

P3-86-344

А.Д.Антонов, Ю.М.Гледенов, Н.И.Квиткова, М.П.Митриков, Р.С.Митрикова, Т.М.Островная, В.Г.Тишин, Фунг Ван Зуан

МЕТОДИКА ИДЕНТИФИКАЦИИ НИЗКОЭНЕРГЕТИЧНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ НА ОСНОВЕ ИОНИЗАЦИОННОЙ КАМЕРЫ С ДВУМЯ СЕТКАМИ

Введение

Круг стабильных ядер, на которых возможно изучение реакции (**n**, p) на медленных нейтронах, ограничен всего лишь несколькими ядрами. Для стабильных ядер, как правило, энергии связи нейтронов и протонов близки B_n = B_p, следовательно, мала энергия реакции (**n**, p)-Q_p, малы и сечения. Использование радиоактивных нейтронодефицитных ядермишеней дает существенный выигрыш, так как для них B_n > B_p. Поэтому в последнее время интерес экспериментаторов, изучающих реакцию (**n**, p) на медленных нейтронах, сместился в область нестабильных ядер /I-7/.

В табл. I приведены возможные радиоактивные ядра-мишени с удобным для эксперимента периодом полураспада. Энергия реакции Q_p рассчитана из масс нуклидов ^{/8/}, периоды полураспада взяты из компиляции ^{/9/}. Отметим, что для большинства из них протоны из реакции (n, p) имеют энергию I + 2 МэВ. Радиоактивность мишени значительно ухудшает энергетическое разрешение детекторов (ионизационные и пропорциональные камеры, полупроводниковые детекторы), используемых в традиционных методиках ^{/2-7/}. Кроме того, исследования на медленных нейтронах, и особенно на тепловых, сильно осложняются наличием фоновых частиц из реакции (n, α) на микропримесях изотопов ⁶Li и ^{IO}B, всегда присутствующих в веществе мишени.

Широко применяемые телескопы на основе полупроводниковых детекторов $\Delta E + E^{/IO/}$ позволяют идентифицировать типы вылетающих частиц и уменьшить фон на пучке. Но они имеют существенный недостаток: в реальной геометрии опыта очень мал телесный угол $\Delta \Omega$, под которым из образца виден детектор. При использовании в качестве $\Delta E_{-де-}$ тектора тонких ионизационных или пропорциональных камер $\Delta \Omega$ прибликается к 2 π , однако возникают проблемы сложения сигналов с ΔE – и E-детекторов и в конечном итоге наблюдается значительное ухудшение энергетического разрешения системы.

Предлагаемая в настоящей работе методика с использованием ионизационной камеры с двумя сетками (ИКДС) позволяет в значительной сте-

пени преодолеть трудности, связанные с выделением заряженных частиц различного типа, в частности, протонов из реакции (n,p) от фоновых альфа-частиц с близкой энергией.

<u>Методика</u>

Сущность методики заключается в следукщем. При одних и тех же условиях в ионизационной камере пробег протонов с энергией I-2 МэВ в 2-7 раз больше, чем у фоновых альфа-частиц из реакции ⁶Li (n, α)³H (E_α =2,05 M₃B) и ^{IO}B(n, α)⁷Li (E_α =1,47 M₃B и 1,78 МэВ). Поэтому дополнительной сеткой С_т (см.рис.I) можно выделить объем (I) около мишени, в котором поглощается вся энергия альфа-частиц, а большинство протонов теряет только часть своей энергии. Расположение экранирующей сетки С2 и давление рабочего газа в камере подбираются так, чтобы пробег протонов полностью укладывался в объеме между мишенью и сеткой Ср. Вылет каждой частицы с мишени сопровождается появлением соответствующих сигналов с мишени и коллектора ИКДС, причем первый опережает второй на постоянное время 🕇 с, зависящее от расстояний и электрического поля между электродами. Амплитуда сигнала с коллектора прямо пропорциональна энергии частици, в то время как для амплитуды наблюдаемого сигнала V, снимаемого с мишени, на основе теоремы Рамо-Шокли (см., например, /10/) можно получить следующее выражение:

$$V = a + 6 \Delta E. \left(1 - \frac{X \cdot Cos \theta}{d}\right) , (I)$$

где с и d – постоянные коэффициенты для конкретной системы детектора и измерительной аппаратуры; ΔE – часть энергии частицы, поглощенная в выделенном объеме (I); d – расстояние от мишени до дополнительной сетки C_I; X – центр тяжести части ионизационного трека, заключенной в объеме (I); ∂ – угол вылета частицы относительно нормали к плоскости мишени. Из соотношения (I) видно, что для фоновых альфа-частиц амплитудный спектр, полученный с мишени камеры, сосредоточен в узком интервале около максимальной амплитуды $V_{max} = a + \delta \cdot E_{\alpha}$, в то время как для протонов (с энергией I-2 МэВ) Таблица I

изотоп	энергия реакции Qp. ^{МэВ}	период полурас- пада	изотоп	энергия реакции Qр, ^{МэВ}	период полурас- пада
7_{Be}	I , 64	53,3 д	⁵⁷ Co	I,62	271 д
²² Na	3,62	2,6 г	58 _{Co}	3,09	70,8 д
²⁶ Al	4,79	7 ,2 •10 ⁵ г	⁶⁰ Co	0,56	5,27 г
³⁶ Cl	I , 93	3•10 ⁵ г	^{`65} Zn	2,14	244 д
³⁷ Ar	I,60	35,0 д	⁷³ As	I ,12	80,3 д
40 _K	2,29	I,28.10 ⁹ r	⁷⁵ Se	I,65	II8,5 д
^{4I} Ca	1,21	I•10 ⁵ r	⁸³ Rb	I,82	86,2 д
⁴⁶ Sc	2,17	83,8 д	⁸⁵ Sr	I,85	64,8 д
⁴⁴ Ti	I,05	47 г	⁸⁸ Y	4,4 0	IO6,6 д
⁴⁹ V	I,39	330 д	⁹¹ Nb	2,05	большой
^{5I} Cr	I,54	27,7 д	⁹² Nb	2,78	3,2•10 ⁷ r
⁵³ Mn	I,38	3,7.10 ⁶ г	⁹⁴ Nb	I,69	2•10 ⁴ г
⁵⁴ Mn	2,16	312 д	⁹³ Mo	I,17	3.10 ³ r
⁵⁵ Fe	1,02	2,7 г	97 _{Tc}	I,I3	2,6·10 ⁶ г
⁵⁶ Co	5,35	78,8 д	98 _{Tc}	2,38	4,2·10 ⁶ г

Рис. І. Схема плоской ионизационной камеры с двумя сетками. М – мишень; Сі – дополнительная сетка; С2 – экранирующая сетка; К – коллектор; 7 – нормаль к плоскости мишени; Кр, Яс – пробеги протонов и альфа-частиц; О – угол вылета.

2

3

этот спектр более растянутый, но в основном группируется в области более низкой энергии, чем для фоновых альфа-частиц. Таким образом, измерив два амплитудных спектра в режиме совпадений (со сдвигом t_o) один с мишени, а другой с коллектора ИКДС, и затем, обрабатывая спектр с коллектора в подходящем амплитудном окне спектра с мишени, можно отделить протоны от фоновых альфа-частиц.

Реализация методики была осуществлена с помощью измерительной аппаратуры, блок-схема которой показана на рис. 2а. Сигналы с мишени (М) и коллектора (К) ИКДС от одной и той же частицы, испускаемой мишенью, подаются на соответствующие тракти электроники. Быстрый тракт, который состоит из блоков быстрого дискриминатора (3), формирователя сигнала NIM (4). преобразователя сигнала NIM в сигнал TTL(5) и блока логической задержки и расширения сигнала (6). служит для формирования сигналов управления блоком линейных ворот (7) и амплитудным кодировщиком (IO) (см. рис.2а). Рис.3 иллюстрирует временное соотношение сигналов в некоторых точках блок-схемы. В измерительном модуле на основе малой ЭВМ СМЗ (14) процесс накопления информации происходит как описано в работе /II/ с тем отличием. что в настоящей работе новое программное обеспечение позволяет регистрировать только совпадающие по времени (со сдвигом to) сигналы с мишени и коллектора камеры, отвечающие вылету одной и той же заряженной частиць. Для обработки накопленной информации на магнитной ленте были написаны программы, позволяющие получить на ЭВМ РДР-11/70 следующие спектры для событий, совпаданцих по времени:

а) временной спектр в заданном амплитудном окне;

б) амплитудный спектр во временном окне;

в) амплитудный спектр во временном окне и одновременно в окне другого амплитудного спектра.

Методику можно применять и в более упроценном варианте (блоксхема на рис. 26), где сигнал с мишени служит только для управления, а на вход блока линейных ворот (7) подается сигнал с выхода линей-

Рис.2 Блок-схема измерительной аппаратуры (а) и её упрощенный вариант (б). І – предусилитель; 2 – линейный усилитель; 3 – быстрый дискриминатор; 4 – быстрый формирователь сигнала; 5 – преобразователь сигнала NIM в TTL; 6 – блок логической задержки и расширения сигнала; 7 – линейные ворота; 8 – эмиттерный повторитель; 9,10 – амплитудные кодировщики; II – временной кодировщик; I2 – ЭВМ СМ-З; I3 – магнитофон; I4 – измерительный модуль.

4

5

ного усилителя (2) тракта коллектора. В этом варианте можно получить амплитудный спектр с коллектора только в одном, заранее установленном порогами дискриминатора (3), окне амплитудного спектра с мишени, но зато можно использовать вместо измерительного модуля (I4) любой простой амплитудный анализатор, что делает методику доступной для широкого практического применения.

<u>Результаты</u>

Измерения проводились на пучке нейтронов импульсного реактора ИБР-30 по методу времени пролета. Ввиду отсутствия "протонного источника", для проверки методики была использована мишень LiF, из которой в реакции ⁶Li (n, t)⁴Не кроме альфа-частиц с энергией 2,05 МэВ вылетают ещё тритоны с энергией 2,73 МэВ, имитирующие протоны с энергией I-2 МэВ по электрическому заряду, пробегу и тормозной способности, от которых зависят величины X и ΔE в формуле (I). ($R_t \simeq R_p(I, 8 \text{ MэB}), \quad \frac{dE_t}{dx} \simeq \frac{dE_p}{dx}$ при $E_p \sim I$ МэВ).

ИКДС позволяет использовать мишени площадью около 500 см². Её межэлектродные расстояния MC_I , MC_2 и C_2 К (см. рис.I) соответственно равны 2, 6 и 2 см. ИКДС была наполнена смесью газа Ar + 3,5% CO_2 до давления I,I атм, при котором $R_t = MC_2$. Подбором потенциалов на электродах M, C_I и C_2 было получено такое же энергетическое разрешение, как и у ионизационной камеры без дополнительной сетки C_I ($\simeq 100$ кэВ для альфа-частиц с энергией 4,8 МэВ от уранового альфаисточника). При таких условиях временной сдвиг сигнала с коллектора по отношению к сигналу с мишени $t_o \simeq 3$ мкс (см. рис.3).

На рис.4 показаны измеренные амплитудные спектры для тритонов и альфа-частиц из реакции ⁶ Li (n, t)⁴Не с мишени (а) и с коллектора (б) ИКДС. Кривая 3 - "полный" амплитудный спектр, включающий все сигналы, поступающие с коллектора. Кривые I и 2 представляют собой амплитудные спектры с мишени в окнах, отвечающих тритонам ($n_{\rm K} = \rm IIO + \rm I5O$) и альфа-частицам ($n_{\rm K} = 45 + \rm IIO$) на полном амплитудном спектре с коллектора, а кривая 4 - амплитудный спектр с коллектора в окне тритонов (\mathcal{N}_{M} =30 + IIO и 200 + 256) амплитудного спектра с мишени. В области энергии выше I,2 МэВ (см.кривую 4) пик альфа-частиц уменьшается в 5-6 раз, в то время как пик тритонов – только в I,7 раза. Следует отметить, что в случае равной энергии E_t и E_cпики на рис. 4а разошлись бы ещё дальше (пик альфа-частиц сместился бы на 230-240 каналы, а на рис. 46 его правый край сместился бы на каналы I30-I40), и эффективность схемы отбора была бы значительно выше.

Такое различие в эффективности регистрации частиц позволяет применять методику ионизационной камеры с двумя сетками для уменьшения регистрации фоновых альфа-частиц и выделения протонов с энергией I-2 МэВ при исследовании реакции (\mathbf{n} , \mathbf{p}) на тепловых и медленных нейтронах для ряда радиоактивных ядер-мишеней (см. табл.I). Методика может быть также применена в задачах выделения заряженных частиц с более высоким значением произведения массы на заряд MZ от фоновых частиц с меньшим MZ и осуществления углового отбора заряженных частиц, вылетающих с мишени.

7

В заключение авторы считают своим приятным долгом поблагодарить Ю.П.Попова за постоянную поддержку и внимание к работе, В.И.Салацкого, Ю.Н.Воронова,В.Д.Кулика, Н.И.Линькова за большую помощь при проверке методики, сотрудников измерительного центра ЛНФ за помощь и обеспечение измерительного модуля СМ-З.

Литература

- Mughabghab S.F. et al. Neutron Cross Sections. Academic Press, N.Y., 1981.
- 2. Weigmann H. et al. Nucl. Phys., A 368, 1981, p.117.
- 3. Ensallem A. et al. Nucl. Phys. A368, 1981, p.108.
- 4. Gledenov Yu.M. et al. Z. Phys. A308, 1982, p.57.
- 5. Gledenov Yu.M. et al. Z. Phys. A322, 1985, p.685.
- 6. Гледенов Ю.М. и др. ОИЯИ, РЗ-85-275, Дубна, 1985.
- 7. Trautvetter H.P., Käppeler F. Z. Phys., A318, 1984, p.121.
- 8. Кравцов В.А. Массы атомов и энергии связи ядер. Атомиздат, М.1974.
- Table Isotopes, 7 Edition, Ed. by C.M.Lederer and V.S.Shirley, J.Wiley and Sons. N.Y., 1978.
- Абрамов А.И. и др. Основы экспериментальных методов ядерной физики. Энергоиздат, М., 1985, с. 121-174.
- II. Богдзель А.А. и др. ОИЯИ, РІО-85-246, Дубна, 1985.

Рукопись поступила в издательский отдел 30 мая 1986 года.

Антонов А.Д. и др.

Методика идентификации низкоэнергетичных заряженных частиц на основе ионизационной камеры с двумя сетками

Описана методика для исследований реакций (n, p) и (n, a), позволяющая разделять в условнях плохого энергетического разрешения заряженные частицы различного сорта. Детектором служит ионизационная камера с двумя сетками. Многомерные измерения амплитуд совпадающих импульсов с коллектора и мишени камеры и времени пролета нейтронов проводятся с помощью измерительного модуля на основе ЭВМ СМ-3. Написаны программы сортировки и обработки спектров на ЭВМ PDP-11/70. Эффективность работы предлагаемой схемы отбора продемонстрирована измерением реакции ^вLi(n, t) ⁴ He.

. ...

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1986

Перевод Т.А.Филимонычевой

\$

Antonov A.D. et al. The Method for Identification of Lowenergy Charged Particles Based on the Ionization Chamber with Two Grids

For investigation of (n, p) and (n, a) reactions a method permitting to separate different sorts of charged particles in conditions of bad energy resolution is described. The ionization chamber (IC) with two grids has been used as a detector of the particles. Multidimensional measurements of amplitudes of coincidence pulses from the collector and the target and the time-of-flight spectra of captured neutrons have been carried out using the measuring module on the base of the CM-3 minicomputer. The PDP-11/70 computer program for data sorting and processing has been written down. The operating efficiency of the proposed selection scheme is demonstrated by the measurement of the ⁶ Li(n,t)⁴ He reaction.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986

P3-86-344