89-334

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

T 19

P3-89-334

Ю.В.Таран, Э.И.Шарапов

ИЗМЕРЕНИЯ СПЕКТРА ГАММА-ЛУЧЕЙ, ИСПУСКАЕМЫХ ПРИ ЗАХВАТЕ ТЕПЛОВЫХ НЕЙТРОНОВ ЯДРАМИ БОРА-11

Исследование гамма-спектров при захвате тепловых нейтронов необходимо как для дальнейшего развития теории ядра, так и для прикладных целей¹¹. Определенные трудности возникают при измерении спектров для ядер с малыми (менее 10 мб) сечениями радиационного захвата, что характерно для легких ядер. Например, до сих пор не был измерен гамма-спектр от захвата тепловых нейтронов изотопом бора ¹¹ В (содержание в естественной смеси 80%), имеющего тепловое сечение около 5 мб^{/2}. Знание гамма-спектра ядра-продукта ¹² В, в частности, нужно для расчета его поляризации в основном состоянии при захвате поляризованных нейтронов.

Нами были сделаны измерения спектров гамма-квантов при радиационном захвате тепловых нейтронов в Ве, ¹¹ В и С. Первый и последний элементы исследовались в^{/3 ,4 /}, что позволило использовать их в качестве стандарта для определения абсолютного выхода гамма-квантов при распаде компаунд-состояния ¹² В.

Эксперимент проводился на импульсном быстром реакторе ИБР-2^{/5}/, работавшем на мощности 2 МВт с частотой 5 Гц. Использовался пучок тепловых нейтронов с потоком 4·10⁶ см⁻²·с⁻¹, сформированный и очищенный от реакторных гамма-квантов и более быстрых нейтронов изогнутым зеркальным нейтроноводом^{/6}/. Энергия нейтронов определялась методом времени пролета. Образец находился на расстоянии 24 м от активной зоны реактора. Перед образцом пучок коллимировался до поперечного сечения 3х5 см. При этом все использованные образцы с запасом перекрывали поперечное сечение пучка. Для подавления фона от рассеянных в образце нейтронов последний помещался в трубу из ⁶ LiF диаметром 9 см, длиной 0,5 м и толщиной стенки 0,8 см.

В качестве образцов были использованы: 1) пластина из прессованного металлического порошка бериллия, 2) порошок элементарного бора с обогащением 99,5% по изотопу ¹¹ В и 3) реакторночистый графитовый порошок. Толщины образцов приведены в таблице.

Гамма-кванты от образцов регистрировались под углом 90° к пучку нейтронов с помощью сцинтилляционного детектора NaJ(Tl), имевшего размеры \$20x20 см и установленного на расстоянии 30 см от образца. Спектр гамма-квантов анализировался амплитудным кодировщиком на 1024 канала, работавшем во временном окне, которое вырезало из падающего спектра нейтронов участок с энергией от 6,6 и до 119 мэВ.

BALLA IN MADBABBI BHEJH CTEHA

						Таблица	
Образец		ρ, Γ·CM ⁻²	σ _t ,б	σ _γ , мб	A, 10 ⁻⁴ *	J, c ⁻¹	f _i
Be		3,6±0,1	6,16±0,01	7,6±0,8	11,4±1,3	34,4±0,8	1,13
в	10	0,86±0,06	3840±9	500±200			
	11		4,84±0,04	5,5±3,3	1,72±1,03	1,46±0,06	6 0,43
С		0,87±0,06	4,744±0,005	3,53±0,07	1,67±0,12	2,02±0,33	3 0,39
С		0,87±0,06	4,744±0,005	3,53±0,07	1,67±0,12	2,02±0,3	33

* При вычислении А введена поправка на отличие средней энергии использованного спектра нейтронов от энергии тепловой точки

При этом средняя энергия этих нейтронов была равна 17,4 мэВ. Фоновые условия не позволяли наблюдать слабые гамма-переходы с энергией меньше 1 МэВ.

Обработка полученных амплитудных спектров осуществлялась с помощью программы ACTIV⁷⁷ на ЭВМ PDP-11/70. Было получено удовлетворительное описание всех наблюдавшихся пиков гауссовской формой линии. Примером может служить рис.1, на котором изображен участок экспериментального спектра для бериллия, содержащего пики от известных гамма-переходов с энергией 2589,9 (номер канала 100), 3343,3 и 3367,4 кэВ (канал 131).

Рис. 1. Участок амплитудного спектра гамма-квантов из реакции ⁹Ве (n, γ) . Точки – экспериментальные данные; сплошная линия – фит методом наименьших квадратов по гауссовской модели $(\overline{\chi^2} = 1,19)$ на одну степень свободы). N – интенсивность, A – номер канала анализатора.

В бериллии и углероде нами наблюдались все известные переходы с энергией выше 1 МэВ. В ¹²В согласно известной схеме уровней^{/8} / (рис.2) при распаде компаунд-состояния с энергией 3369,0 кэВ помимо прямого E1-перехода возможны следующие каскадные гамма-переходы с энергией выше 1 МэВ: 1670 (E1), 1699 (М1 + E2), 2419 (E1), 2626 (E1) и 2720 (М1 + E1) кэВ. Ни один из этих переходов, кроме прямого (рис.3), нами не наблюдался.

Рис.2. Схема уровней ядра ¹² В.

Рис. 3. Участок амплитудного спектра гамма-квантов из реакции ${}^{11}B(n, \gamma)$. Точки — экспериментальные данные; сплошная линия — фит методом наименьших квадратов ($\overline{\chi^2} = 1,51$).

Для оценки парциального вклада прямого гамма-перехода в сечение радиационного захвата ¹¹В использовались пики с энергией 3343,3 и 3367,4 кэВ для бериллия (соответствующие выходы гамма-квантов на 100 захватов равны 33,0 и 11,3, по данным^{/3 /}, и 28 и 15, по данным^{/4 /}) и 3684,5 кэВ для углерода (выход 31 квант на 100 захватов^{/4 /}). Практическое совпадение энергий всех этих пиков исключало необходимость введения поправок на эффективность детектора. В этом случае выход I_в гамма-квантов прямого перехода для ¹²В равен

$$I_{B} = I_{i} \cdot \frac{J_{B}}{J_{i}} \cdot \frac{A_{i}}{A_{B}} \cdot \frac{(1 + f_{i})}{(1 + f_{B})}, \qquad (1)$$

где I_i — выход гамма-квантов в ранее указанных переходах для i = ¹⁰ Ве или ¹³ C; J_i — скорость счета гамма-квантов в соответствующих переходах для i = ¹⁰ Be, ¹² В или ¹³ C; f_i — поправка на захват после первого и последующих рассеяний нейтронов в образце;

$$A_{i} = \frac{n_{i} \cdot \sigma_{\gamma i}}{(\sum_{j} n_{j} \cdot \sigma_{tj})_{i}} \cdot [1 - \exp(-\sum_{j} n_{j} \cdot \sigma_{tj})_{i}], \qquad (2)$$

 n_i и $\sigma_{\gamma i}$ — плотность ядер и тепловое сечение радиационного захвата для $i = {}^9$ Ве, 11 В или 12 С соответственно; n_j и σ_{tj} — плотность и полное тепловое сечение для j-изотопа в i-образце соответственно. Данные по

сечениям взяты из¹²¹. Поправка f_i была рассчитана приблизительно по методу работы¹⁹ для бесконечного плоского образца без учета изменений энергии нейтронов при многократном рассеянии. Неопределенностью поправки и даже ею самой можно пренебречь при использовании углеродного стандарта ввиду близости параметров образцов. Все необходимые для расчетов данные сведены в таблице.

В итоге получен выход I_B гамма-квантов с энергией 3369 кэВ для ¹¹ В — 18 ± 10 на 100 захватов при использовании бериллиевого стандарта (при этом для Ве величина I_i в (1) бралась равной 0,44) и 22 ± 13 для углеродного стандарта. Ошибка в определении I_B в основном обусловлена неопределенностью в экспериментальном значении сечения σ_{γ} для ¹¹ В. Взвешенное среднее значение I_B оказалось равным 20 ± 8 гамма-квантов на 100 захватов.

Авторы пользуются случаем поблагодарить В.В.Нитца за предоставленную возможность измерений на пучке тепловых нейтронов и В.В.Скоя за помощь в измерениях.

ЛИТЕРА ТУРА

- 1. Демидов А.М. Методы исследования излучения ядер при радиационном захвате тепловых нейтронов. М.: Госатомиздат, 1963.
- 2. Mughabghab S.F. et al. Neutron Cross Sections. N.Y.: Academic Press, 1981, v.1, part 1.
- 3. Jurney E.T. In: Proc. Third Inter. Symp. on Neutron Capture Gamma-Rays Spectroscopy, N.Y.: Plenum Press, 1979, p.461.
- 4. Jarczyk L. et al. Helv. Phys. Acta, 1961, v.34, p.483.
- 5. Ананьев В.Д. и др. АЭ, 1984, т.57, с.227.
- 6. Корнилов В.В. и др. ОИЯИ, P13-80-496, Дубна, 1980.
- 7. Zlokazov V.B. Nucl.Instr.Meth., 1982, v.199, p.509.
- 8. Ajzenberg-Selove F. Nucl. Phys. A, 1985, v.433, p.46.
- 9. Draper J.E. Nucl.Sci.Eng., 1956, v.1, p.522.