

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

F 363

P3-88-555 🥥

Г.П.Георгиев, Ю.В.Григорьев⁷, В.А.Ермаков, Ю.С.Замятнин, А.Л.Ковтун², Г.В.Мурадян², И.А.Сираков, В.Г.Тишин, С.А.Тошков³, Т.Д.Хрыкина, Н.Б.Янева³

УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ НЕЙТРОННЫХ СЕЧЕНИЙ И МНОЖЕСТВЕННОСТИ ИЗЛУЧЕНИЙ ПРИ ВЗАИМОДЕЙСТВИИ НЕЙТРОНОВ С ЯДРАМИ

- ФЭИ, Обнинск
- 2 ИАЭ им.И.В.Курчатова, Москва
- ИЯИЯЭ БАН, София

1988

Для исследования резонансной структуры нейтронных сечений радиационного захвата и деления различных изотопов в ЛНФ ОИЯИ, на 500-метровой пролетной базе импульсного быстрого реактора ИБР-30 создан 16-секционный NaJ(Tl)-детектор гамма-лучей, являющийся аналогом серии детекторов типа "Ромашка", созданных в ИАЭ им. И.В.Курчатова^(1, 2). Он содержит 16 сцинтилляционных блоков NaJ(Tl) размером 122x122x150 мм³ каждый. Суммарный объем сцинтиллятора 36 литров.

Компоновка детектора представлена на рис. 1 и 2. С внешней стороны детектор окружен защитой из свинца толщиной 10 см, а со стороны реактора — 20 см и пластинами из парафина с карбидом бора толщиной

Рис 1. Продольный разрез детектора 1,5,8 — защита из смеси парафина и карбида бора, 2 — спинцопая защита, 1 — фотоумножитель, 4 — криоталл NaJ(TI), 6 — об разец-радиатор, 7,9 — защита из борированного полизтилена, 10 — аакуумная груба

0e

ł

Рис. 2. Поперечный разрез детектора. Обозначения 1, 2, 4, 5, 7 пояснены на рис. 1.

7 см. С внутренней стороны от защищен (n, γ)-конвертором, включающим замедлитель из полиэтилена и парафина и поглотитель из карбида бора. Общая толщина конвертора 65 мм, доля бора-10 по весу составляет ~10%. В сквозном канале детектора смонтирована труба из алюминия с внешним диаметром 106 мм и длиной 250 см. В вакуумной трубе в центре детектора помещались образцы из различных материалов. На расстоянии 6 метров от центра детектора расположена система коллимации в виде дисков из смеси парафина с карбидом бора общей толщиной 100 см и дисков из свинца толщиной 10 см с коллимирующим отверстием диаметром 53 мм.

Каждый кристалл NaJ(Tl) упакован в герметичной алюминиевой оболочке и просматривается через стекло одним фотоумножителем ФЭУ-110. На выходе ФЭУ находятся эмиттерные повторители ЭП, с которых сигналы поступают параллельно на интегральные дискриминаторы ИД и на сумматор Σ (рис. 3). Амплитуды сигналов с ФЭУ выравнивались путем изменения высокого напряжения с помощью стандартных источников гамма-лучей ¹³⁷Cs и ⁶⁰Co. На каждый ФЭУ подавалось высокое напряжение около 1800 В.

Рис. 3. Блок-схема электронной аппаратуры.

Принцип спектрометрии множественности обеспечивался электронной аппаратурой, блок-схема которой изображена на рис. 3. Выходной сигнал сумматора дискриминировался дифференциальным дискриминатором ДД и поступал как стробирующий сигнал в кодировщик кратности совпадений ККС^{/3/}, одновременно на его соответствующие входы (всего 16 входов) поступали логические сигналы с интегральных дискриминаторов. Кодировщик кратности вырабатывал сигнал "стоп" для временного кодировщика БК-5 и пятиразрядный двоичный код кратности для формирователя признака групп ФПГ. Код кратности заключал в себе информацию о кратности излучений зарегистрированного события, а в случае однократных совпадений также и информацию о номере секции детектора, в которой произошла регистрация.

Спектрометрическая аппаратура: интегральные и дифференциальный дискриминаторы, сумматор и кодировщик кратности — находились на расстоянии 10 м от детектора, а блоки цифровой обработки, начиная с ВК и ФПГ, — в измерительном центре ЛНФ, на расстоянии 700 м. Для передачи сигналов от детектора в измерительный центр потребовалось 7 кабельных линий и соответствующее количество согласующих блоков.

Счет импульсов кратности проводился во временном окне длительностью 500 нс. Электронная схема ККС обладает мертвым временем 5 мкс, которое и определяет мертвое время всей аппаратуры от ФЭУ до ЭВМ.

Специальный контроллер СК-7202 при взаимодействии с ВК и ФПГ формировал в буферной памяти 16 временных спектров кратности и 16 спектров каждой секции (однократных сигналов). Процесс накопления информации, визуального наблюдения спектров, их записи в виде файлов и первичной обработки осуществлялся с помощью диалоговой программы "FORUM". Обработка спектров включала в себя вычитание фонов, поправку на мониторный коэффициент, сжатие в произвольных энергетических интервалах; она производилась на ЭВМ MERA-60 и ПРАВЕЦ-16.

Наладка аппаратуры и исследование основных характеристик детектора велись на стандартных источниках излучений ¹³⁷Cs (8,5 · 10⁴ Бк) ⁶⁰Co (9,82 · 10⁴ Бк), ²⁵²Cf (2,5 · 10³ нейтрон/с), а также на нейтронном пучке ИБР-30.

На рис. 4 изображен типичный амплитудный спектр одной секции для источника ¹³⁷Cs. Энергетическое разрешение отдельных секций детектора составляет от 7 до 12%.

Геометрическая эффективность детектора равна 80%. Эффективность регистрации гамма-квантов от источников ¹³⁷Сs и ⁶⁰Со измерена в зависимости от нижнего порога дискриминации ДД и представлена на рис. 5 и 6. При этом пороги дискриминации на ИД в отдельных секциях соответствовали сигналам с энергией 100 кэВ. Из рис. 5 и 6 видно, что при низких порогах эффективность регистрации детектора близка к геометрической эффективности.

Рис. 4. Амплитудный спектр одной секции детектора для источника ¹³⁷Сs.

Рис. 5. Эффективность детектора к гамма-квантам ^{137}Cs ($E = 660 ext{ k}$) в зависимости от нижнего суммарного энерговыделения.

Рис. 6. Эффективность детектора к гамма-квантам ⁶⁰Co(E = 1, 17 МъВ и 1, 33 МъВ) в зависимости от нижнего порога суммарного энерговыделения.

Рис. 10. Суммарные времяпролетные спектры урана-238 соответственно при нижнем пороге ДД 2 МэВ – верхняя кривая и 3 МэВ – нижняя кривая. Ширина временного канала 32 мкс.

7

Рис.11. Времяпролетные спектры урана-238 для третьей кратности соответственно при нижнем пороге ДД 2 МэВ – верхняя кривая и 3 МэВ – нижняя кривая. Ширина временного канала 32 мкс.

Рис. 12. Суммарные времяпролетные спектры соответственно с ураном-238 – верхняя, со свинцом – средняя и без образца – нижняя кривая.

Рис. 13. Суммарные времяпролетные спектры со свинцовым образиом при различных толщинах внутренней защиты детектора, соответственно при 50 мм — верхняя кривая и 65 мм — нижняя кривая. Ширина временного канала 2 мкс. На пучке резонансный фильтр алюминия (60 мм).

Рис. 14. Спектры кратности гамма-квантов для некоторых резонансов изотопов ²³⁸U (103 эВ), ¹⁰⁷Ag (51,4 эВ), ¹⁸¹Ta (126,5 эВ).

Результаты исследования формы спектров кратности источников ¹³⁷Cs, ⁶⁰Co и ²⁵²Cf показаны на рис. 7, 8, 9. Наблюдаемый эффект кратности при порогах выше суммарного энерговыделения одного события объясняется случайными совпадениями событий. В связи с тем, что источник ²⁵²Cf находился в стальном контейнере, который поглощал низкоэнергетичные гамма-кванты, и из-за накопившихся продуктов деления имело место смещение максимума кратности в сторону меньших значений даже при высоких порогах энерговыделения.

Времяпролетные спектры кратностей были измерены на образцахрадиаторах ²³⁸ U (0,00238 ат./б), Pb (0,00316 ат./б), Ag (0,00053 ат./б), Ta (0,00055 ат. /б) при работе ИБР-30 в бустерном режиме (W = 10 кВт, f =100 Гц, $\tau_{\rm BCR} = 4$ мкс, K_{умн} = 200). Нейтронный пучок был постоянно перекрыт фильтрами B₄C (10 мм) и Cd (1 мм) для поглощения рециклических нейтронов и резонансным фильтром вольфрама толщиной 0,4 мм для слежения за стабильностью работы аппаратуры. В измерениях с ураном и свинцом нейтронный пучок в ряде серий был перекрыт резонансными фильтрами Al (60 мм) и MnO₂ (10 мм) для определения доли фона. Мониторирование нейтронного пучка производилось двумя ³ Не-счетчиками, установленными на расстоянии 60 мм от реактора около нейтроновода.

В работе большое внимание было уделено вопросам снижения фона детектора. Это достигалось путем тщательной коллимации нейтронного пучка, усиления внешней и внутренней защиты детектора, вакуумирования сквозного канала и выбора оптимальных порогов дискриминации.

Для выбора присмлемых условий измерений с точки эрения наилучшего отношения эффекта к фону и скорости набора информации проводились измерения с различными порогами дискриминации (рис.10 и 11). В измерениях с ²³⁸ U, для которого энергия связи нейтрона 4,8 МэВ, рабочие пороги дискриминации на ДД были выбраны 2 и 5 МэВ соответственно. Это позволило отсечь гамма-кванты от захвата нейтронов на водороде и уменьшить фон от гамма-квантов захвата на йоде, имеющем энергию связи 6,7 МэВ.

Измерения со свинцовыми образцами позволили определить чувствительность детектора к рассеянным нейтронам и выбрать оптимальную толщину внутренней защиты. Относительная чувствительность детектора к рассеянным нейтронам определялась по формуле

$$\epsilon_{\gamma}/\epsilon_{n} = \frac{N^{U}}{N^{Pb}} \cdot \frac{n^{Pb}}{n^{U}} \cdot \frac{\sigma_{s}^{Pb}}{\sigma_{\gamma}^{U}} - \frac{\sigma_{s}^{U}}{\sigma_{\gamma}^{U}},$$

где $\epsilon_{\gamma}, \epsilon_n$ — эффективность регистрации гамма-квантов и нейтронов; N^U, N^{Pb} — счет детектора при наличии соответственно ²³⁸ U и Pb в детекторе; n^U, n^{Pb} — число ядер урана и свинца на единицу площади образца; σ_s^U , σ_s^{Pb} — нейтронные сечения рассеяния урана и свинца; σ_{γ}^U — сечения радиационного захвата урана.

Из суммарных спектров всех кратностей были получены отношения эффективностей в следующих диапазонах энергий: $215 \div 465$ эВ – 10^4 , $21,5 \div 46,5$ кэВ – 920; $100 \div 200$ кэВ – 620. Эти результаты говорят о малой чувствительности детектора к рассеянным нейтронам и о возможности исследования резонаненой структуры сечений радиационного захвата и деления вплоть до сотен кэВ по энергии (рис. 12). При более высоких кратностях (3, 4, 5) отношение эффекта к фону (рис. 11) и отношения эффективностей еще лучше, чем на суммарных спектрах. Следует отметить сильную зависимость чувствительности детектора к рассеянным нейтронам от толщины внутренней защиты, что хорошо видно на рис. 13. На рис. 14 представлены спектры кратности для различных резонансов изотопов урана, серебра и тантала.

С помощью детектора проведены также измерения функций самоиндикации радиационного захвата на семи образцах-фильтрах урана-238 до ослабления 0,1 в диапазоне энергий 20 эВ ÷ 200 кэВ. Предварительная обработка результатов показала, что на примененном спектрометре множественности можно проводить исследования эффектов резонансной блокировки сечений.

Таким образом, созданная установка обладает высокой эффективностью регистрации гамма-лучей при малых фонах в широком диапазоне энергий падающих нейтронов, от 20 эВ до 200 кэВ. Это позволяет проводить в vсловиях ИБР-30 прецизионные измерения сечений ралиационного захвата и деления, эффектов резонансного самоэкранирования в сечениях, а также исследовать множественность излучений в различных процессах.

Авторы выражают благодарность Л.Б.Пикельнеру за содействие и полезные обсуждения, а также А.П.Сиротину и В.И.Петушковой за помощь на отдельных этапах.

ЛИТЕРАТУРА

- 1. Мурадян Г.В. и др. Препринт ИАЭ-3807/74, М., 1983.
- 2. Мурадян Г.В. и др. Препринт ИАЭ-3769/1, М., 1983.
- 3. Богдзель А.А. и др. В сб.: XI Международный симпозиум по ядерной электронике. Д13-84-53, Дубна: ОИЯИ, 1984, с.131.

Рукопись поступила в издательский отдел 22 июля 1988 года.

11

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники

19. Биофизика

Георгиев Г.П. и др. Р. Установка для измерения нейтронных сечений

и множественности излучений

при взаимодействии нейтронов с ядрами

На 500-метровой пролетной базе импульсного быстрого реактора ИБР-30 создан детектор множественности типа "Ромашка". Детектор содержит 16 независимых секций с кристаллами NaJ(Tl) общим объемом 36 литров. Геометрическая эффективность регистрации одиночных гамма-лучей ~80%. Отношение эффективностей регистрации гамма-лучей и нейтронов ниже 200 кэВ составляет >600. Созданный детектор позволяет проводить измерения нейтронных сечений радиационного захвата и деления, исследовать множественность излучений и эффекты резонансного самоэкранирования в диапазоне энергий от 20 эВ до 200 кэВ.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ. Сообщение Объединенного института ядерных исследований. Дубна 1988

Перевод О.С.Виноградовой

Georgiev G.P. et al. A Set-Up for Measuring Neutron Cross Sections and Radiation Multiplicity from Neutron-Nucleus Interaction

A multiplicity detector of the "Romashka" type has been used on the 500 m flight part of the IBR-30 pulsed reactor. The detector consists of 16 independent sections with NaJ(Tl) crystals with a total volume of 36 liters. The geometric efficiency of single-ray registration is ~80%. The gamma-ray to neutron detection efficiency ratio is >600 for neutrons with energies below 200 keV. This detector allows one to perform neutron capture and fission cross section measurements and to study gamma-ray multiplicity and resonance selfabsorption effects in the 20 eV-200 keV neutron energy range.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1988

P3-88-555

P3-88-555