

P3-87-43

В.П.Алфименков, С.Б.Борзаков, Ю.Д.Мареев, Л.Б.Пикельнер, А.С.Хрыкин, Э.И.Шарапов

ИССЛЕДОВАНИЯ ЯВЛЕНИЯ НЕСОХРАНЕНИЯ ПРОСТРАНСТВЕННОЙ ЧЕТНОСТИ В НЕЙТРОННЫХ РЕЗОНАНСАХ ⁹³Nb,¹¹³Cd,¹⁴¹Pr

1. ВВЕДЕНИЕ

Со времени первого наблюдения эффекта несохранения пространственной четности /PNC/ во взаимодействии резонансных нейтронов с ядрами ^{/1/} достигнут определенный прогресс в изучении свойств этого интересного явления.

Экспериментальные исследования, выполненные нами /2/ подтвердили предположение авторов работы /3/ об усилении эффектов РNC вблизи р-волновых резонансов. Сопоставление результатов, полученных в тепловой /4,5/ и резонансной /2/ областях энергии. свидетельствует о справедливости энергетической зависимости эффектов PNC, полученной в работах ^{73,67}. Результаты экспериментальных исследований PNC качественно согласуются с представлением о том, что наблюдаемые в них эффекты определяются свойствами смешиваемых слабым взаимодействием уровней компаунд-ядер с противоположными четностями. Вместе с тем пока нет достаточно ясного и последовательного понимания механизма такого смешивания. Этот вопрос рассматривался в ряде работ 77-97 авторы которых обсуждают различные механизмы: компаунд-ядерный, валентный, через гигантский резонанс. Решение вопроса о том. какой именно механизм реализуется в том или ином случае, важно не только с точки зрения понимания природы явления PNC, но и для более глубокого понимания структуры и свойств компаунд-состояний. Однако экспериментальная информация, которая накоплена на сегодняшний день, не позволяет однозначно решить этот вопрос в пользу какого-либо механизма смешивания. Поэтому в ЛНФ ОИЯИ было продолжено экспериментальное изучение PNC во взаимодействии резонансных нейтронов с ядрами. Для исследований были выбраны ядра ⁹³Nb, ¹¹³Cd и ¹⁴¹Pr. Мотивы, побудившие нас выбрать эти образцы, заключались в следующем.

Для ${}^{93}\rm Nb$ было известно ${}^{/10\,/}$,что в доступной для нашего спектрометра области энергий / E <100 эВ/ имеются два p-резонанса, которые по спину удовлетворяют условию смешивания с s-резонансами (J = I ${}^{\pm}$ 1/2).

Для ядра ¹¹³Cd ранее были выполнены исследования асимметрии испускания γ -квантов в реакции ¹¹³Cd(\dot{n} , γ) ^{/11}, в которых был найден коэффициент асимметрии $a_{\gamma} = -/4$, 1 ± 0 , $3/\cdot 10-4$. Посколь ку этот эффект обусловлен γ -распадом состояния компаунд-ядра ¹¹⁴Cd, являющегося смесью известного s-резонанса $/E_{o}=0$, 178 эВ/ и какого-то p-резонанса с таким же спином, но противоположной четности, то представляло интерес обнаружение этого p-резонанса и измерение вблизи него эффекта PNC в полном сечении. Нами выполнен предварительный цикл <u>измерения</u> пропусмения образца

COLEXADORNEIS ENCLETYT RASSELSX BECORDORAUM BASSIMESTEKA

1

¹¹³Cd, в результате чего был обнаружен слабый резонанс при $E_0 = 7$ эВ, который вследствие малой нейтронной ширины может являться р-резонансом. Поскольку для s-резонанса при $E_0 = 0,178$ зВ $J^{\pi} = 1^+$, то с ним может смешиваться p-резонанс только с $J^{\pi} = 1^-$. Для определения спина резонанса p = 7 зВ нами выполнены специальные измерения, которые показали, что он равен 1⁻⁻.

Для $^{141}{\rm Pr}$ в ходе предварительных измерений пропускания также обнаружен слабый резонанс при ${\rm E_o}$ = 4,9 эВ, малая нейтронная ширина которого позволяла надеяться, что он является p-резонансом.

2. МЕТОД ИССЛЕДОВАНИЙ

Метод исследований состоит в изучении зависимости пропускания образца от спиральности поляризованных резонансных нейтронов. Как известно, пропускание образца определяется полным сечением. В рамках теоретической модели ^{/3/} зависимость полного сечения от спиральности нейтронов $h = \pm 1$ связана с полным резонансным сечением σ_r^h , которое вблизи P-резонанса описывается выражением

$$\sigma_{\mathbf{r}}^{\mathbf{n}} = \sigma_{\mathbf{p}} \left(1 + \mathbf{h} \cdot \mathcal{G} \right), \qquad (1/2)$$

где σ_p - брайт-вигнеровское сечение в p-резонансе, а \mathcal{P} - параметр асимметрии полного резонансного сечения.

В экспериментах методом времени пролета измерены временные спектры нейтронов N^h(t), прошедших через образец при двух различных значениях спиральности h. Эти спектры позволяли найти для каждого из исследуемых образцов эффект пропускания ϵ , определяемый выражением

$$\epsilon = \frac{N^+ - N^-}{f_n (N^+ + N^-)}, \qquad (2/$$

где N^+ и N^- - спектры нейтронов, прошедших через образец соответственно при h = +1 и -1, а f_n - нейтронная поляризация.

В дальнейшем эффект пропускания є служил основой для определения параметров \mathscr{P} исследованных образцов вблизи р-резонансов. Эксперименты проводились с импульсным источником нейтронов – реактором ИБР-30, работающим в бустерном режиме с линейным ускорителем ЛУЭ-40 / 12 /. Полный выход нейтронов реактора составлял ~ /3÷4/·10¹⁴ н/с, длительность импульса нейтронов ~ 4 мкс и частота повторения импульсов ~ 100 1/с. Поляризованные нейтроны получались методом пропускания через динамически поляризованную протонную мишень. Нейтроны, прошедшие через эту мишень, имели поляризацию f_n, равную /55±5/%, и направление вектора поляризации, перпендикулярное к направлению пучка. Для получения пучка нейтронов с заданным значением спиральности /+1 либо -1/ служила система реверса, которая поворачивала вектор поляризации нейтронов на 90° в направлении вдоль либо против направления импульса нейтронов. Полученный таким образом продольно-поляризованный пучок нейтронов падал на исследуемый образец. Нейтроны, прошедшие через образец, регистрировались детектором, расположенным на расстоянии ~ 60 м от активной зоны реактора. Для контроля интенсивности и величины поляризации пучка нейтронов использовались три мониторных детектора, один из которых располагался за, а два других - перед протонной мишенью. Величина поляризации пучка нейтронов определялась по изменению прозрачности протонной мишени при ее поляризации.

3. ЭКСПЕРИМЕНТЫ

При проведении эксперимента использовался измерительный модуль /ИМ/ на базе малой ЭВМ СМ-3^{/13/}, выполнявший в автоматическом режиме накопление временных спектров, контроль интенсивности и величины поляризации пучка нейтронов, а также реверс спиральности нейтронов. В процессе проведения эксперимента производилось периодическое чередование измерений при противоположных значениях спиральности нейтронов. Продолжительность одного измерения составляла ~ 40 с. После накопления одной пары спектров в течение 80 с происходило накопление следующей пары, а спектры предыдущей вместе с соответствующими показателями мониторов подвергались быстрой статистической обработке. Обработка проводилась для исключения возможной асимметрии пары спектров. Если аппаратурная асимметрия спектров была статистически незначимой.то они добавлялись в основную память ИМ. Результатом проведенного эксперимента с данным образцом была пара временных спектров N⁺ и N⁻, накопленных в основной памяти ИМ. Время проведения эксперимента для каждого из исследованных образцов составляло ~ 200÷ ÷300 ч. Физические характеристики образцов приведены в табл.1

Таблица 1

Физические характеристики образцов

Образец	n [10 ²³ яд/см ²]	Площадь см ²	Изотопный состав в %		
⁹³ Nb	1,8	30	100 естеств.		
¹¹³ Cd	1,3	14	95 обогащен.		
¹⁴¹ Pr	1,5	30	100 естеств.		

.

4. РЕЗУЛЬТАТЫ

Полученные для каждого образца спектры N⁺ и N⁻ служили исходными данными для обработки, которая заключалась в определении параметров p-волновых резонансов и величины асимметрии для этих резонансов. На рис.1 и 2 приведены участки аппаратурных спектров нейтронов для образцов ¹¹³Cd и ¹⁴¹Pr соответственно. Параметры резонанса вычислялись путем подгонки методом наименьших квадратов теоретического пропускания T /E/ к экспериментальной кривой пропускания в области данного резонанса. Пропускание образца описывалось выражением

$$T(E) = \frac{\int_{0}^{\infty} N_{o}(E') \cdot R(E, E') e^{-n\Psi(E')} dE'}{\int_{0}^{\infty} N_{o}(E') \cdot R(E, E') dE'}, \qquad /3/$$

где $N_0(E')$ – аппаратурный спектр нейтронов источника, R(E,E') – функция разрешения спектрометра, определяемая формой нейтронного импульса источника и шириной временного канала, $\Psi(E')$ – полное резонансное сечение взаимодействия нейтронов с ядрами с учетом теплового движения атомов образца, n – число ядер образца на квадратный сантиметр.

Найденные таким образом параметры р-волновых резонансов приведены в табл.2. В дальнейшем они использовались для определения величин Р. Процедура получения Р для конкретного резонанса состояла в следующем.

Рис.2. Аппаратурный спектр нейтронов, прошедших образец ¹⁴¹ Pr. Время измерения 117 ч. N - число отсчетов детектора, n - номер временного канала с шириной 4 мкс.

Рис.1. Аппаратурный спектр нейтронов, прошедших образец ¹¹³Cd. Время измерения 160 ч. N – число отсчетов детектора в канале, n – номер временного канала с шириной 4 мкс.

Результаты исследования р-резонансов

Таблица 2

Ядро- ми- шень	Е _р эВ	Г _р эВ	gГ ⁿ (Е _р) 10−7 эВ	Е _s эВ	gГ <mark>°</mark> (Е _р) мэВ :	$\mathcal{P}(E_p)$ x10-3	<s h<sub>W p> 10⁻⁸ эВ</s h<sub>
98 Nb	35,8 42,2	0,195±0,030 0,180±0,040	580±85 460±70	193 -105	8,0 -0 216 0	0,9±1,2 0,9±1,7	6,0±8,0 1,0±1,8
¹¹³ Cd	7,0	0,170±0,025	3,5±0,5	0,178	3,1	3,7±5,2	0,1±0,2
¹⁴¹ Pr	4,9	0,080±0,020	7,6±1,0	-	- :	2,5±1,7	-

На основе измеренных в эксперименте спектров N^+ и N^- определялось в соответствии с выражением /2/ энергетическое распределение є в области данного резонанса. Эффект пропускания описывался теоретическим выражением є т:

$$\epsilon_{\mathrm{T}} = -n\mathcal{P} \frac{\int\limits_{0}^{\infty} N_{\mathrm{o}}(\mathbf{E}') \cdot R(\mathbf{E}, \mathbf{E}') \mathrm{e}^{-n\Psi(\mathbf{E}')}\Psi(\mathbf{E}') \mathrm{d}\mathbf{E}'}{\int\limits_{0}^{\infty} N_{\mathrm{o}}(\mathbf{E}') \cdot R(\mathbf{E}, \mathbf{E}') \mathrm{e}^{-n\Psi(\mathbf{E}')} \mathrm{d}\mathbf{E}'} \cdot /4/$$

В дальнейшем значение \mathscr{P} получалось при подгонке методом наименьших квадратов функции /4/ к экспериментальным данным для ϵ . Полученные в результате значения \mathscr{P} приведены в табл.2. Очевидно, что величины \mathscr{P} для резонансов ${}^{93}\mathrm{Nb}$ и ${}^{118}\mathrm{Cd}$ следует рассматривать как верхние оценки соответствующих параметров асимметрии.

С учетом того, что спины указанных резонансов удовлетворяют условию смешивания, отсутствие наблюдаемого эффекта свидетельствует о малой величине \mathscr{P} . Что касается резонанса празеодима, то для него спин неизвестен, а следовательно, \mathscr{P} может равняться нулю в случае J = I + 3/2.

Если использовать выражение для 9 из работы /1/:

$$\mathcal{P} = 2 \frac{\langle s | H_{W} | p \rangle}{E_{p} - E_{s}} \sqrt{\frac{\Gamma_{s}^{n}}{\Gamma_{p}^{n}}} \cdot \frac{\Gamma_{p}^{n}}{\Gamma_{p}^{n}} , \qquad (5)$$

то можно получить значение матричного элемента <s $\mid H_{W} \mid p$ >,характеризующего смешивание s- и p-состояний. В выражении /5/ Γ_{s}^{n} и Γ_{p}^{n} - нейтронные ширины соответствующих резонансов, E s и E $_{p}$ - их энергии, а Γ_{p}^{n} - доля нейтронной ширины p-резонанса для нейтронов с полным моментом j = 1/2.

Полагая $\Gamma_{p\, 1\!\!\!\!/}^n$ / Γ_p^n равным единице и используя известные значения остальных параметров, мы получили значения матричных элементов, приведенные в табл.2. Для празеодима такая оценка не проведена из-за неопределенности спина p-резонанса.

Полученные результаты, к сожалению, дают только ориентировочные оценки матричных элементов, и требуются дополнительные исследования для получения однозначных характеристик р -нечетных эффектов в реакциях с нейтронами на этих ядрах.

ЛИТЕРАТУРА

- 1. Алфименков В.П. и др. Письма в ЖЭТФ, 1981, т.34, вып.5, с.308.
- 2. Alfimenkov V.P. et al. Nucl. Phys., 1983, A398, p.93.
- 3. Сушков О.П., Фламбаум В.В. Письма в ЖЭТФ, 1980, 32, с.377.
- 4. Kolomensky E.A. et al. Phys.Lett., 1981, 107B, p.272.
- 5. Весна В.А. и др. Письма в ЖЭТФ, 1982, т.35, вып.8, с.351.
- 6. Bunakov V.E., Gudkov V.P. Z.Phys., 1981, 303, p.285.
- 7. Сушков О.П., Фламбаум В.В. УФН, 1982, т.136, с.2.
- 8. Зарецкий Д.Ф., Сироткин В.К. ЯФ, 1985, т.42, с.885.
- 9. Кадменский С.Г., Маркушев В.П., Фурман В.И. ЯФ, 1983, т.37, с.581.
- Mughabghab S.F. et al. Neutron Cross Sections, 1981, v.1, Part A.
- 11. Абов Ю.Г. и др. ЖЭТФ, 1973, т.65, с.1738.
- 12. Бунин Б.Н. и др. ОИЯИ, 13-6213, Дубна, 1972.
- 13. Бойа Я. и др. Сообщение ОИЯИ Р13-87-17, Дубна, 1987.

. Д9-82-664 Труды совещания по коллективным методам ускорения. Дубна, 1982.

Д2-82-568

6.0

ДЗ,4-82-704 Труды IV Международной школы по нейтронной физике, Дубна, 1982. 5 р.00 ж.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги.

1 p. 75 ĸ.

3 p. 30 k.

если они не были заказаны ранее.

Труды совещания по исследованиям в области

релятивистской ядерной физики. Дубна, 1982.

- Д11-83-511
 Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.
 2 р. 50 х.

 Д7-83-644
 Труды Международной школы-семинара по физике
 2 р. 50 х.
- тяжелых ионов. Алушта, 1983. 6 р. 55 к. Д2.13-83-689 Труды рабочесо совещания по оробленам маручения
- Д2,13-83-689 Труды рабочего совещания по пробленам излучения и детектирования гравитационных воли. Дубна, 1983. 2 р. 00 к.
- Д13-84-63 Труды XI Международного симпозиума по ядерной электронике. Братислава, 4 р. 50 ж. Чехословакия, 1983.
- Д2-84-366 Труды 7 Международного совещания по пробленам квантовой теории поля. Алушта, 1984. 4 р. 30 к.
- Д1,2-84-599 Труды VII Международного семинара по проблемам физики высоких энергий. Дубна, 1984. 5 р. 50 к.
- Д17-84-850 Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/ 7 р. 75 к.
- Д10,11-84-818
 Труды V Международного совещания по проблемам математического моделирования, программированию и математическим методам решения физических задач. Дубна, 1983
 3 р. 50 к.

 Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/
 13 р.50 к.
- Д4-85-851 Труды Международной школы по структуре ядра, Алушта, 1985. 3 р. 75 к.
- Д11-85-791
 Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретической физике. Дубна, 1985.
 4 р.

 Д13-85-793
 Труды XII Международного симпезиума по ядерной электронике, Дубна 1985.
 4 р. 80 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Рукопись поступила в издательский отдел 28 января 1987 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика	
۱.	Экспериментальная физика высоких энергий	
2.	Теоретическая физика высоких энергий	
3.	Экспериментальная нейтронная физика	
4.	Теоретическая физика низких энергий	
5.	Математика	
6.	Ядерная спектроскопия и радиохимия	
7.	Физика тяжелых ионов	
8.	Криогеника	
9.	Ускорители	
10.	Автоматизация обработки экспериментальных данных	
11.	Вычислительная математика и техника	
12.	Химия	
13.	Техника физического эксперимента	
14.	Исследования твердых тел и жидкостей ядерными методами	
15.	Экспериментальная физика ядерных реакций при низких энергиях	
16.	Дозиметрия и физика защиты	
17.	Теория конденсированного состояния	
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники	
19.	Биофизика	

Алфименков В.П. и др. P3-87-43 Исследования явления несохранения пространственной четности в нейтронных резонансах ⁹³ Nb, ¹¹³Cd, ¹⁴¹ Pr

Описаны экспериментальные исследования явления несохранения пространственной четности в р-волновых нейтронных резонансах ⁹³ Nb, ¹¹³ Cd, ¹⁴¹Pr. Измерения проводились на пучке поляризованных резонансных нейтронов реактора ИБР-30. Приводятся экспериментальные оценки параметров асимметрии полного сечения в области резонансов и матричных элементов смешивания S- и р-уровней компаунд-ядер.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1987

Перевод О.С.Виноградовой

Alfimenkov V.P. et al. The Study of Parity Violation in Neutron Resonances

Experimental study of parity violation in p-wave neutron resonances of 93 Nb, 113 Cd, 141 Pr is described. The measurements were performed on the beam of polarized neutrons from the IBR-30 pulsed reactor (Dubna). The paper contains experimental estimates for the asymmetry parameters of the total cross section in the resonance region and for the matrix elements of the mixing s- and p-levels of compound nuclei.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1987