

P3-86-767

В.В.Голиков, Е.Н.Кулагин, Ю.В.Никитенко

ОТРАЖЕНИЕ УЛЬТРАХОЛОДНЫХ НЕЙТРОНОВ ОТ ВЕЩЕСТВ С БОЛЬШИМ СЕЧЕНИЕМ ЗАХВАТА

1. ВВЕДЕНИЕ

Отражение ультрахолодных нейтронов /УХН/ от сильно поглощающих сред было теоретически рассмотрено в 1961 г. $^{/1/}$. Полученные результаты показывали, что в среде с поглощением полное отражение нейтронов невозможно, однако для весьма сильных поглотителей коэффициент отражения УХН R в пределе малых скоростей нейтронов ($\lambda >> 1/N_{\sigma_a}$) должен иметь заметную величину

$$R(v_z) = 1 - \frac{4mv_z}{\hbar N\sigma_a}$$
, /1/

где v_z - нормальная к поверхности среды компонента скорости нейтрона в вакууме; N - число ядер среды в единице объема; σ_a сечение поглощения нейтронов; $1/N\sigma_a$ - эффективная длина пробега нейтрона в среде, определяемая поглощением; λ и m - длина волны и масса нейтрона. По аналогии с отражением электромагнитных волн от поверхности металла явление отражения УХН от сильно поглощающих сред было названо "металлическим" отражением нейтронов $^{/1,\,2/}$.

Детальное сопоставление распространения в средах нейтронного и электромагнитного излучений проведено в работах $^{/3,4/}$. Было показано, что использование представления о комплексном показателе преломления n = n' + in''для нейтронных волн приводит к следующему выражению для коэффициента отражения нейтронов поглощающей средой $^{/4/}$:

$$=\frac{(1+\sqrt{(1-v_{0}^{2}/v_{z}^{2})^{2}+v_{i}^{4}/v_{z}^{4})}-\sqrt{2}\cdot\sqrt{(1-v_{0}^{2}/v_{z}^{2})}+\sqrt{(1-v_{0}^{2}/v_{z}^{2})^{2}+v_{i}^{4}/v_{z}^{4}}}{(1+\sqrt{(1-v_{0}^{2}/v_{z}^{2})^{2}+v_{i}^{4}/v_{z}^{4})}+\sqrt{2}\cdot\sqrt{(1-v_{0}^{2}/v_{z}^{2})}+\sqrt{(1-v_{0}^{2}/v_{z}^{2})^{2}+v_{i}^{4}/v_{z}^{4}}}$$

где

$$n_{z}^{\prime 2} = \frac{1}{2} \left[\left(1 - \frac{v_{o}^{2}}{v_{z}^{2}}\right) + \sqrt{\left(1 - \frac{v_{o}^{2}}{v_{z}^{2}}\right)^{2} + \frac{v_{i}^{4}}{v_{z}^{4}}} \right], /3/$$

BHIGHN EILA I

$$n_{z}^{\prime 2} = \frac{1}{2} \left[\left(\frac{v_{o}^{2}}{v_{z}^{2}} - 1 \right) + \sqrt{\left(1 - \frac{v_{o}^{2}}{v_{z}^{2}}\right)^{2} + \frac{v_{i}^{4}}{v_{z}^{4}}} \right]$$

$$v_{o}^{2} = \frac{h^{2}}{m^{2}} \frac{Nb_{o}}{\pi} ; \quad v_{i}^{2} = \frac{h^{2}}{m^{2}} \frac{Nb_{i}}{\pi} = \frac{\hbar}{m} N\sigma_{a} (v) \cdot v,$$
(4/

 b_{o} и b_{i} – действительная и мнимая части когерентной длины рассеяния нейтрона $b=b_{o} i\,b_{i}$. В формулах /3/ и /4/ при извлечении корня берется его положительное значение. Выражение /1/ в пределе малых скоростей нейтронов ($v_{z}<< v_{i}$) при $(1-v_{o}^{2}/v_{z}^{2})^{2}<<<<<< v_{i}^{4}/v_{z}^{4}$ является частным случаем формулы /2/.

Заметим, что в физике УХН v_o принято называть граничной скоростью, соответствующей граничной энергии полного отражения нейтронов от данного материала $^{/5/}v_o \equiv v_{rp}$.

В области УХН /при v_z < v_o / для ядер с положительной действительной частью длины рассеяния / v_o² > 0/ и с малым сечением поглощения ((1 - v_o²/v_z²)² > v₁⁴/v_z⁴) мнимая часть показателя преломления для нейтронных волн становится больше действительной: n_z'' > n'_z . Эта особенность характерна для отражения электромагнитных волн оптического диапазона от поверхности металлов. В случае нейтронных волн величина n'_z оказывается пропорциональной сечению поглощения σ_a , a n'_z'' зависит только от v_o и v_z. Поэтому, чем меньше сечение поглощения σ_a , тем меньше n'_z и тем больше коэффициент отражения УХН.

При отражении УХН от сильно поглощающих сред $((1 - v_0^2 / v_z^2)^2 < v_i^4 / v_z^4)$ при $v_i / v_z > 1$ мнимая часть показателя преломления оказывается порядка действительной: $n_z'' - n_z'$, при чем $|n_z| >> 1^{/1/2}$. Такое поведение коэффициента преломления характерно для отражения металлами радиоволн. При этом теория предсказывает возрастание коэффициента отражения УХН с увеличением сечения поглощения.

В случае ядер с отрицательной действительной частью длины рассеяния / v_o^2 < 0/, и с малым сечением поглощения мнимая часть показателя преломления для нейтронных волн оказывается много меньше действительной: $n_{z}'' << n_{z}'$. Эта особенность свойственна отражению электромагнитных волм ультрафиолетового диапазона от поверхности металлов или диэлектриков и обычно характеризуется низким значением коэффициента отражения. С ростом сечения поглощения поглощения происходит возрастание n_{z}'' , так что $n_{z}'' \sim n_{z}'$, причем $|n_{z}| >> 1$; по своим отражательным свойствам хороший диэлектрик превращается в плохой.

Первые экспериментальные данные по отражению УХН от сильно поглощающих образцов естественного кадмия и изотопа кадмия-113⁷⁶⁷ хорошо согласовались с теоретическими предсказаниями. В случае естественной смеси изотопов кадмия, имеющей положительную длину рассеяния, захват нейтронов кадмием снижал величину коэффициента отражения УХН. Предсказываемый эффект увеличения коэффициента отражения нейтронов с ростом сечения поглощения был обнаружен при отражении УХН от ¹¹³ Cd – сильно поглощающего ядра с отрицательной длиной рассеяния. Однако этот эффект был невелик: при $v_z = 2,9 \, \text{м} \cdot \text{c}^{-1}$ поглощение увеличивало коэффициент отражения всего лишь на 40%.

В настоящей работе сообщаются экспериментальные результаты исследования отражения нейтронов от сильно поглощающих образцов 155 Gd $_2O_3$, Gd , Gd $_2O_3$ и Cd , а также от A ℓ , Ti и V. Основной целью работы являлась более полная проверка теории отражения УХН $^{/4/}$, в частности, исследование зависимости коэффициента отражения от величины сечения поглощения нейтронов.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Схема экспериментальной установки показана на рис. 1. К выходу канала УХН реактора ИБР-2^{/7/}, по которому поступают нейтроны в интервале скоростей /0÷5,67/ м с⁻¹, через S-образное колено подсоединен одним из своих отводов тройник 1,изготовленный из медных электрополированных труб. S-образное колено может вращаться вокруг оси канала и позволяет устанавливать тройник над осью канала на высоте H₁. Поскольку энергия взаимодействия УХН с гравитационным полем $W = mgH_1$, то достичь тройника могут только нейтроны, у которых скорость v > $\sqrt{2 g H_1}$ /g - ускорение свободного падения/. Использование замедления УХН в гравитационном поле позволяет изменять спектр УХН в тройнике путем изменения высоты его подъема. В данном эксперименте максимальная высота подъема тройника составляла Н 1 = = 140 см. Образец 2 площадью S о устанавливается в регулируемом по длине Н₉ и вращающемся вокруг оси тройника отводе. И изменение длины отвода Н, и его вращение позволяют дополнительно из-

Рис. 1. Схема экспериментальной установки для измерения коэффициента отражения газа УХН. 1 - тройник, 2 - образем, 3 - детектор.

менять спектр УХН на образце. В качестве детектора УХН 3 используется пропорциональный счетчик на основе ³Не. Эффективность детектора к УХН определяется пропусканием окна счетчика, изготовленного из алюминиевой фольги толщиной 100 мкм. При работе с УХН, имеющими скорость менъше граничной скорости алюминия / $v_{rp} A \ell = 3,21 \text{ м} \cdot \text{c}^{-1}$ /, для их регистрации используется ускорение УХН в гравитационном поле: детектор соединяется с тройником с помощью отвода длиной H₃ = 73 см. Внутри тройника системой безмасляной откачки поддерживается вакуум ~10⁻⁶ тор. Накопление и предварительная обработка информации производятся измерительным модулем на базе ЭВМ MERA-60.

Учитывая, что для УХН интегральный коэффициент отражения от меди $\bar{R}_{\,\,Cu}$ = 1 /с точностью ~0,1%/, коэффициент отражения УХН от исследуемого образца R можно выразить через счета детектора при отсутствии (J $_{Cu}$) и наличии (J $_{Cu_2}$) в тройнике поглотителя /полиэтилена/ площадью S $_{\rm CH_o}{}^{/8}$:

$$\overline{R} = 1 - \frac{J_{Cu}/J_{o} - 1}{J_{Cu}/J_{CH_{2}} - 1} \cdot \frac{\mu_{CH_{2}}S_{CH_{2}}}{S_{o}}, \qquad (5)$$

где J_o - счет детектора при постановке в тройник образца площадью S_o ; $\mu_{CH_2} = 1 - R_{CH_2}$ - коэффициент поглощения УХН полиэтиленом.

Экспериментально измеренная величина R является усредненным по спектру УХН коэффициентом отражения

$$\bar{\mathbf{R}} = \frac{\int_{0}^{M} \mathbf{R}(\mathbf{v}_{z}) \, d\mathbf{v}_{z}}{\int_{0}^{V} \Phi(\mathbf{v}_{z}) \, d\mathbf{v}_{z}} , \qquad (6)$$

где $\Phi(v_z)$ - спектр УХН, падающих на образец и регистрируемых детектором; v_M - максимальная скорость УХН на образце.

На рис. 2 представлены спектры $\Phi(v_z)$, рассчитанные при предположении максвелловского спектра скоростей на выходе канала УХН^{/7/} для некоторых случаев расположения тройника относительно оси канала. Эти спектры были использованы для расчета

Рис. 2. Спектры распределения УХН $\Phi(v_z)$ по проекции скорости $v_z / M \cdot c^{-1} / для двух случаев рас$ положения тройника. 1 - H₁ == 140 см, H₂ = 0, H₃ = 73 см;2 - H₁ = 80 см, H₂ = 0, H₃ == 73 см.

Рис. 3. Зависимость усредненного коэффициента отражения УХН \bar{R} от средней нормальной компоненты скорости нейтронов в вакууме $\bar{v}_z/M \cdot c^{-1}/$. Теоретические кривые /сплошная линия/ и экспериментальные данные приведены для: $a/A\ell$; 6/Cd; B/Gd_2O_3 ; r/Gd. Для $A\ell$ пунктирной линией также показана теоретическая зависимость $R(v_z)$.

по формуле /6/ коэффициентов отражения от образцов Ti и A ℓ . В пределах ошибки измерений рассчитанные коэффициенты согласуются с экспериментально измеренными значениями \bar{R} при изменении величины H₁ в широких пределах. При этом потенциальный барьер для нейтрона на границе вакуум-A $\ell(Ti)$ предполагался прямоугольным ^{/9/}.

На рис. За в качестве примера представлены для Al результа-

ты измерений зависимости коэффициента отражения УХН от средней скорости нейтронов в вакууме \vec{v}_{π}

$$\widetilde{\mathbf{v}}_{z} = \frac{\int_{0}^{\mathbf{v}_{M}} \mathbf{v}_{z} \Phi(\mathbf{v}_{z}) \, \mathrm{d} \mathbf{v}_{z}}{\int_{0}^{\mathbf{v}_{M}} \Phi(\mathbf{v}_{z}) \, \mathrm{d} \mathbf{v}_{z}}) \, .$$

 $\mu_{CH_2}(v_z)$ также определялось по формуле /6/ при использовании указанного выше вида $\Phi(v_z)$.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

Коперентная длина рассеяния нейтрона b_{ког}, определяющая показатель преломления нейтронных волн, в общем случае является комплексной величиной

$$b_{kor} = b_{n} + \sum_{j} \frac{2\Gamma_{nj} (E - E_{j})g_{j}}{k_{j} [4(E - E_{j})^{2} + \Gamma_{j}^{2}]} - i \sum_{j} \frac{\Gamma_{nj}\Gamma_{j}g_{j}}{k_{j} [4(E - E_{j})^{2} + \Gamma_{j}^{2}]}, /7/$$

где b_n - длина потенциального рассеяния; Γ_{nj} и Γ_j - нейтронная и полная ширины резонансного уровня при энергии E_j ; g_j - ста-.

тистический весовой фактор; k_i - волновой вектор, соответствующий энергии Е ;; суммирование проводится по всем резонансам.

Согласно оптической теореме, мнимую часть длины рассеяния bi для УХН можно выразить через сечение поглощения σ_a /5/

$$b_{i} = \frac{k\sigma}{4\pi} = \frac{k(\sigma_{a} + \sigma_{Heynp.})}{4\pi},$$

где $\sigma_{\rm Heyrp}$ - сечение неупругого рассеяния нейтрона в среде, приводящего к нагреву УХН. Для исследованных в работе сильно поглощающих образцов $\sigma_{\rm Heynp.} \ll \sigma_{\rm a}$, значение σ определяется в основном сечением поглощения. Если в области низких энергий оба сечения $\sigma_{\rm d}$ и $\sigma_{\rm Heynp}$ подчиняются закону 1/v , то $b_{\rm i}$ не зависит от энергии нейтрона. Однако при наличии низкоэнергетических нейтронных резонансов, расположенных вблизи тепловой энергии /изотопы и соединения Gd и Cd/, сечение поглощения σ_a не подчиняется закону 1/у , и b; /а также и b/ сильно зависят от энергии нейтрона. В области УХН (E << E ;) величина комплексной длины рассеяния для изотопов и соединений Gd и Cd рассчитывалась по формуле /7/ при использовании табличных значений параметров резоанансов и величины b_0 и b_i при E = 0,025 эВ и E = 0,07 эВ $^{/10,11/}$ В табл. 1 представлены значения bo и bi в области УХН и соответствующие им v² и v² для исследованных в работе элементов и веществ.

ТАБЛИЦА 1

/()

Образец	b о фм	^Ď і фм	v ² м ² с ⁻²	v^2_{i}
$ \begin{array}{c} 155_{Gd} \\ V \\ 113_{Cd} \\ Ti \\ Gd \\ Gd_{2}0_{3} \\ 155_{Gd_{2}0_{3}} \\ Cd \\ A1 \end{array} $	-1	13,4	-1,53	20,25
	-0,41	0,0014	-1,44	0,0049
	-7,4	4,3	-17,06	9,92
	-3,36	0,0017	-9,49	0,0049
	1,65	10,25	2,46	15,37
	20,7	20,5	12,6	12,25
	15,4	26,8	9,49	16,56
	4,44	0,53	10,24	1,21
	3,45	8.10 ⁻⁵	10,3	2,25 10 ⁻⁴

Примечание к таблице:

<u>Примечание к гаолице.</u> <u>1. Состав исследуемого образца</u>¹⁵⁵Gd : ¹⁵⁵Gd - 90,7%, ¹⁵⁴Gd -- 0.4%, 156 Gd - 6.7%, 157 Gd - 1.3%, 158 Gd - 0.7%, 160 Gd - 0.2%. Хим. примеси: Fe - 0,4%, Ca - 0,15%, Cu - 0,07%, Si - 0,03%, $A\ell - 0,03\%$. С учетом состава соответствующие значения для образ-ца ¹⁵⁵ Gd: $b_0 = -0,575$ фм, $b_i = 12,84$ фм, $v_0^2 = -0,875$ м²c⁻², $v_i^2 = 19,45$ м²c⁻².

2. Состав образца Gd: Gd > 99%. Хим. примеси: Fe - 0.2%. Si - 0,2%, C - 0,2%, F - 0,1%, N - 0,1%; редкозем. < 0,1%. .3. Состав образца ¹¹³ Cd: ¹¹³Cd - 95,5%,¹¹⁰ Cd - 0,11%, 111 Cd -- 0,11%, 112 Cd - 1,36%, 114 Cd - 2,7%, ¹¹⁶ Cd - 0,22%, 106 Cd и 108 Cd < < 0,02%. Хим. примеси: < 0,03%.

Поскольку глубина проникновения УХН в среду при отражении составляет величину ~ 100 Å, для интерпретации экспериментальных результатов необходимо знать состояние поверхности исследуемого образца. Известно, что за исключением золота, ни один металл не обладает стойкостью против окисления на воздухе при комнатной температуре / 12/. В данном эксперименте металлические образцы после механической обработки поверхности /удаление поверхностного слоя толщиной ~ 10⁴ Å/ и общепринятой процедуры очистки поверхности металлов от загрязнений /13/ сразу же помещались в вакуумную камеру. Периодически проводимые в течение нескольких суток серии измерений коэффициентов отражения УХН от хранящихся в вакууме образцов не показали в пределах точности измерений разницы в величине R по сравнению со свежеприготовленными образцами. Поскольку у исследованных металлов на поверхности образуются окислы с большей граничной скоростью vo, чем у самого металла, то в соответствии с ^{/8/} этот факт указывает на то, что возможная толщина окисной пленки на поверхности исследованных образцов не превышала 5÷10 Å.

Образцы окиси гадолиния были приготовлены двумя способами. Во-первых, проводился отжиг на воздухе металлического гадолиния при температуре 350° С. Исследования отражения УХН от такого слоя окиси показали, что увеличение времени отжига с 10 мин до 2 ч не приводило к изменению коэффициента отражения \overline{R} , т.е. уже за 10 мин отжига образуется "толстый" слой окисла. Во-вторых, окись гадолиния получалась путем прокаливания азотнокислой соли гадолиния на нержавеющей подложке в течение 2 ч при 500°С. Измерения коэффициентов отражения от образцов Gd₂O₃, полученных двумя способами, не позволили /в пределах 2%-точности измерений/ выявить различие между ними.

На рис. 3 представлены для некоторых веществ результаты измерений зависимости коэффициентов отражения УХН от средней нормальной компоненты скорости нейтронов в вакууме $1 < v_z < 4,2 \text{ м} \cdot \text{c}^{-1}$. /Все измерения выполнены с "толстыми" образцами, чтобы избежать необходимости учета последовательных отражений нейтронной волны внутри образца от его поверхностей /8 / /. Видно, что в полном соответствии с теорией наблюдается рост коэффициента отражения с уменьшением средней скорости нейтронов.

Исследованные соединения можно разбить на две группы. К первой отнесем элементы и соединения, имеющие положительную длину рассеяния: Gd , Gd $_2O_3$, 155 Gd $_2O_3$, Cd и A ℓ , при этом наиболее сильное влияние мнимой части длины рассеяния на коэффициент отражения следует ожидать от Gd, у которого наибольшее отношение y_i^2 к

 v_o^2 . Как следует из выражения /2/, при определенном значении v_o^2/v_z^2 величина коэффициента отражения определяется лишь значением v_i^2/v_z^2 величина коэффициента отражения определяется лишь значением v_i^4/v_z^4 , т.е. величиной сечения поглощения. Поэтому, проводя измерения при различных значениях \bar{v}_z , чтобы сохранить отношение v_o/\bar{v}_z для различных веществ, можно получить информацию о поведении коэффициента отражения в зависимости от величины сечения поглощения. Экспериментальные данные, приведенные на рис. 4, в полном соответствии с теоретическими предсказаниями $^{/4,6/}$ показывают, что для ядер с положительной длиной рассеяния в исследованном интервале 0,845 $< v_o/v_z < 1,54$ коэффициент отражения УХН /2/ с ростом сечения поглощения сначала падает, проходит через минимальное значение, и при дальнейшем увеличении сечения поглощения начинает возрастать. Такое поведение коэффициента отражения $^{/6/}$ предсказывает при условии $v_o/v_z > 0,816$.

Рис. 4. Теоретические кривые и экспериментальные данные зависимости усредненного коэффициента отражения \vec{R} от величины сечения поглощения, выраженного в безразмерных единицах v_i / v_z , для веществ с положительной длиной рассеяния. Результаты приведены при значениях $v_o / v_z = 1,54$; 1,1; 0,845.

Наблюдаемые в эксперименте минимальные значения R_{мин} практически совпадают с теоретическим значением

и достигаются при сечениях поглощения, близких к v $_{i}$ = v $_{o}$ (3 - - $2(v_{z}^{\,2}/v_{o}^{\,2})$ $^{1/\,4}$.

Ко второй группе относятся элементы, имеющие отрицательную длину рассеяния: 155 Gd , 113 Cd , V и Ti . При этом значительный интерес вызывает сравнение между собой результатов измерений с 155 Gd и V - элементов, имеющих в области УХН практически одинаковые и близкие к нулю значения v_o^2 и различающиеся на несколько порядков величины сечения поглощения. В этом случае эффект влияния мнимой части длины рассеяния на величину коэффициента отражения можно выделить в наиболее явном виде. Экспериментальные результаты

$$\begin{array}{l} R_{V} = 0,02\pm0,02 \\ R_{155_{Gd}} = 0,27\pm0,03 \end{array} \right\} \quad при \quad \overline{v}_{z} = 2 \text{ м.с}^{-1} \\ \mu \\ R_{V} = 0,05\pm0,03 \\ R_{155_{Gd}} = 0,51\pm0,05 \end{array} \right\} \quad при \quad \overline{v}_{z} = 1 \text{ м.c}^{-1} \\ \end{array}$$

показывают, что в полном согласии с теорией при уменьшении нормальной компоненты скорости нейтрона коэффициент отражения УХН от сильного поглотителя имеет заметную величину.

В случае ¹¹³Cd влияние мнимой части длины рассеяния на коэффициент отражения маскируется на фоне вклада, вносимого наличием значительной величины v_{0}^{2} .

Экспериментальные данные при определенном v_0/v_z /рис. 5/ показывают, что в соответствии с теоретическими ожиданиями для

Рис. 5. Теоретические кривые и экспериментальные данные зависимости усредненного коэффициента отражения $\overline{\mathbf{R}}$ от величины сечения поглощения, выраженного в безразмерных единицах v_i / v_z , для веществ с отрицательной длиной рассеяния. Результаты приведены при значениях $v_0 / v_z = -1, 1; -0, 6..$ ядер с отрицательной длиной рассеяния наблюдается постепенный рост коэффициента отражения с увеличением сечения поглощения.

4

Из анализа поведения действительной и мнимой частей показателя преломления в случае очень холодных нейтронов (v_z > v_o) и УХН (v_z < v_o) было получено выражение для скорости нейтрона в среде v_{cp} при наличии поглощения ^{/4/}

$$\mathbf{v}_{cp} = \mathbf{v}_{z} \cdot \mathbf{n}_{z}' = \sqrt{\frac{1}{2} \left[(\mathbf{v}_{z}^{2} - \mathbf{v}_{o}^{2}) + \sqrt{(\mathbf{v}_{z}^{2} - \mathbf{v}_{o}^{2})^{2} + \mathbf{v}_{i}^{4} \right]}.$$
 /8/

Как следует из /8/, скорость нейтрона в среде при наличии поглощения не стремится к нулю при $v_z < v_o$, а имеет конечное значение $v_{\text{мин}}$ даже при $v_z = 0$, т.е. v_{cp} может быть больше v_z в вакууме

$$v_{\text{MMH}} = \frac{h}{m} \sqrt{\frac{1}{2} - \frac{N}{\pi} \left[-b_0 + \sqrt{b_0^2 + b_i^2} \right]} .$$

Поскольку в среде с поглощением нейтрон имеет конечное значение скорости $v_{\text{мин}} \neq 0$, то и само сечение поглощения нейтронов в среде имеет также конечное значение $\sigma_{a\,\text{макс}} = \sigma_{a}(v_{\text{мин}})$. В случае $b_{i} >> b_{o}$ $\sigma_{a\,\text{макс}} = \sqrt{\frac{8 \pi b_{i}}{N}}$.

В табл. 2 приведены рассчитанные при $v_z = 0$ значения минимальной скорости нейтрона и максимального сечения поглощения, а также в качестве примера - отдельные средние значения нормальных компонент скорости нейтронов в вакууме, достигнутые в данном эксперименте, соответствующие им скорости нейтронов в среде и сечения поглощения. Приведены также значения модуля, действительной, и мнимой частей показателя преломления нейтронных волн.

выводы

1. Экспериментальные данные по отражению УХН от сильнопоглощающих образцов 155 Gd, 155 Gd $_2O_3$, Gd, Gd $_2O_3$, Cd и 113 Cd хорошо описываются теорией отражения нейтронов, использующей представление о комплексном показателе преломления для нейтронных волн.

2. Для веществ с положительной длиной рассеяния коэффициент отражения УХН в интервале 0,845 < $v_o / v_z < 1,54$ с ростом сечения поглощения в диапазоне $v_i / v_z = 0.4$ сначала падает, проходит через минимальное значение, и при Дальнейшем увеличении сечения поглощения начинает возрастать.

3. Для веществ с отрицательной длиной рассеяния при значениях $v_0 / v_z = -0,6$ и -1,1 в интервале $v_1 / v_z = 0.4$ наблюдается монотонный рост коэффициента отражения с увеличением сечения поглощения. Экспериментальные результаты в полном согласии с теоретическими предсказаниями показывают, что при достаточно

ТАБЛИЦА 2

Образец	v _z 1 м∙с ⁻¹	v _{ср1} м·с	σ _a x10 ⁻⁷ , б	n'z	n''	• n
¹⁵⁵ Gd	0 1,1 2	3,24 3,33 3,58	3,27 3,19 2,96	3,09 1,79	2,70 1,36	4,10 2,25
V	0 1,1 2	1,20 1,61 2,33	0,00092 0,00069 0,00048	1,495 1,17	0,0014 0,0005	1,495 1,17
Ti	0 1,1 2	3,08 3,26 3,68	0,00044 0,00041 0,00037	3,02 1,84	0,0006 < 0,0005	3,02 1,84
Gd	0 1,1 2 4,2	2,56 2,66 2,91 4,29	3,17 3,05 2,78 1,89	2,46 1,46 1,02	2,68 1,32 0,43	3,64 1,97 1,11
Gd 20.3	0 1,1 2 4,2	1,58 1,63 1,78 3,02	10,27 9,96 9,12 5,37	1,51 0,89 0,72	3,48 1,72 0,48	3,79 1,94 0,87
¹⁵⁵ Gd ₂ 0 ₃	0 2 2,8	2,12 2,38 2,68	10,0 8,91 7,92	1,19 0,96	1,67 1,06	2,05 1,43
Cd	0 1,1 2 4,1	0,19 0,20 0,24 2,5	2,21 2,10 1,75 0,17	0,185 0,12 0,62	2,80 1,25 0,06	2,81 1,26 0,62
Al	0 < 1,1 < 2 < 4,1	<0,001 <0,001 <0,001 2,48		<0,001 <0,001 0,61	2,80 1,26 <0,001	2,80 1,26 0,61

малой скорости нейтрона коэффициент отражения УХН от сильного поглотителя имеет заметную величину. При $\bar{v}_z \sim 1 \, \text{м} \cdot \text{c}^{-1R} \, ^{155} \, _{\text{Gd}} = 0,51+0,05$ и значительно превышает величину коэффициента отражения \overline{Y} ХН от слабого поглотителя – ванадия /R $_{V} = 0,05+0,03/$.

4. Для всех исследованных сильнопоглощающих веществ с уменьшением скорости нейтронов наблюдается рост коэффициента отражения УХН.

Авторы признательны И.М.Столетовой и Е.В.Козенковой за помощь при изготовлении образцов из окиси гадолиния.

ЛИТЕРАТУРА

- 1. Гуревич И.И., Немировский П.Э. ЖЭТФ, 1961, 41, с.1175.
- 2. Гуревич И.И., Тарасов Л.В. Физика нейтронов низких энергий. "Наука", М., 1965, с.296.
- 3. Франк И.М. ОИЯИ, РЗ-7809, Дубна, 1974.
- 4. Франк И.М. ОИЯИ, РЗ-7810, Дубна, 1974.
- 5. Шапиро Ф.Л. ОИЯИ, РЗ-7135, Дубна, 1973.
- 6. Голиков В.В., Кулагин Е.Н., Никитенко Ю.В. Краткие сообщения ОИЯИ, № 9-85, Дубна, 1985, с.26.
- 7. Голиков В.В., Кулагин Е.Н., Никитенко Ю.В. ОИЯИ, Р3-85-285, Дубна, 1985.
- 8. Голиков В.В., Кулагин Е.Н., Никитенко Ю.В. ОИЯИ, Р3-85-286, Дубна, 1985.
- Ландау Л.Д., Лифшиц Е.М. Квантовая механика, Физматгиз, М., 1963, с.103.
- Mughabghab S.F. et al. Neutron Cross Section, 1981, Academic Press N.Y., Vol.1, part A, pp.48-1, 48-21.
- Mughabghab S.F. Neutron Cross Section, 1984, Academic Press, N.Y., Vol.1, part B, pp.64-1, 64-5, 64-7, 64-11.
- 12. "Окисление металлов" /под ред. Бенара Ж./ М., Изд-во "Металлургия", т.1, 1968, т.2, 1969.
- 13. Мадден Р. В сб: "Физика тонких пленок", Изд-во "Мир", М., т.1, 1967, с.217.

Рукопись поступила в издательский отдел 28 ноября 1986 года. Голиков В.В., Кулагин Е.Н., Никитенко Ю.В. Отражение ультрахолодных нейтронов от веществ с:большим сечением захвата

Приводятся результаты исследования отражения УХН от сильнопоглощающих образцов 155 Gd, 155 Gd₂O₃, Gd, Gd₂O₃, Cd и 113 Cd. Экспериментальные данные хорошо описываются теорией отражения УХН, использующей представление о комплексном показателе преломления для нейтронных волн. Для веществ с положительной длиной рассеяния коэффициент отражения R с ростом сечения поглощения сначала падает, проходит через минимальное значение, и при дальнейшем увеличении сечения поглощения начинает возрастать. Для веществ с отрицательной длиной рассеяния поглощения. При уменьшении скорости нейтрона коэффициент отражения УХН от такого сильного поглотителя, как 155 Gd, имеет заметную величину, значительно превышающую значение R от слабого поглотителя – ванадия ($R_{Cd}^{155} = 0,51+0,05$; $R_v = 0,05+0,03$).

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1986

Перевод Т.Ф.Дроздовой

Golikov V.V., Kulagin E.N., Nikitenko Yu.V. UCN Reflection from Matters with Absorption Large Cross Section P3-86-767

P3-86-767

The results on UCN reflection from strongly absorbing targets from 155 Gd, 155 Gd₂O₃, Gd, Gd₂O₃, Cd and 113 Cd are reported. These data are well described in the frame of the UCN reflection theory introducing a complex index of refraction for the neutron waves. In the materials with a positive scattering wavelength the reflection index R first decreases with increasing absorption cross section, passes its minimum and then starts increasing again. In the materials with a negative scattering wavelength one observes a monotonous growth of the reflection index with increasing absorption cross section. If the neutron velocity decreases the index of UCN reflection from a strong absorber such as 155 Gd achieves a noticeable value much exceeding that of UCN reflection from a weak absorber such as vanadium (155 = 0.51++0.05; R_{w} = 0.05+0.03).

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

munumication of the Joint Institute for Nuclear Research. Dubna 1986

12