. Обозначим через  $D_{j} = \{ \sigma_{xj}^{2}, \sigma_{yj}^{2}, \sigma_{zj}^{2} \}$ ковариационные матрицы  $P_{j}$ 

в диагональном представлении. Если замедлитель, образец и детектор представить в виде параллелепипедов с толщиной  $\mathbf{w}_{j}$ , шириной  $\ell_{j}$  и высотой  $\mathbf{h}_{j}$ , то диагональные элементы равны соответственно  $\mathbf{w}_{j}^{2}/12$ ,  $\ell_{j}^{2}/12$ и  $\mathbf{h}_{j}^{2}/12$  (для цилиндра с радиусом  $\mathbf{R}_{j}$  и высотой  $\mathbf{h}_{j}$ нужно написать  $\sigma_{\mathbf{x}j}^{2} = \sigma_{\mathbf{y}j}^{2} = \mathbf{R}_{j}^{2}/12$  и  $\sigma_{\mathbf{z}j}^{2} = \mathbf{h}_{j}^{2}/12$ ). Ориентацию замедлителя, образца и детектора можно описать поворотами вокруг осей  $\mathbf{z}_{j}$ ,  $\mathbf{y}_{j}$ ,  $\mathbf{x}_{j}$  на углы  $\phi$ ,  $\psi$ ,  $\chi$  соответственно. Обозначив через  $\mathbf{P}_{\mathbf{z}}(\phi)$ ,  $\mathbf{P}_{\mathbf{y}}(\psi)$ и  $\mathbf{P}_{\mathbf{x}}(\chi)$  матрицы этих поворотов, получаем для матриц  $\mathbf{P}_{i}$ , входящих в S<sup>-1</sup>, выражения

$$\mathbf{P}_{\mathbf{j}} = \mathbf{P}_{\mathbf{z}}(\phi_{\mathbf{j}}) \mathbf{P}_{\mathbf{y}}(\psi_{\mathbf{j}}) \mathbf{P}_{\mathbf{x}}(\chi_{\mathbf{j}}) \mathbf{D}_{\mathbf{j}} \mathbf{P}_{\mathbf{x}}'(\chi_{\mathbf{j}}) \mathbf{P}_{\mathbf{y}}'(\psi_{\mathbf{j}}) \mathbf{P}_{\mathbf{z}}'(\phi_{\mathbf{j}}).$$
(9)

С помощью определенных выше матриц B, C и S<sup>-1</sup> ковариационная матрица функции разрешения  $M^{-1} \{ \langle X_i X_j \rangle \}$  рассчитывается через соотношение

$$M^{-1} = AS^{-1}A' = C(BS^{-1}B')C' = CS_{1}^{-1}C'.$$
 (10)

Обращением этой матрицы получается матрица разрешения M, входящая в нормальное приближение (2).

Явные выражения для матричных элементов <X X >, рассчитанные по общей формуле (10) для случая без коллиматоров, приведены в работе /2/. Там же показано, что условия временной фокусировки /4/ вытекают простым образом из этих выражений. Нетрудно также показать, что для точечного монокристаллического образца и бесконечно длинного детектора (поставленного горизонтально) выражение для временной дисперсии брэгговских пиков (формула (5) работы /2/ ) сводится к выражению, полученному недавно в работе

### 2. Техника измерения функции разрешения

Для измерения функции  $\mathbf{R}(\vec{X})$  удобен метод сканирования с помощью идеального монокристалла, разработанный первоначально для обычного дифрактометра <sup>/6/</sup>, который переносится без усложнений на случай дифракции по времени пролета. Так как сечение брэгговского рассеяния на идеальном монокристалле содержит дельта-функции  $\delta(\vec{Q}-\vec{Q}_0)$ , то измеренная интенсивность отраженных нейтронов пропорциональна  $R(\vec{Q}_0-\vec{Q})$ . Здесь  $\vec{Q}_0 = -2\pi \vec{r}$ , где  $\vec{r}$  -вектор обратной решетки кристалла-образца, соответствующий измеренному\_отражению.

Компоненты вектора  $\vec{Q}_0 - \vec{Q}$  контролируются изменением ориентации монокристалла около положения Брэгга при неподвижном детекторе. Если  $\phi$  и  $\chi$  - углы отклонения от брэгговского положения в плоскости рассеяния и перпендикулярно к ней, то в системе координат с осью  $X_1$ , направленной вдоль  $\vec{Q}$ , составляющие вектора  $\vec{Q}_0$  равны  $(\vec{Q}_0, \vec{Q}_0 \phi, \vec{Q}_0 \chi)$ . Если теперь  $\mathbf{T} - \mathbf{T}_0$  - отклонение от среднего времени пролета  $\mathbf{T}_0$ , соответствующего измеренному отражению, то  $\vec{Q} - \vec{Q}_0 / \vec{Q}_0 = -(\mathbf{T} - \mathbf{T}_0) / \mathbf{T}_0$ , так что вектор  $\vec{X} = \vec{Q}_0 - \vec{Q}$  имеет следующие составляющие:

$$X_{l} = Q_{0} (T - T_{0}) / T_{0}; X_{2} = Q_{0} \phi; X_{3} = Q_{0} \chi.$$
(11)

Измерения интенсивности отраженных нейтронов в зависимости от  $T-T_0$ ,  $\phi$  и  $\chi$  соответствуют, следовательно, поведению функции разрешения вдоль направлений  $X_1$ ,  $X_2$  и  $X_3$  соответственно, т.е. вдоль трех взаимно перпендикулярных направлений в  $\vec{Q}$ -пространстве.

### 3. Эксперимент

С целью проверки изложенного выше метода расчета проводились измерения функции разрешения установки для дифракции по времени пролета с использованием спектрометра КДСОГ-1 на импульсном реакторе ИБР-30. Была выбрана простейшая геометрия, без соллеровских коллиматоров. Нейтронный пучок выводился с поверхности (площадью 30х40 см<sup>2</sup>) неохлажденного водяного замедлителя толщиной в 4 см под углом в 12<sup>0</sup> к нормали. В качестве образца использовался тонкий диск монокристаллического кремния диаметром в 3,5 см с плоскостью (Ш), параллельной поверхности (монокристалл любезно предоставил нам Б.Халупа), Образец располагался на гониометрической головке на расстоянии  $L_1 = 30$  м от замедлителя. Использовался один счетчик, поставленный вертикально на расстоянии  $L_2 = 1,2$  м от образца.

В расчеты функции разрешения, помимо указанных параметров, определяющих геометрию опыта, входит также временная дисперсия <t 2> нейтронной вспышки как функция энергии нейтронов. Остановимся подробнее на процедуре определения этого параметра. Так как форма теплового импульса определяется сверткой формы импульса быстрых нейтронов с функцией ответа замедлителя, то можно написать  $7,8/< t_0^2 > = \sigma_r^2 + \sigma_m^2$ , где  $\sigma_r^2$  и  $\sigma_m^2$  дисперсии соответствующих функций. Дисперсия функции ответа замедлителя зависит от энергии термализованных нейтронов, величину же  $\sigma_{\star}^2$  можно считать постоянной. Для представляющих интерес промежуточных энергий нет еще явных теоретических предсказаний относительно зависимости дисперсии  $\sigma_m^2$  от энергии, однако есть подробные экспериментальные данные  $^{/7,8/}$ . Эти данные, полученные на замедлителях, близких по форме к замедлителям реактора ИБР-30, были нами использованы для определения временной дисперсии о<sup>2</sup> для водяного замедлителя толщиной в 5 см (рис. 2 работы /8/ ). При использовании данных тех же авторов /7/ по зависимости параметров импульса от толщины замедлителя полученные значения приводились к толшине в 4 см. Данные работы  $^{/7/}$  приведены на рис. 3. Оказывается, их можно параметризовать формулой  $\sigma_{\rm m} = r_0 (1 - e^{-\lambda/\lambda_0})$ , дающей правильные асимптотические зависимости от энергии (разумеется, такой вид интерполяционной формулы отнюдь не единственно возможный). Здесь λ - длина волны нейтронов. Параметры подгонки получились равными г = 64 мкс μλ<sub>0</sub> = 1,6 Ă.

Для определения постоянного вклада  $\sigma^2$  в полную дисперсию <t $_0^2$ > измерялась диаграмма дифракции поликристаллического никеля под большим углом Брэгга ( $2\theta_{\rm B}$ = 171°). С помощью формул, выведенных в работе /2/ из дисперсий измеренных дифракционных максимумов извлекались значения <t $_0^2$ >. На рис. З представлены эти значения для тех максимумов, для которых вклад <t $_0^2$ >



Рис. 3. Временная дисперсия нейтронного импульса в зависимости от длины волны нейтронов. о – данные по работе Ишмаева, Садикова и Чернышева<sup>/8/</sup>, приведенные к толщине замедлителя в 4 см, • – экспериментальные значения для реактора ИБР-30, полученные измерением дифракции на поликристалле под большим углом. Время по оси ординат отложено в микросекундах.

в полную ширину оказался выше 95%, т.е. поправки малы. Сплошная кривая "b" на рис. 3 соответствует значению  $\sigma_r = 65$  мкс и была использована в дальнейших расчетах.

Форма импульса тепловых нейтронов не гауссова, а имеет явно выраженную асимметрию. Поэтому ее описание одной дисперсией неполно и нужно учесть также третий момент по времени <t<sup>3</sup><sub>0</sub>>. Вопрос о вычислении функции разрешения в лучшем, чем нормальное, приближении (с учетом моментов высшего порядка) рассматривается в работе <sup>/9/</sup>.

### 4. Результаты

Измерялись спектры по методу времени пролета нейтронов, отраженных от плоскости (Ш) монокристалла кремния в различных порядках при двух брэгговских углах ( $2\theta_{\rm B} = 120^{\circ}$  и -85°) для ряда значений углов  $\phi$  и  $\chi$ . Двумерные массивы полученных данных обрабатывались для извлечения моментов порядка вплоть до четвертого. Определялись также кривые равной интенсивности на уровне 0,5 в плоскостях  $T-T_0$ ,  $\phi$  и  $T-T_0$ ,  $\chi$ .

В расчетах, сделанных для сравнения с экспериментальными данными, не было свободных параметров для подгонки. Исходными данными служили пролетные расстояния, размеры и ориентации замедлителя, образца и детектора, а также временная дисперсия вспышки тепловых нейтронов <t<sup>2</sup><sub>0</sub>>, определение которой обсуждалось подробно в разделе 3.

Сравнение измеренных исправленных моментов с расчетными (табл. 1) обнаруживает удовлетворительное согласие. Расхождения в значениях моментов  $\langle X_1^2 \rangle$ ,  $\langle X_2^2 \rangle \langle X_3^2 \rangle$ , как правило, не превышают 10%. Несколько больше расхождения (около 20%) для момента  $\langle X_1 X_2 \rangle$ , но само значение момента значительно меньше остальных. Величина, дающая представление о глобальном разрешении в  $\vec{Q}$  -пространстве – это корень квадратный из определителя ковариационной матрицы  $|\{\langle X_i X_j \rangle\}|^{1/2}$ . Эта величина пропорциональна объему эллипсоида разрешения в нормальном приближении. На рис. 4 представлены ее значения в зависимости от  $Q_0$ .

На рис. 5 приведены измеренные и рассчитанные зависимости функции разрешения: от  $T - T_0$  при  $\phi = 0, \chi = 0$ и от  $\phi$  при  $T = T_0, \chi = 0$ . Они соответствуют сканированию функции разрешения вдоль  $X_1$  и  $X_2$  в обратном пространстве. Единственная подгонка кривых на рис. 5 состоит в нормировке по нулевому моменту экспериментальных данных (нормировка по площади). Гауссово приближение описывает хорошо зависимость от угла. По времени пролета наблюдается отклонение от гауссовой формы, связанное с асимметрией импульса тепловых нейтронов.

измеренине значения элементов ковариационной матрицы функции разрешения **TAEJUNIA** Вычисленные и

|                                                         | _     | .0 <mark>-</mark> 3          | 0 <del>-</del> 3      | 0-5                   | 0-5                   | <b>6-</b> 0           | 0-5                        | -5-0-0                 |
|---------------------------------------------------------|-------|------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|------------------------|
| < x <sup>2</sup> 5 ><br>(Â <sup>−2</sup> )              | КСИ   | 1,14.1                       | 1,02.1                | 1,81.1                | 2,75.1                | 6,04.1                | 1.11.1                     | 1.75.1                 |
|                                                         | Buy.  | 1,10.10 <sup>-3</sup>        | 0,99.10 <sup>-3</sup> | 1,76.10 <sup>-2</sup> | 2,74.10 <sup>-2</sup> | 6,01.10 <sup>-3</sup> | 1,07.10 <sup>-2</sup>      | 1.67.10-2              |
| < x <sub>1</sub> x <sub>2</sub> ><br>( <sup>8-2</sup> ) | . MEN | -5,72.10-5                   | -3,88.10-4            | -6,00.10-4            | -0,99.10-3            | 3,22.10-4             | 3, 37.10 <sup>-4</sup>     | 4-01-10-6              |
|                                                         | BhY.  | -5,22.10-5                   | -4,70.10-4            | -8,36.104             | -1,31.10-3            | 2,78.10 <sup>44</sup> | 4,94.10-4                  | +-01,c7,7              |
| <x2<br>(8<sup>-2</sup>)</x2<br>                         | N3M.  | 6, 34.10 <sup>-5</sup>       | 5,58.104              | 1,04.10 <sup>-3</sup> | 1,62.10 <sup>-3</sup> | 7,07.10 <sup>44</sup> | 1,30.10 <sup>-3</sup>      | 2 06 JO <sup>-</sup> 3 |
|                                                         | BhT.  | 6,26.10 <sup>-5</sup>        | 5,63.10 <sup>-4</sup> | 1,00.10 <sup>-3</sup> | 1,57.10 <sup>-3</sup> | 7,02.104              | 1,25.10 <sup>-3</sup>      | 1 05 10-3              |
| <x<sup>2&gt;<br/>(Å<sup>-2</sup>)</x<sup>               | . MEW | <b>9,28.10</b> <sup>-5</sup> | 2,24.10-3             | 6,56.10 <sup>-3</sup> | 1,23.10 <sup>-2</sup> | 1,27.10-3             | 4,00.10 <sup>-3</sup>      | 6-01-10-0              |
|                                                         | BH4.  | 9,28.10-5                    | 2,24.10-3             | 5,87.10-3             | 1,28.10 <sup>-2</sup> | 1,36.10 <sup>-3</sup> | 3,62.10-3                  | 7.96.10-3              |
| S<br>G                                                  |       | 42,52                        | -42,50                | -42,50                | -42,50                | 60 <b>,</b> 0°        | 60 <b>,</b> 0 <sup>0</sup> | 60 0°                  |
| 90<br>(8-1)                                             |       | N                            | ę                     | 8                     | 10                    | 9                     | 8                          | 0                      |



Рис. 4. Зависимость объема эллипсоида разрешения в  $\vec{Q}$  -пространстве от среднего вектора рассеяния  $Q_0$ , расчет и эксперимент.

Пересечение поверхности, на которой  $\mathbf{R}(\vec{\mathbf{X}}) = 0.5 \mathbf{R}(0)$ , с плоскостью  $\mathbf{X}_3 = \mathbf{0}$  в  $\vec{\mathbf{Q}}$  -пространстве определяет эллипсы разрешения, изображенные на рис. 6. Представлены также соответствующие экспериментальные точки. Следует обратить внимание на различия в масштабах для различных порядков отражения. Небольшие систематические отклонения, которые наблюдаются и здесь, связаны с асимметрией нейтронной вспышки и могут быть описаны только выходом за рамки гауссовского приближения (см. работу <sup>/9</sup>).

Совокупность данных, представленных выше, позволяет сделать заключение, что налажен надежный метод расчета функции разрешения, который может быть использован уверенно при анализе данных и планировании экспериментов по дифракции методом времени пролета.



Рис. 5. Сверху: форма брэгговских пиков для отражения (444) от идеального монокристалла кремния в зависимости от канала анализатора, расчет и эксперимент. Ширина канала - 32 мкс. Внизу: то же самое в зависимости от угла отклонения в минутах от положения Брэгга в плоскости рассеяния. На обоих рисунках по оси ординат отложена скорость счета детектора в импульсах в секунду.



Рис. 6. Эллипсы разрешения в плоскости X<sub>1</sub>,X<sub>2</sub>. Сплошные кривые – результаты расчета в гауссовом приближении, точки – результаты эксперимента.

#### Литература

- 1. M.J.Cooper, R.Nathans.Acta Cryst., <u>A24</u>, 481 (1968).
- 2. A.D. Stoica. Acta Cryst. A31, 189-192 (1975).
- 3. A.D. Stoica. Acta Cryst. A31, 193-196 (1975).
- 4. A Holas.Nukleonika.13,753(1968).

- 5. А.М.Балагуров. Сообщение ОИЯИ, 3-7526, Дубна, 1973.
- <sup>6.</sup> O.W.Dietrich, J.Als-Nielsen.In "Critical Phenomena", p.144, NBS Misc.Publ.273, Washington, 1966.
- 7. С.Н.Ишмаев, Н.П.Садиков, А.А.Чернышев. Препринт ИАЭ, 2019 (1970).
- 8. С.Н.Ишмаев, Н.П.Садиков, А.А.Чернышев. Препринт ИАЭ, 2271 (1973).
- 9. M.Popovici, A.D.Stoica, A.Bajorek.Acta Cryst. A30,1559 (1974).

Рукопись поступила в издательский отдел 21 мая 1975 года.