•		
	объединенный институт ядерных исследований дубна	
	88-908 M 70 P3-88-908	
	Л.В.Мицына, А.Б.Попов, Г.С.Самосват	
	ОТРИЦАТЕЛЬНЫЙ НЕЙТРОННЫЙ p-PE3OHAHC НА ЯДРЕ ¹¹ В	
	Направлено в журнал "Письма в ЖЭТФ"	
1. 1.	1988	And And

· 1. Поставляя большую информацию о состояниях ядер, возбужденных выше энергии связи нейтрона, нейтронная слектросколия дает скудные сведения об уровнях ниже энергии связи, соответствующих "отрицательным" нейтронным резонансам. При s-резонансы. 8 настоящей работе этом ИССЛЕДУЮТСЯ лишь демонстрируется, что изучение анизотропии упругого рассеяния нейтронов в благоприятных случаях позволяет получать параметры отрицательных р-резонансов.

2. Как известно, сечение рассеяния вдали от резонансов слабо зависит от энергии нейтронов и определяется потенциальным рассеянием, к которому добавляются "хвосты" ближайших резонансов. Вклады же "далеких" резонансов обычно выражают в сдвигах фаз потенциального рассеяния δ_{1} как добавку к фазам рассеяния на твердой сфере ϕ_{1} ; например, в виде [1] $\delta_{1} = \phi_{1} + \arcsin(P_{1} R_{1}^{\infty})$, где $P_{1} - фактор проницаемости, а <math>R_{1}^{\infty}$ – подгоняемый к эксперименту параметр. Существенно, что для соседних по массе ядер как ϕ_{1} , так и δ_{1} близки: первые – по причине зависимости только от kR (k-волновое число нейтрона, R-радиус ядра), вторые – из-за суммарного вклада большого числа уровней. Для $\iota = 0$ это подтверждается многочисленными данными по радиусам рассеяния $R'_{0} = R(1 - R_{0}^{\infty})$, а для p-нейтронов -экспериментами, где определялись R_{1}^{∞}

Анализируя выражение дифференциального сечения рассеяния вблизи p-резонанса [3], которое зависит от угла е как

 $\sigma(\theta) = \frac{\sigma_{\bullet}}{4\pi} [1 + \omega_1 \cos\theta + \omega_2 P_2(\cos\theta)], \qquad (1)$

можно усмотреть, что p-резонанс сильнее всего влияет на второе слагаемое в (1), отвечающее интерференции s- и p-волк.

3. На ри́сунке показаны экспериментальные значения параметров сечения (1) $\sigma_{\bullet}(E)$ и $\omega_{i}(E)$, полученные методом времени пролета на реакторе ИБР-30 для образцов углерода и бора (ω_{i} -в системе центра масс, Е - в лабораторной системе). По этим данным с помощью параметризации $\sigma(\vartheta)$ согласно [3,4] при R=1,35A^{1/3} фм и к = 2,197.10⁻⁴A \sqrt{E} (A+1) фм⁻¹ (E-в эВ) были определены следующие значения:

$R'_0 = 6,15\pm0,02$	Фм для С , R' = 5,94±0,06 Фм для В ,	(2)
	R' = 4,29±0,21 фм для С ,	(3)
	R' = 3,02±0,17 фм для В .	(4)

Они дают наилучшее описание эксперимента, показанное на рисунке сплошными линиями, при нулевых значениях силовых функций. Из о при энергиях 95 кэВ и выше по дажным [5] было вычтено крыло сильного s-резонанса ¹⁰ в с E = 370 кэВ.

4. Как и ожидалось, у близких по массе углерода и бора почти одинаковы радиусы s-рассеяния (2), но для p-рассеяния (3) и (4) заметно отличаются. По-видимому, более "правильно" значение R₁ для углерода с его действительно далекими резонансами, а у бора ω₁ и, следовательно, R₁ "искажены" близким резонансом с *l*=1, $E_o = 430$ кэВ. Величину этого искажения иллюстрирует пунктирная кривая 1, отличающаяся от сплошной кривой только тем, что при ее расчете отдельно учитывался вклад этого резонанса в соответствии с его параметрами из [6]. Ясно, что эксперимент требует увеличения R_i , что и было сделано путем замены значения $R_i^{oo} = -0,003$, дающего (4), на значение $R_i^{oo} = -0,130$, соответствующее величине (3) для углерода и $R_i' = 4,16$ фм для бора. Результат представлен кривой 2, которая все еще ниже большинства точек. Хорошо проходит по точкам кривая 3, для получения которой было подобрано значение $R_i' = 5,38$ фм, теперь уже значительно большее, чем у углерода.

Однако нам представляется более предпочтительной другая интерпретация той же кривой 3. Согласно [7], отрицательные р-резонансы у изотопа ¹²с могут порождать только основное состояние 13 с со спином и четностью $1/2^{-1}$ и одно возбужденное $3/2^{-1}$, с энергией 3684 кэВ, что соответствует энергиям резонансов в лабораторной системе E = 5358 и -1367 кэВ. У ¹²в три подходящих состояния: основное 1^+ , 953 кэВ 2^+ и 2720 кэВ 0^+ - они соответствуют p-резонансам ¹¹ в с E = -3676, -2637 и -709 кэВ. Наша ГИПОТЕЗА СОСТОИТ В СЛЕДУЮЩЕМ: ПО ДВА УКАЗАННЫХ ОТРИЦАТЕЛЬНЫХ, резонанса с E₂ <-1 МэВ вместе с остальными положительными р-резонансами (кроме резонанса 11 в с $E_{o} = 430$ кэВ) образуют у обоих элементов одинаковые R⁰ = -0,130, а два ближайших резонанса ¹¹в 430 кзВ и -709 кзВ, частично компенсируя друг друга, и обеспечивают », бора, наблюдаемое в эксперименте^{*)}. Тогда нетрудно найти наиболее подходящую приведенную нейтронную ENDNHA отрицательного р-резонанса

 $\Gamma_{1}^{1} = 4500 \ B$, (5)

которая дает функцию 🛶 (Е), графически неотличимую от кривой З на рисунке. Значение (5) - конечно, лишь оценка, погрешность которой указать затруднительно.

*) При этом мы также пренебрегаем возможным вкладом в R¹ бора механизма однопионного обмена [8].

2

-3

5. Составляя примерно 3/4 от вигнеровского предела, основанного на одночастичной ширине $r^2 = h^2/M_n R^2$, величина (5) в 20 раз больше среднего $\langle \Gamma_n^1 \rangle = 220$ зВ по четырем положительным резонансам ¹¹ в [6], но резонанс -709 зВ - единственный со спином 0⁺ и его ${}_{9}\Gamma_n^4 = 560$ зВ уже только примерно вчетверо больше $\langle {}_{9}\Gamma_n^1 \rangle =$ 130 зВ. Используя результаты [9], по ширине (5) уровня 12 в 2,72 МэВ 0⁺ можно получить, что его спектроскопическия фактор s \approx 1, тогда как по модели оболочек для этого уровня s \approx 0,40 [10] и 0,21 [9], а из (d,p)-реакции - s \approx 0,1 [11] и 0,21 [12]. Таким образом, наш результат (5) свидетельствует в пользу большей одночастичности рассматриваемого состояния 12 в. Для разрешения этого разногласия нужны более детальные исследования - как с нейтронами, так и с заряженными частицами.

ЛИТЕРАТУРА

1. Popov A.B., Samosvat G.S.-Nuclear Data for Basic and Applied Science. Proceed.Int.Conf.,Santa Fe,1985,v.1,p.621. 2. Mitsyna L.V.et al. - Int. Conf. on Nuclear Data for Science and Technology, Mito, Japan, 1988; JINR E3-88-237, Dubna, 1988. з.Самосват Г.С.-ЭЧАЯ, 1986. т. 17. вып. 4. с. 713. 4. Nikolenko V.G., Popov A.B., Samosvat G.S.-Nuclear Data for Science and Technology.Proceed.Int.Conf.,Antwerp,1982,p.781. 5.Garber D.I., Kinsey R.R.-BNL-325,3^d edition, v.II, 1976. Holden N.E. - Neutron Cross 6.Mughabghab S.F., Divadeenam M., Sections, v.1, part A, Academic Press, 1981. 7. Table of Isotopes, ed.by Lederer C.M., Shirley V.C., 7th edition, New York, 1978. 8.Кузнецова Л.В. и др.-ОИЯИ РЗ-87-114, Дубна, 1987. 9. Koehler P.E.et al,-Nucl.Phys., 1983, v.A394, p.221. 10.Cohen S., Kurath D.-Nucl. Phys., 1967, v. A101, p.1. 11.Gallmann A.et al.-Phys.Rev., 1965, v. 138B, p. 560.

12.Monahan J.E. et al.-Phys.Rev.,1971,v.C3,p.2192.

Рукопись поступила в издательский отдел 28 декабря 1988 года. Мицына Л.В., Попов А.Б., Самосват Г.С. Р3-88-908 Отрицательный нейтронный р-резонанс на ядре ¹¹В

Впервые в нейтронной спектроскопии получена экспериментальная оценка ширины отрицательного р-резонанса: $\Gamma_n^4 \simeq 4500$ эВ для резонанса -709 кэВ, соответствующего четвертому возбужденному состоянию ¹²В, имеющему энергию 2,72 МэВ и спин 0⁺.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1988

Mitsyna L.V., Popov A.B., Samosvat G.S. P3-88-908 Negative Neutron p-Resonance on ¹¹B Nucleus

For the first time in neutron spectroscopy an experimental estimate of the width of a negative p-wave resonance $\Gamma_n^1 \simeq 4500$ eV is obtained for the resonance -709 keV, corresponding to the fourth excitation state of ¹²B (which has 2.72 MeV energy and spin 0⁺).

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988