

P3-85-843

1985

М.И.Новопольцев*, Ю.Н.Покотиловский

АКТИВАЦИОННЫЕ ЭКСПЕРИМЕНТЫ С УЛЬТРАХОЛОДНЫМИ НЕЙТРОНАМИ. ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ПОГЛОЩЕНИЯ НЕЙТРОНОВ ПРИ ПОДБАРЬЕРНОМ ОТРАЖЕНИИ ОТ ПОВЕРХНОСТИ МЕДИ

• Мордовский государственный университет, г.Саранск

ВВЕДЕНИЕ

Данная работа, нацеленная в основном на определение коэффициента поглощения ультрахолодных нейтронов /УХН/ при подбарьерном отражении от поверхности меди, имеет непосредственное отношение к проблеме хранения УХН. Эта проблема имеет более чем 15-летнюю историю и заключается в значительном /в десятки раз в некоторых случаях/ расхождении теоретических предсказаний и экспериментальных значений для времени хранения УХН в замкнутых объемах. Из недавних обзоров по этой теме следует отметить /1-3/. За последние годы наметился заметный прогресс в понимании основных причин потерь нейтронов при хранении, и существенно увеличены сами времена удержания за счет, например, очистки поверхности медных и кварцевых сосудов ионной бомбардировкой /4/, глубокого охлаждения бериллия /5/и использования намороженных конденсированных паров на поверхности сосуда хранения 6/ Основной причиной потерь нейтронов считается сейчас нагрев УХН до тепловых энергий за счет неупругого рассеяния на водородосодержащих загрязнениях на поверхности и в приповерхностном слое материала сосуда. Однако надо отметить, что пока не достигнуто полное соответствие между теорией и экспериментом. В работе /4/ экспериментальный коэффициент потерь по меньшей мере в 8 раз превышает расчетный /без учета водородных загрязнений/. В работе 15/ полученный в результате охлаждения бериллия до 6.5 К коэффициент поглощени я УХН - 3·10⁻⁵ примерно в 40 раз превышает расчетный для чистого бериллия, а допускаемая авторами /5/ 10% атомарная концентрация водорода в поверхностном слое бериллия объясняет, по нашей оценке, лишь одну десятую экспериментального коэффициента потерь нейтронов. В работе /8/, где хранились в большом сосуде нейтроны предельно мизких энергий /≤ 2·10 -8 зВ/, экспериментальные условия таковы, что время хранения слабо зависит от коэффициента потерь на стенках, так что трудно сделать заключение о его величине.

Эти факты не снимают пока возможности того, что помимо нагрева на примесном водороде имеются и другие причины потерь, не описываемые простой теорией, по которой вычисляют коэффициент потерь при отражении от потенциальной стенки, образуемой внутренией поверхностью сосуда удержания.

В свое время было исследовано много возможных дополнительных механизмов, действие которых могло бы сильно увеличить потери нейтронов. Среди них прежде всего отметим фундаментальные, не связанные с конкретным состоянием поверхности. В работе /7/

BURCHENELIS ENCLETYT RECENTION MCCREADS2U89

вводится феноменологически дополнительная поправка к величине мнимой части амплитуды рассеяния нейтронов в среде исходя из общего предположения, что в теории поглощения ультрахолодных нейтронов не все учтено. В ^{/8/} предполагалось, что с нейтроном можно связать нерасплывающийся волновой пакет, что должно приводить к прониканию УХН в стенку за счет тех парциальных волн в пакете, энергия которых выше граничной энергии стенки.

Другие причины дополнительных потерь могут быть связаны, например, с наличием иных, кроме водорода, загрязнений на поверхности, поверхностных волн /9.10/, акустических /низкочастотных по сравнению с фононами и поверхностными волнами/ колебаний поверхности ^{/11}, шероховатости поверхности ^{/12,13/}, существованием пор в прилежащем к поверхности слое ^{/14/}, а также с колебаниями кластеров вещества стенки ^{/15/} В принципе, каждая из перечисленных причин может давать свой вклад в полный коэффициент потерь, определяемый методом измерения времени хранения УХН.

Выделение каждого из эффектов - трудная задача. Однако помимо измерения полного коэффициента потерь возможно исследование парциальных каналов потерь нейтронов при отражении: неупругого рассеяния и захвата. Первая возможность исследована в работе/16/ в которой измерен поток тепловых нейтронов из сосуда хранения. возникающий из-за нагрева УХН на стенках сосуда. В опытах такого рода, в принципе, измеряется общий эффект нагрева УХН на водородсодержащих загрязнениях, фононах, поверхностных волнах, кластерах. Канал, связанный с захватом нейтронов ядрами, еще не исследовался. Надо отметить, что ввиду малости суммарного коэффициента потерь /2+5/ · 10-4 влияние каждого из каналов на другие ничтожно. Таким образом, утечка за счет нагрева не сказывается на захвате. Из перечисленных факторов утечки на захвате УХН могут отразиться фундаментальные причины, а также наличие шероховатостей и пор. усиливающих все дополнительные каналы утечки, в том числе захват.

2. УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ МАЛЫХ В-АКТИВНОСТЕЙ

0 величине ожидаемой скорости счета, получаемой при облучении УХН поверхности меди, можно судить по приближенной оценке: A = duSc. /1/

где А - скорость счета при длительном облучении, ϕ - плотность потока УХН, S - площадь облучаемой поверхности, μ - вероятность захвата, ϵ - коэффициент, учитывающий изотолный состав и эффективность регистрации распада. Т.к. мы располагали слабым потоком ~3 нейтр./см² с. то при S = 10^2 см², μ - $3 \cdot 10^{-4}$, ϵ - 0,2 ожидаемая активность составляла - $2 \cdot 10^{-2}$ с - 1. Для измерения малых β -активностей была собрана установка, аналогичная описанной в работе /17/ и состоящая из пропорционального проточного счетчи-

ка с геометрией 4 π /рабочий газ – метан при 1 атм/, окруженного защитой из оргстекла /1 см/ и свинца /5 см/. Кроме того, счетчик окружался активной защитой антисовпадений из 20 гейгеровских счетчиков. Фон составлял ~1 имп/мин и был стабилен в течение каждого из циклов измерений / ~5 суток/. Наклон плато по напряжению 1% на 100 В. Эффективность установки определялась сравнением в широком диапазоне скоростей счета с установкой β -у-совпадений /18/ при измерении активности ¹⁹⁸ Аш и составляла 0,72+0,013.

3. ИЗМЕРЕНИЕ ПЛОТНОСТИ ПОТОКА УХН

Схема опыта при облучении УХН поверхности меди показана на рис.1. Из-за сильного отражения УХН практически от любых поверхностей корректное определение плотности потока нейтронов в объеме - довольно непростая задача. Плотность потока УХН в объеме определялась в данной работе одновременно двумя способами: методом "черного детектора" и путем облучения в потоке УХН стопки из тонких фольг, изготовленных из специального Ni-Mnсплава. В методе "черного" детектора в объеме, где облучались пластины 2 со слоем меди, оставлялось маленькое отверстие 4 площадью 1 см², ведущее в объем 5 /ø 90x136 мм/ с медными стенками, частью поверхности которого являлось входное алюминиевое окно 6 пропорционального счетчика с ³Не 7. Из схемы видно, что нейтрон, попавший в объем 5, практически не имеет возможности выйти назад и в основном поглощается в счетчике 7. Для более точного определения эффективности регистрации УХН в таком методе проводились расчеты методом Монте-Карло. В расчете прослеживались судьбы нейтронов, изотропно входящих в отверстие 4 /об изотропности см. ниже/, при этом считалось, что отражение от всех поверхностей диффузное. В расчете использовался реальный спектр УХН /см.ниже/, учитывались потери УХН при отражении от поверхности меди объема 5 / и ~ 5.10-4/, отражение от обеих сторон Al-фольги и поглощение и расседние в ней нейтронов. Для учета двух последних факторов нельзя экстраполировать данные для сечений, измеренных при более высоких энергиях из-за возможного отличия сечений от закона 1/у /19/. Рассеяние на неоднородностях увеличивает эффективную длину пробега нейтрона в веществе /в данном случае в алюминиевой мембране счетчика/. С целью определения реального макроскопического сечения поглощения УХН в Al-фольге проводились измерения в геометрии рис.1, когда отверстие 4 перекрывалось фольгой того же вида, что и мембрана счетчика. Полученные результаты относительных измерений с фольгой на месте отверстия 4 и без нее обрабатывались методом Монте-Карло. Результаты измерений и обработки показали, что сечение исчезно вения УХН при прохождении фольги не отличается существенно от величины, следующей из экстраполяции сечения по закону 1/v.

3

Рис.1. Схема расположения опыта при облучении поверхности меди потоком УХН. 1. Вакуумированный нейтроновод из нержавеющей стали. 2. Стеклянные пластины с напыленным слоем мели. 3. Инцикаторы из марганец-никелевого сплава. 4. Малое отвер-

стие в мембране. 5. Объем с медными стенками. 6. Алюминиевая мембрана пропорционального счетчика. 7. Пропорциональный счетчик УХН.

С учетом рассеяния УХН, попавших в объем счетчика, на ядрах аргона /заполнение счетчика: ³Не - 6 Тор, аргон - 760 Тор/ результаты проведенных измерений и расчетов дали эффективность регистрации УХН в геометрии "черного" детектора, равную 77%. Использование геометрии "черного" детектора оказалось удобно в нескольких отношениях: 1/ маленькое входное отверстие 4 слабо влияет на измеряемую плотность потока УХН: 2/ отсутствие заметной утечки нейтронов в детектор создает изотропное распределение потока в объеме облучения; 3/ повышается общая эффективность регистрации нейтрона, попавшего в отверстие 4; 4/ уменьшается чувствительность эффективности к коэффициентам отражения и поглощения в алюминиевой мембране счетчика. Параллельно с "черным" детектором плотность УХН в объеме определялась путем облучения стопок из фольг \$ 1 см., толщиной 7,8 мг/см², изготовленных из сплава с атомным составом 27% Ni - 73% Mn. Впервые метод активации в экспериментах с УХН использовался в работе ^{/20}, где путем облучения фольг из марганца измеряли поток УХН из нейтроновода. Здесь этот метод усовершенствован за счет того, что вместо чистого марганца применялся сплав с граничной энергией. Близкой к нулю, применялась более чувствительная и низкофоновая установка для измерения активности, а также измерялся спад активности по глубине активируемого вещества. На рис.2 показаны типичные кривые временного спада активности фольг, а на рис.3 показана гистограмма распределения активности фольг по толщине стопки. Измеренный период спада активности во всех случаях хорошо совпадал с данными /21/ / T1/2 = 2,58 ч/. Из измеренной активности насышения можно вычислить плотность потока УХН из выражения 121

$\phi = A/\epsilon_1 \epsilon_9 SK$.

где А - активность насыщения, с1 - эффективность измерительной установки с 4 # -счетчиком, 8 - площадь облучаемой поверхности фольг. К - коэффициент, учитывающий поправку на самопоглощение в фольге при измерении В-активности, с. - вероятность образования активного ядра 56 Mn при попадании нейтрона в фольгу. со определяется парциальным сечением захвата нейтронов ядрами Ма:

Рис. 2. Кривая распада активности индикаторов из марганец-никелевого сплава, располагаемых в стопке.

Рис. 3. Гистограмма распределения активности по глубине стопки из фольг марганец-никелевого сплава. Точки расчет для изотропного потока с измеренным спектром и сечениями в соответствии с /3/.

$$\epsilon_2 = n_{Mn} \sigma_{Mn}^{*} . (n_{Mn} \sigma_{Mn}^{t} + n_{Ni} \sigma_{Ni}^{t}), \qquad (3)$$

где п $_{Mn}$ и п $_{N1}$ -концентрации ядер в сплаве, σ_{Mn}^{a} , σ_{Mn}^{t} и σ_{N1}^{t} - соответственно сечение активации марганца и полные сечения на марганце и никеле. При этом, чтобы в полном сечении не содержались неупругие процессы с уменьшением энергии нейтрона, сечения экстраполировались по данным атласа '22/ для наинизших энергий /10 мэВ для марганца и 0,3 мэВ для никеля/по закону 1/v. Самопоглощение бета-излучения учитывалось в соответствии с данными работы '23' Величины поправочных коэффициентов следующие: гг = 0,72+0,01, К = 0,92+0,015. Определяемый таким образом поток УХН оказывался меньше, чем измеренный методом "черного" детектора в 1,3 раза. Причиной расхождения может быть, во-первых, наличие окисных пленок на поверхности фольг, приводящих к отражению нейтронов, во-вторых, возможно, существующие в сплаве неоднородности могут приводить к дополнительному упругому рассеянию, ухудшающему прохождение нейтронов внутрь фольг. На это указывает и более быстрое затухание активации по глубине по сравнению с расчетом на рис. 3. Активация фольг использовалась для определения углового распределения УХН в объеме облучения. Для этого стопки при облучении ориентировались в различных направлениях. Разница в активности при этом не превышала 5%, что говорит об изотропности углового распределения нейтронов.

Активационный метод определения потоков УХН может быть полезен в тех случаях, когда необходимо измерить поток одновременно в нескольких точках, например, при исследовании нейтронно-оптических устройств с применением УХН, при изучении распространения УХН и т.д. /описанной эдесь измерительной установкой чувствительность в измерениях потоков УХН достигает 10⁻² н/см² с/.

4. ИЗМЕРЕНИЕ СПЕКТРОВ УХН

Для корректного сравнения теории поглощения УХН с экспериментом необходимо знание спектров УХН. Измерение спектров проводилось с помощью корреляционного времяпролетного спектрометра. В работе /24/ была описана уменьшенная модель (1/5) используемого здесь спектрометра. Диаметр прерывателя 170 см. число элементов в псевдослучайной последовательности 127. Перегородки прерывателя изготавливались из бронзы 0,1 мм, кадмированной с двух сторон электрохимическим способом. Ллительнсоть элементарного интервала 1 мс, что при длине пролетной базы 30 см дает для энергии 100 нэВ разрешение 4 нэВ. При измерении спектра использовался многощелевой полиэтиленовый коллиматор. Измеренный спектр потока показан на рис.4. Обращает на себя внимание заметное отличие его от хвоста максвелловского спектра ф(Е) - Е. В ряде работ по исследованию хранения нейтронов спектр нейтронов не измерялся и делалось предположение о том, что он описывается хвостом максвелловского спектра. Это вносит существенную неопределенность в интерпретацию результатов, поскольку коэффициент потерь и время хранения нейтронов сильно зависят от энергии нейт-DOHOB,

5. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОЦЕДУРА

6

Предназначенные для обучения УХН тонкие слои меди напылялись термически в вакууме 10⁻⁶ Тор на обе поверхности очень гладких пластин из стекла марки FLOAT производства ЧССР, размером 84x100 мм². Торцевые поверхности пластин при облучении закрывались полосами из электрополированной меди. Толщина напыленного слоя меди определялась из предварительных калибровок по взвешиванию испаряемой меди и окончательно комплексонометрическим методом ^{/25/} при химической обработке облученных слоев. При облучении пластины располагались по две под углом 90° одна к другой на оконечном участке вакуумированного нейтроновода /рис.1/. Стопки фольг из никель-марганцевого сплава располагались перед пластинами и за ними для контроля падения плотности потока УХН в нейтроноводе из-за размещения пластин. Падение плотности в среднем составляло 25%, и это учитывалось при обработке. Вре-

Рис.4. Спектр УХН, измеренный с помощью времяпролетного спектрометра.

мя облучения колебалось в разных опытах от 12 до 30 ч. Во время облучения колебания плотности потока, связанные с изменением мощности реактора или иными причинами, контролировались по скорости счета "черного" детектора, и вво-

дились соответствующие поправки. Фоновое нейтронное облучение, не связанное с потоком УХН, поступающих по нейтроноводу, было ниже чувствительности эксперимента. После облучения в каждом случае измерялись кривые распада марганца в фольгах и одновременно проводилась химическая обработка облученных слоев меди. Химическая процедура при приготовлении образцов для определения активности облученной меди состояла в следующем. Облученный слой меди растворяли в разбавленной /1:1/ азотной кислоте. После комплексонометрического определения количества меди в полученном растворе /25/ последний подкисляли азотной кислотой. К полученному раствору добавляли сульфид натрия при нагревании. полученный осадок отфильтровывали через ядерный фильтр под вакуумом. Полноту осаждения контролировали добавлением сульфида натрия к полученному фильтрату. Осадок с фильтром высушивали и закрепляли раствором шеллака в спирте. После измерения кривых распада проводили повторное химическое определение содержания меди в измеренном образце. Для этого таблетки растворяли в килящей концентрированной азотной кислоте / = 1,35 г/мл/ и вновь комплексонометрически проводили измерение количества меди. Потери при приготовлении образцов в самых неудачных случаях не превышали 20% массы меди и учитывались при обработке результатов измерений активности. Химическая процедура занимала несколько часов, поэтому измерялись активности только 84 Си / T_{1/2} = 12,7 ч/, изотоп ⁶⁶Cu / T_{1/2} = 10 мин/ полностью распадался к началу измерений.

6. ТЕОРИЯ ПОГЛОЩЕНИЯ ПРИ ПОДБАРЬЕРНОМ ОТРАЖЕНИИ УХН

В случае гладкой поверхности с резкой границей вещество - вакуум потенциал взаимодействия УХН с поверхностью имеет вид скачка: U = U'-IU''. Действительная часть потенциала

$$U' = \frac{\hbar^2}{2m} 4\pi \sum_{i} n_i \operatorname{Reb}_i, \qquad (4)$$

где т - масса нейтрона, п. - числа ядер в единице объема,

7

Рис.5. Схема потенциала при расчете коэффициента поглощения УХН в меди.

 b, - длины рассеяния нейтрона.
Мнимая часть потенциала определяется суммой сечений всех не-

упругих процессов

 $\mathbf{U}^{\prime\prime} = \frac{\mathbf{h}\mathbf{v}}{2} \sum_{i} \mathbf{n}_{i} \sigma_{i}^{HY}, \qquad (5)$

где v - скорость нейтрона. Для вычисления вероятности поглощения в нашем случае необходимо учитывать лишь сечение захвата нейтронов ядрами 63 Cu / $\sigma = 4,50\pm0,02$ б при V = 2200 м/с/. Расчет поглощения производился для потенциала, схема которого показана на рис.5. Величины U´ и U´´ вычислялись по формулам /4/ и /5/: U´_1 = 1,71\cdot10^{-7} эВ, U´_1 = 1,1\cdot10^{-11} эВ, U´_2 = 1,67\cdot10^{-7} эВ, U´_2 = 1,9\cdot10^{-11} эВ, U_3 = 0,86\cdot10^{-7} эВ. Поглощением в стекле пренебрегалось. Для показанного потенциала вычислялись вероятности отражения и прохождения, усредненные по изотропному угловому распределению и измеренному спектру нейтронов. Вероятность поглощения определялась как разность между единицей и суммой вероятностей отражения и прохождения.

7. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Типичные кривые спада активности меди показаны на рис.6. Полученный из кривых период распада во всех случаях хорошо согласовывался с литературными данными для 64 Cu $^{\prime 21\prime}$ / T $_{1/2}$ = 12,7 ч/. По полученной величине активности вычислялся экспериментальный коэффицент поглощения УХН по формуле $\mu = A/\phi \delta K \, cf \, S \omega$, /6/

где А – экстраполированная с бесконечному облучению скорость счета, ϕ – плотность потока УХН, δ – поправка на спад по длине нейтроновода плотности УХН в объеме облучения, К/составляла 0,68-0,76/ – поправка на самопоглощение β -излучения в таблетке сульфида меди, ϵ – эффективность регистрации β -излучения, f – вероятность излучения заряженной частицы при распаде ⁸⁴Cu/f = 0,569±0,005//26/S – площадь облучаемой поверхности меди, ω – поправка на потери меди при химической обработке. На рис.7 показан результат измерений – зависимость коэффициента поглощения УХН ядрами ⁶⁸Cu от толщины напыленного слоя меди. Основные фактсры, дающие вклад в ошибку, следующие: статистический разброс в кривых распада 7-11%, плотность потока УХН 5-7%, поправка на самопоглощение 2%, точность учета потерь меди при химической обработке <5%. Вклад остальных источников ошибок существенно

Рис.б. Кривые распада активности меди, облученной УХН.

Рис.7. Экспериментальные и расчетные коэффициенты поглощения УХН ядрами ⁶³Си.

меньше. На том же рис.7. приведены расчетные кривые для разных толщин окисного слоя.

8. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как видно из рис.7, наличие окисной пленки на поверхности меди должно сказываться на ожидаемом коэффициенте поглощения. Надо отметить, что ни в одной из работ по хранению УХН в металлических сосудах наличие возможной пленки окиси не учитывалось. В случае меди присутствие окиси должно приводить к уменьшению захвата и к увеличению неупругого рассеяния, что при измерении полного коэффициента потерь по времени хранения может дать компенсацию. В наших опытах время пребывания образцов в атмосфере составляло 4-15 ч. что достаточно для появления окисной пленки толщиной 10-20 Å^{/27/}. Скорость окисления зависит от способа приготовления металлической поверхности, влажности воздуха, наличия на поверхности масляной пленки и т.д. Поэтому была предпринята попытка измерить толщину окисной пленки для слоев меди, полученных в наших условиях. Использовался метод оже-электронной спектроскопии со сканированием по глубине путем ионного травления . Для двух образцов меди толщиной 500 Å, напыленных на поверхность очень гладких пластин из нержавеющей стали, со временем пребывания на воздухе 6 и 20 ч толщина окиси не превышала 15 Å, что находится в согласии с данными, приведенными в монографин /27/. Из последних видно, что на кривых окисления после одного часа пребывания на воздухе наблюдается насыщение при толщине. окисной пленки 15 А.

 * авторы приносят большую благодарность В.А.Степанчикову за проведение измерений. Обработка экспериментальных данных в соответствии с предположением, что

$$\mu_{akcn}(d) = k \mu_{pacy}(d)$$
 (7/

при толщине окиси 15 Å, дала результат k = 1,27. Это небольшое остающееся расхождение эксперимента с расчетом могло бы быть связано с шероховатостью поверхности меди. Если шероховатую поверхность представить случайной функцией $z = \hat{\xi}(\vec{\rho})$, где $\vec{\rho} = (x, y)$,

и считать, что корреляционная функция $\xi(\vec{\rho}) \xi(\vec{\rho}') = \sigma^2 \exp[-(\vec{\rho} - \vec{\rho}')^2/T^2]$, то оказывается /12/, что коэффициент поглощения μ увеличивается по сравнению со случаем гладкой поверхности в соответствии с формулой:

$$\mu = \mu_0 \left[1 + \frac{1.25 u_0' \sigma^2}{(1.25 + \sigma \sqrt{u_0'})(1 + 1.2 T \sqrt{u_0'})} \right], \qquad /8/$$

где $u_0^i = \frac{2m}{h^2} U'$.

При $\sigma \sim 200$ Å, T = 400Å / такой результат получен при исследовании поверхности с помощью электронного микроскопа/ $\mu = 1,38 \mu_0$. Надо отметить, что столь большие и частые шероховатости противоречат измерениям коэффициента зеркального отражения тепловых нейтронов от такого стекла ²⁸⁷, из которых следовало, что $\sigma = 20$ Å. Однако при напылении медной пленки шероховатость увеличивается из-за кристаллизации металла на поверхности стекла. Таким образом, результаты работы показывают хорошее согласие с теорией для коэффициента поглощения без привлечения дополнительных гипотез.

В заключение авторы приносят благодарность Ю.Н.Панину и Е.В.Рогову за предоставление возможности облучения в потоке УХН, И.Г.Шелковой за напыление меди на стекла, а также А.Н.Сунину за консультации по химии.

ЛИТЕРАТУРА

- 1. Игнатович В.К., Лущиков В.И. ЗЧАЯ, 1984, 15/2/, с.330.
- 2, Морозов В.И. Обзорная информация НИНАР, Димитровград, 1932.
- 3. Golub R., Pendelbury J.M. Rep. Progr. Phys., 1979, 42, p.439.
- 4. Mampe W., Ageron P., Gaehler R. Z.Phys.B, 1981, 45, p.1.
- Ageron P., Mampe W., Kilvington A.I.Z.Phys.B, 1985, 59/3/, p.261.
- Косвинцев Ю.Ю., Морозов В.И., Терехов Г.И. Письма в ЖЭТФ, 1982, 36, с.146.
- 7. Франк И. М. ОИЯИ, РЗ-7809, РЗ-7810, Дубна, 1974.
- 8. Игнатович В.К. ОИЯИ, Е4-8039, Дубна, 1974.
- 9. Игнатович В.К. ОИЯИ, Р4-6681, Дубна, 1972.

- 10. Франк И.М. ОИЯИ, Р4-8851, Дубна, 1975.
- Герасимов А.С., Игнатович В.К., Казарновский М.В. Краткие сообщения ФИАН, 1973, № 8, с.56; ОИЯИ, Р4-6940, Дубна, 1973.
- 12. Игнатович В.К.. ОИЯИ, Р4-7055, Дубна, 1973.
- Степанов А.В., Шелагин А.В. Краткие сообщения ФИАН, 1974, № 1, с.12.
- 14. Игнатович В.К. ОИЯИ, Р4-7831, Дубна, 1974.
- 15. Игнатович В.К. ОИЯИ, Р4-30-261, Дубна, 1974.
- Stoica A.D., Strelkov A.V., Hetzelt M. Z.Phys., 1978, 29, p.349.
- 17. Полевой Р.М., Пчелин В.А, ПТЭ, 1961, № 1, с.82.
- Prokof'ev Yu.A., Rogov E.V., Spivak P.E. Preprint IAE-3631/14, Moskow, 1982.
- 19. Steyerl A. JINR, D3-7991, Dubna, 1974.
- 20. Robson J.M., Winfield P. Phys.Lett., 1972, 40B, p.537.
- 21. Lederer C.M., Shirley V.S.Tables of Isotopes, N-Y, 1978.
- BNL-325 (3rd edition) Neutron Cross-Sections, Garber D.I., and Kinsey R.R., 1976.
- 23. Белов С.В. и др. ПТЭ, 1961, № 5, с.56.
- Новопольцев М.И., Покотиловский Ю.Н. ОИЯИ, РЗ-81-828, Дубна, 1981.
- Пршибил Р. "Комплексоны в химическом анализе". Изд.И.Л., М., 1960, с.337.
- 26. Christmas P. et al. Nucl.Instr., 1983, 215(3), p.397.
- 27. "Окисление металлов" /под ред.Ж.Бенара/, т.1, М., 1968.
- В.В.Корнилов и др. "Нейтронная физика". Материалы У конференции по нейтронной физике /Киев, 1980 г./. ЦНИИатоминформ, М., 1980, т.4, стр. 158; ОИЯИ, Р13-80-496, Дубна, 1980.

Рукопись поступила в издательский отдел 25 ноября 1985 года.

· НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 p. 40 x.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Кеждународной школы по нейтронной физике. Дубна, 1982.	5 p. 00 ĸ.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике. Дубиа, 1982.	2 р. 50 к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 p. 55 κ.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
Д2-84-366	Труды 7 Международного совещания по проблемам квамтовой теории поля. Алушта, 1984.	4 p. 30 K.
Д1, 2-84-599	Труды VII Международного семинара по проблемам физики высоких энергий. Дубна, 1984.	5 p. 50 ĸ.
Д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 р. 75 к.
Д10,11-84-818	Труды V Международного совещания по про- блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителян заряженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.
Д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Новопольцев М.И., Покотиловский Ю.Н. P3-85-843 Активационные эксперименты с ультрахолодными нейтронами. Измерение коэффициента поглошения нейтронов при подбарьерном отражении от поверхности меди Описаны активационные эксперименты с ультрахолодными нейтронами /УХН/. Плотность потоков УХН измерялась активацией фольг из сплава никель-марганец.Измерение активности проводилось с помощью низкофоновой установки с $4\pi\beta$ -пропорциональным счетчи-ком. Чувствительность метода ~10⁻² н/см² · с. Разработан метод "черного" детектора для абсолютного измерения плотностей потока YXH. Активационным методом измерен козффициент поглошения УХН при подбарьерном отражении от поверхности меди. Расхождение с теорией отражения нейтронов от скачка комплексного потеншиала составляет <30% и объясняется шероховатостью поверхности без привлечения дополнительных гипотез. Работа выполнена в Лаборатории нейтронной физики ОИЯИ. Сообщение Объединенного института ядерных исследований. Дубиа 1985

Перевод О.С.Виноградовой

Novopolotsev M.I., Pokotilovskij Yu.N. P3-85-843		
The Activation Experiments with Ultracold Neutrons.		
Measurement of Neutron Absorption at Subbarrier		
Reflection from Copper Surface		
The activation experiments with ultracold neutrons (UCN) are		
described. The UCN flux density was measured by means of acti-		
vation of foils from manganese-nickel alloy. The activity was		
measured in a low-background installation with $4\pi\beta$ -proportional		
counter. The sensitivity of the method is ~10 ⁻² n/cm ² .s. The		
method of "black" detector has been developed for absolute mea-		
surement of the UCN flux densities. The coefficient of absorptio		
of UCN at subbarrier reflection from copper surface has been		
measured by activation method. The discrepancy with theory of		
reflection from the jump of complex potential is <30 percent		
and is explained by roughness of the surface without additional		
hypothesis.		
The investigation has been performed at the Laboratory		

of Neutron Physics JINR. Communication of the Joint Institute for Nuclear Research. Dubna 1985