СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА



14/11-45

P3 - 8511

Э.Н.Каржавина, Ким Сек Су, А.Б.Попов, Х.Файков

990/2-75 спины нейтронных резонансов

167 Ег И <sup>173</sup> Yb



P3 - 8511

Э.Н.Каржавина, Ким Сек Су, А.Б.Попов, Х.Файков

СПИНЫ НЕЙТРОННЫХ РЕЗОНАНСОВ 167 173 Er И Yb



### **ВВЕДЕНИЕ**

Настоящая работа является завершением цикла исследований спинов нейтронных резонансов редкоземельных изотопов, проводимых авторами в последние годы  $^{/1-4}/$ методом множественности гамма-квантов  $^{/5}/$ .  $^{167}{\rm Er}$  и  $^{173}{\rm Yb}$  были выбраны в силу нашего традиционного интереса к изучению параметров нейтронных резонансов редкоземельных ядер. Кроме того,  $^{167}{\rm Er}$  и  $^{173}{\rm Yb}$  последние четно-нечетные изотопы в этой области, не исследованные детально с целью определения спинов резонансов.

## ИЗМЕРЕНИЯ И РЕЗУЛЬТАТЫ

Мы не будем останавливаться на описании эксперимента и обработки данных, о чем достаточно подробно сказано в предыдущих работах /1-4/. Для приготовлення образцов мы располагали окисью эрбия в количестве 78 г, обогащенной <sup>167</sup> Ег до 94,6%, и окисью иттербия, обогащенной <sup>173</sup> Yb до 89,7% и 88,1%, общим весом 60 г. Измерения с <sup>173</sup> Yb были выполнены для двух толщин образцов /3,4 · 10<sup>21</sup> и 1,4 · 10<sup>21</sup> яд/см<sup>2</sup> по <sup>173</sup> Yb/, при этом порог в канале одиночного счета равнялся 2,3 *МэВ*, в канале совпадений - О,1 *МэВ*. Спиновый эффект у <sup>173</sup> Yb оказался достаточным / ~12%/ для надежного разделения наблюдаемых резонансов на две группы. В условиях разрешающей способности нашего спектрометра мы смогли определить спины резонансов <sup>173</sup> Yb в области до 600 *эВ*. В интервале до 110 *эВ* наша спиновая

3

идентификация полностью совпадает с данными, приведенными в  $^{/6/}$ , однако есть некоторое расхождение в определении спинов с результатами работы  $^{/7/}$ .

Измерения с <sup>167</sup> Ег проводились также для двух толщин образцов  $/6,4\cdot 10^{21}$  и  $1,6\cdot 10^{21}$  яд/см<sup>2</sup> по 167 Er /. Порог в канале одиночного счета варьировался от 2,3 до 3,0 МэВ, в канале совпадений использовались пороги 0,1 и 0,2 МэВ, а также амплитудные окна в пределах 0,1-1,5 МэВ. Кроме того, было проведено измерение в режиме тройных совпадений /с порогами О,1 МэВ/. Варнация режимов измерений с <sup>167</sup> Ег была обусловлена стремлением найти условия, дающие наибольший спиновый эффект. В зависимости от выбранных режимов спиновый эффект менялся от 7 до 18%. Результаты, полученные для разных толщин образцов и разных порогов, сравнивались между собой, что давало возможность проконтролировать устойчивость спиновой идентификации. Полученные нами значения спинов резонансов 167Er охватывают область до 280 эВ. В области до 100 эВ наши результаты хорошо согласуются с данными работы  $^{/6/}$ .

На рис. 1 и 2 представлены примеры временных спектров <sup>167</sup>Ег и <sup>173</sup> УЬ после их обработки. Результаты спиновой идентификации резонансов <sup>167</sup>Еги <sup>173</sup> УЬ приведены в *табл. 1 и 2.* 

Полученные нами данные позволяют сделать оценки средних расстояний между резонансами для разных спинов В случае <sup>167</sup> Ег имеем

 $D = 9,3 \pm 1,0 \ \mathcal{B}$ для J = 3, $D = 7,5 \pm 0,6 \ \mathcal{B}$ для J = 4;в случае  $^{173}$  Yb  $D = 20 \pm 2 \ \mathcal{B}$ для J = 2,

 $D = 2O \pm 2 3B \text{ J/ls} \quad J = 2,$ 

D = 14,0±1,3 эВ для J = 3.

Используя сведения о нейтронных ширинах из работы<sup>/6/</sup>, мы получили значения силовых функций для изотопа<sup>167</sup> Er

 $S^{0} = 2,3 \pm 0,8$  для J = 3  $S^{0} = 2,0 \pm 0,5$  для J = 4, для изотопа <sup>173</sup> Yb  $S^{0} = 1,5 \pm 0,5$  для J = 2  $S^{0} = 1,2 \pm 0,3$  для J = 3 /в единицах  $10^{-4}/.$ 



Рис. 1. Эрбий-167. Сплошная кривая - спектр в режиме совпадений, точки - спектр в режиме одиночного счета.



| Eo aB        | 3   | Вероятность<br>% |
|--------------|-----|------------------|
| 5,99         | 3   | 99               |
| 7,92         | 4   | 100              |
| 9,39         | 3   | 98               |
| 20,2         | 4   | 100              |
| 22,0         | 3   | 100              |
| 26,2         | 3   | 100              |
| 27,4         | 4   | 100              |
| 32,8         | • 4 | 100              |
| 37,6         | 4   | 100              |
| 39,4         | 3   | 100              |
| 42,2         | 3   | 98               |
| 50,I         | 4   | 100              |
| 53,5         | (4) | 70               |
| 59,9         | 3   | 100              |
| 62,I         | 4   | 90               |
| 62,8         | 3   | 90               |
| 69,4         | 4   | 100              |
| 74,4         | 4   | 100              |
| <b>75,</b> 7 | 4   | 100              |
| 79,3         | 3   | 100              |
| 85,4         | 3   | 90               |
| 91,2         | 4   | 100              |
| 94,7         | (4) | 70               |
| 97,5         | 4   | 100              |
| 98,2         | (4) | 62               |
| 107,6        | 3   | 100              |
| 112,9        | 4   | 90               |
| 115,5        | 3   | 100              |
| 131,4        | 4   | 90               |
| 142,2        | 4   | 100              |
| 142,9        | 4   | 100              |
| 150.4        | 4   | 96               |

Спины нейтронных резонансов

Таблаща I в 167 Ес

Рис. 2. Иттербий-173. Сплошная кривая - спектр в режиме совпадений, точки - спектр в режиме одиночного счета.

6

7

Таблица 2

9

| Таблица | 1 | (продолжение) |
|---------|---|---------------|

| I     | 2   | 3   |     |  |
|-------|-----|-----|-----|--|
| [53,2 | 3   | 93  |     |  |
| 157,6 | (3) |     |     |  |
| 159.5 | 4   | 92  | .[  |  |
| 162,2 | 4   | IOO | 4   |  |
| I65,I | 4   | 90  | 3   |  |
| 166,3 | (3) | 60  | 1   |  |
| 168,3 | 4   | 90  |     |  |
| 176,8 | 3   | 90  | J   |  |
| 178,4 | 4   | 100 |     |  |
| 184.6 | 4   | 100 |     |  |
| 191.3 | 4   | 95  |     |  |
| 195,9 | 3   | 90  |     |  |
| 209,8 | (3) | 70  |     |  |
| 217,2 | 4   | 100 |     |  |
| 223,2 | 4   | 100 |     |  |
| 228,6 | (4) |     | •   |  |
| 230,2 | (4) |     |     |  |
| 235,5 | (3) |     |     |  |
| 237.6 | (3) |     |     |  |
| 238,4 | (4) |     |     |  |
| 247,0 | (4) |     | `   |  |
| 249,2 | (3) |     | 1   |  |
| 258,0 | 4   | 100 | ·   |  |
| 263,3 | 4   | 100 | Å.  |  |
| 274,3 | (3) |     | 4   |  |
| 280,I | 4   | 100 |     |  |
| 282,9 | 4   | 100 | 1   |  |
| 288,9 | 3   | 100 | - J |  |

.

.

| Спини          | нейтронных резона | ансов <sup>173</sup> 46 |
|----------------|-------------------|-------------------------|
| эВ             | З                 | Вероятность<br>%        |
| 17,6           | 2                 | 100                     |
| 31,4           | 2                 | 100                     |
| 35,6           | 3                 | 100                     |
| <b>4</b> 5,I   | 2                 | 100                     |
| 53,4           | 3                 | 100                     |
| 58,8           | 3                 | 100                     |
| 66,I           | 3                 | 100                     |
| 68,8           | 2                 | 97                      |
| 74,4           | 3                 | 100                     |
| 76,0           | 2                 | 100                     |
| 96,3           | 3                 | 100                     |
| 105,5          | 2                 | 100                     |
| . 111,0        | 2                 | 100                     |
| II5 <b>,</b> I | 3                 | 100                     |
| 124,2          | 2                 | 100                     |
| 128,7          | 3                 | 100                     |
| 134,6          | 3                 | 100                     |
| I <b>4</b> 5,2 | 2                 | 100                     |
| 154,0          | 3                 | 100                     |
| 155,6          | (3)               |                         |
| I69,0          | 3                 | 100                     |
| 197,2          | 3                 | 100                     |
| 204,7          | 2                 | 100                     |
| 210,1          | 3                 | 95                      |
| 221,6          | 2                 | 98                      |
| 226,3          | (3)               | 70                      |
| 229,4          | 2                 | 100                     |
| 250,6          | 3                 | · 100                   |
| 256,6          | 3                 | 100                     |
| 277,5          | 2                 | 100                     |
| 283,4          | (2)               | 60                      |

|               | 2   | 3   |
|---------------|-----|-----|
| 286,I         | (3) | 57  |
| 303,4         | 3   | 100 |
| 306,4         | 3   | 100 |
| 317,7         | 3   | 100 |
| 324,3         | 3   | 100 |
| 340,2         | 3   | 98  |
| 351,2         | 2   | 100 |
| <b>36I,</b> 9 | 2   | 100 |
| 371,5         | 2   | 100 |
| 392,8         | 3   | 97  |
| <b>4</b> 05,I | (2) | 66  |
| 420,0         | 3   | 100 |
| 429,8         | 3   | 96  |
| <b>43</b> 9,I | 2   | 100 |
| 447,7         | 2   | 100 |
| 459,8         | 3   | 100 |
| 488,0         | 3   | 100 |
| 513,8         | (2) | 69  |
| 528,4         | 3   | 100 |
| 548,4         | 3   | 100 |
| 574,2         | 3   | 9I  |
| 605,2         | 3   | 100 |
| 618,9         | 3   | 100 |

Таблица 2 (продолжение)

# ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты для <sup>167</sup> Ег и <sup>173</sup> Yb совместно с данными, полученными за последнее время нами и другими авторами для четно-нечетных изотопов редкоземельных ядер, позволяют еще раз рассмотреть вопрос о спиновой зависимости силовой функции в этой области атомных ядер. Вопрос о спиновой зависимости нейтронной силовой функции является в определенной степени фундаментальным: зависят ли силы взаимодействия нейтрона с ядром от взаимной ориентации и величины спинов? Этот вопрос постоянно вызывал интерес. 10 лет назад в работах французских физиков /10 / была отмечена для некоторых ядер зависимость силовой функции от спина. В 1969 г. дубненская группа авторов /11 / проделала подробный статистический анализ спиновой зависимости силовых функций для широкого круга ядер, для которых к тому времени стали известны спины значительного числа резонансов. Привлечение уточненных данных о силовых функциях для отдельных ядер, а также анализ большого числа ядер позволили авторам работы /11 / сделать вывод о том, что экспериментальные данные по всей совокупности ядер не противоречат гипотезе о равенстве s -волновых нейтронных силовых функций для разных спиновых состояний.

В 1972 г. в работе /8/ были снова проанализированы силовые функции в основном для редкоземельных ядер, полученные преимущественно в Сакле / <sup>143, 145</sup> Nd, <sup>147, 149</sup> Sm, 155, 157 Gd , 163 Dv , 165 Ho , 167 Er /. В этой работе отмечается различие силовых функций в зависимости от спина и делается попытка описать экспериментальные данные введением спин-спинового члена в действительную часть оптического потенциала. Экспериментальные данные, послужившие авторам работы /8/ основанием для заключения о существовании спиновой зависимости S<sup>0</sup>, приведены в табл. 3, там же приведены значения силовых функций, полученные в последнее время. Видно, что более поздние результаты для большинства изотопов существенно отличаются от данных работы<sup>/8/</sup>. Новые результаты, соответствующие оценкам S<sub>1</sub><sup>0</sup> по более широким энергетическим интервалам или по большему числу уровней с известными спинами, имеют либо противоположный знак спинового эффекта / $^{143}$ Nd ,  $^{163}$ Dy /, либо указывают во-обще на его отсутствие /  $^{145}$ Nd ,  $^{147, 149}$ Sm ,  $^{157}$ Gd , <sup>167</sup> Ег /. Вполне очевидно, что при малом числе резонансов возможно появление разброса экспериментальных значений S /при условии равенства истинных значений и  $S_{I}^{0}$  – 1/2 . Так, например, для <sup>147</sup> Sm , <sup>157</sup> Gd, <sup>163</sup> Dy, <sup>167</sup> Er увеличение числа ре- $S_{1}^{0} + 1/2$ <sup>149</sup> Sm , зонансов, для которых определены спины, приводит к уменьшению разброса  $S_J^0$ . В области до 320 эВ у  ${}^{163}$ Dy по

#### Таолица З

Значения S<sup>6</sup> для четно-нечетных протонов редкоземельных ядер

| Ядро-<br>мишень   | Iτ     | Sॅ.10 <sup>4</sup><br>для I −1/2 | S <sup>°</sup> .10 <sup>4</sup> Литера<br>для тура<br>I +I/2 | -<br>γ <sub>€</sub> | Вероятность<br>случайного<br>наблюдения<br>% |
|-------------------|--------|----------------------------------|--------------------------------------------------------------|---------------------|----------------------------------------------|
| 143Nd             | 7/2-   | 8,4 <u>+</u> 4,3                 | 4,I <u>+</u> 2,2 /8/                                         | -0,2I               | > 85                                         |
|                   |        | 2,6 <u>+</u> I,3                 | 5,5+2,3 /9/                                                  | 0,40                | >70                                          |
| 145 Nd            | 7/2-   | 0,6 <u>4+</u> 0,34               | I,70 <u>+</u> 0,75 /8/                                       | I,7                 | ~ I5                                         |
|                   |        | 2,4+0,9                          | 2,8 <u>+</u> 0,9 /9/                                         | 0,17                | ~ 90                                         |
| 14tSm             | 7/2-   | 3,I <u>+</u> I,9                 | 5,0+3,4 /8/                                                  | 0,18                | ~ 90                                         |
|                   |        | 3,9 <u>+</u> 1,2                 | 3,8 <u>+</u> I,I /2/                                         | -0,02               | ~ I00                                        |
| 149Sm             | 7/2    | 3,3 <u>+</u> 1,8                 | 7,2+2,4 /8/                                                  | 0,35                | > 70                                         |
|                   |        | 4,I <u>+</u> I,I                 | 5,8 <u>+</u> I,4 /2/                                         | 0,27                | <b>~</b> 85                                  |
| 155Gd             | 3/2-   | I,38 <u>+</u> 0,73               | I,72 <u>+</u> 0,60 /8/                                       | 0,33                | > 70                                         |
| 157Gd             | 3/2-   | 2,94 <u>+</u> 1,56               | 2,26 <u>+</u> 0,88 /8/                                       | -0,2I               | <del>~</del> 85                              |
|                   |        | 2,I <u>+</u> 0,7                 | 2,3 <u>+</u> 0,6 /3/                                         | 0,14                | ~ 90                                         |
| 161D+             | 5/2+   | I,96 <u>+</u> 0,65               | I,33 <u>+</u> 0,48 /4/                                       | -0,69               | ~ 50                                         |
| 165 Dy            | 5/2-   | 0,5 <u>4+</u> 0,26               | I,24 <u>+</u> 0,40 /8/                                       | 2,4                 | ~ 7                                          |
| 0                 |        | 2,I <u>+</u> 0,7                 | I,00 <u>+</u> 0,35 /4/                                       | -I,4                | $\sim 20^{40} \frac{320}{38}$                |
|                   |        | 2,5 <u>+</u> 0,7                 | I,9 <u>+</u> 0,4 /6/                                         | -0,49               | > 70 до<br>390эв                             |
| <sup>11+</sup> Er | 7/2+   | 5,9 <u>+</u> 3,I                 | I,76+0,76 /8/                                                | -0,57               | ~60                                          |
|                   |        | 2,3+0,8                          | 2,0+0,5 наст.р.                                              | -0,2I               | ~ 85                                         |
| 17346             | 5/2-   | I,6 <u>+</u> 0,5                 | I,24 <u>+</u> 0,35 "                                         | -0,60               | ~ 60                                         |
| 177 H             | 7/2    | 2,8 <u>+</u> 0,6                 | 2,2 <u>+</u> 0,5 /6/                                         | -0,43               | <i>&gt;</i> 70                               |
| \HiH              | ¢ 9/2+ | 2,0 <u>+</u> 0,6                 | 2,23 <u>+</u> 0,65 /6/                                       | 0,18                | ~ 90                                         |

нашим данным и данным работы  $^{/6/}$  силовые функции для разных спинов отличаются примерно в 2 раза. Оценка  $S_J^0$  по интервалу до 390 эВприводит к значениям, отличающимся на 30%. Оценивая достоверность значений  $S_J^0$ , всегда следует помнить и отом, что ошибка в определении спина даже одного сильного резонанса может существенно исказить значения силовых функций.

Для оценки статистической достоверности наблюдаемого различия S<sub>J</sub><sup>0</sup> мы воспользовались методом, предложенным в / 11/. В табл. З приведены значения  $a/\bar{\sigma}$  /в обозначениях работы /11/ a = 2.  $\bar{\sigma} = \frac{\sigma S_{I+1/2}^{0} + \sigma S_{I-1/2}^{0}}{2}$ , характеризующие относительное

различие S<sub>1</sub><sup>0</sup> и соответствующие вероятности случайного наблюдения этого различия W.Из табл. З видно, что экспериментальным величинам  $S_J^0$  для всех изотопов, за исключением значений  $S_J^0$  для  $^{145}$  Nd и  $^{163}$  Dy из  $^{/8/}$ , соответствует значительная вероятность случайного различия S<sub>I</sub> + 1/2 личия  $S_{I+1/2}^0$  и  $S_{I-1/2}^0$  /  $W \ge 50\%$ /. Если принять во внимание только новые данные, то для большей части из них вероятность, случайного различия экспериментальных значений  $S_J^0$  /в предположении равенства истинных  $S_{I+1/2}^0$  и  $S_{I-1/2}^0$  достигает 70-90%. Поэтому следует признать, что вывод авторов работы  $^{/8/}$  о существовании спиновой зависимости силовых функций у редкоземельных изотопов является необоснованным. Отвлекаясь от высокой статистической достоверности случайного различия S<sub>J</sub><sup>U</sup> и рассматривая только сами значения S<sup>U</sup>, следует признать, что имеющиеся сейчас данные указывают на то, что если спиновый эффекти существует, то он достаточно мал и не превышает десятков процентов. В этом случае для его надежного обнаружения необходимо получать экспериментальные данные со значительно меньшими ошибками, чем сейчас удается. Для этого нужно измерять спины в несколько раз большего числа резонансов, либо проводить прямые измерения усредненных сечений на поляризованных нейтронах и поляризованных ядрах.

## Литература

- 1. Э.Н.Каржавина, Ким Сек Су, А.Б.Попов. Препринт ОИЯИ, РЗ-6092, Дубна, 1971.
- 2. Э.Н.Каржавина, Ким Сек Су, А.Б.Попов. Сообщение ОИЯИ, РЗ-6237, Дубна, 1972.
- 3. Э.Н.Каржавина, Ким Сек Су, А.Б.Попов. Препринт ОИЯИ, Р3-6948, Дубна, 1973.

- 4. Э.Н.Каржавина, Ким Сек Су, А.Б.Попов, Х.Файков. \_ Препринт ОИЯИ, РЗ-7980, Дубна, 1974.
- 5. C.Coceva, C.Corvi et al. Nucl.Phys., 117A, 586 (1968).
- 6. BNL-325, 3-d Ed. Neutron cross sections, vol. 1, Resonance parameters, 1973.
- 7. H.I.Lion et al. Phys.Rev., 7C, 823 (1973).
- C.Newstead, J.Delaroche, B.Cauvin. Intern. Conf. on the Study of Nuclear Structure with Neutrons. Budapest, Contributions, p. 144, 1972.
   A. Stology et al. Phys. Rev. Contributions, p. 144, 1972.
- 9. A. Stolovy et al. Phys. Rev., 5C, 2030 (1972).
- IO. J.Julien et al. Phys.Lett., 10, 86 (1964).
  J.Julien. Intern. Conf. on the study of nuclear structure with neutrons. Antwerpen, 1965.
- Х.Малецки, Л.Б.Пикельнер, И.М.Саламатин, Э.И.Шарапов. Препринт ОИЯИ, РЗ-4484, Дубна, 1969. ЯФ, 11, вып. 1, 111 /1970/.

Рукопись поступила в издательский отдел 7 января 1975 года.