

P3-85-429

В.И.Лущиков, Ю.В.Таран

РАСПРОСТРАНЕНИЕ СГУСТКОВ УЛЬТРАХОЛОДНЫХ НЕЙТРОНОВ В ЗЕРКАЛЬНЫХ НЕЙТРОНОВОДАХ

1. В той или иной мере все эксперименты с ультрахолодными нейтронами /УХН/ связаны с транспортировкой их от одного объекта к другому. В частности, транспортировка УХН из одного накопительного сосуда /ловушки/ в другой через соединительный нейтроновод является необходимым элементом в экспериментах с удержанием УХН на супертепловых источниках^{/1/}, в исследованиях поляризационных характеристик ферромагнитных пленок методом трехкратного пропускания^{/2/} и т.д.

Так как обычно спектр используемых УХН достаточно широк, то в процессе перетекания их из сосуда в сосуд наиболее энергичные нейтроны /точнее, с большими продольными компонентами скорости/ многократно побывают в этих сосудах. Теоретический анализ перетекания УХН с учетом их возвратно-поступательного движения наиболее просто осуществить в случае идеально зеркального отражения от стенок. Такая идеализация недалека от современного уровня технологии изготовления зеркальных нейтроноводов^{/8/}, тем более что в этой области наблюдается непрерывный прогресс. При анализе предполагается, что поглощение в стенках отсутствует, начальное угловое распределение нейтронов изотропно, а их спектр описывается идеальным максвелловским распределением:

 $N(v_{x}) dv_{x} = \pi \rho \left(v_{m}^{2} - v_{x}^{2} \right) dv_{x}, \qquad /1/$

где v_x - компонента скорости вдоль оси x распространения потока УХН, v_m - максимальная скорость в спектре, $\rho = N_0 / (\frac{4\pi}{3} v_m^3)$ плотность в фазовом пространстве, N_0 - полное число УХН.

Отметим, что задача распространения УХН по трубам имеет обширную библиографию /см., например,⁷⁴⁷ /. В настоящей работе использовались результаты из ⁷⁵⁷.

2. Рассмотрим случай неограниченного нейтроновода, внутри которого в плоскости x = 0 поперечного сечения имеется импульсный плоский источник УХН /рис.1а/. Пусть в нем в момент времени t = 0 возникло N_0 УХН, которые будут вытекать в нейтроновод. При отражении от идеально зеркальных стенок нейтроновода продольная компонента скорости v_x не изменяется, поэтому поток нейтронов разделится на две равные и независимые компоненты, вытекающие в разные стороны от источника. Если нейтроновод имеет граничную скорость $v_{rp} > v_m$, то плотность нейтронов внутри трубы будет равна:

Объединенный институт ядерных исследований Дубиа, 1985

1

Рис.1. Схемы расположения источника и нейтроновода: а — плоский источник УХН при х = 0; б — объемный источник; в — плоский источник при х = 0 и отражающие торцы при х = 0 и в ; г — объемный источник и отражающие торцы при х = -я и в; д — два сосуда с затворами при х = -а, а, b-2а и в , соеди-

ненных нейтроноводом .

$$n(x,t) = \frac{\pi \rho}{St} (v_m^2 - \frac{x^2}{t^2}),$$
 /2/

где S - площадь поперечного сечения трубы, а $t \ge t_{\min} = x/v_m$. Зависимость n(t) имеет максимум при $t_{skc} = \sqrt{3} x/v_m$. Если источник УХН является объ-

емным с толщиной 28 /рис.15/, то

количество нейтронов, приходящихся на интервал (v_x , v_x + dv_y), внутри нейтроновода равно /при $x \cdot > a$ /:

$$N(v_{x}, x, t) dv_{x} = \pi \rho \left(v_{m}^{2} - v_{x}^{2}\right) \cdot \theta \left(x - v_{x}t\right) dv_{x},$$
^{/3/}

где функция в имеет вид

$$\theta \left(\mathbf{x} - \mathbf{v}_{\mathbf{x}} \mathbf{t} \right) = \begin{cases} 1 & \text{при} & \mathbf{v}_{\mathbf{x}} \mathbf{t} - \mathbf{a} \leq \mathbf{x} \leq \mathbf{v}_{\mathbf{x}} \mathbf{t} + \mathbf{a} ,\\ 0 & \text{при} & \mathbf{x} \leq \mathbf{v}_{\mathbf{x}} \mathbf{t} - \mathbf{a} , \quad \mathbf{x} \geq \mathbf{v}_{\mathbf{x}} \mathbf{t} + \mathbf{a} . \end{cases}$$
 (4/

В отличие от плоского источника в этом случае в точке **х** наблюдается спектр скоростей, разный в разные моменты времени. Для определения временной зависимости плотности нейтронов **n**(**x**,**t**) и среднего значения $\overline{v}_{x}(\mathbf{x},\mathbf{t})$ выделим три временных области.

а/ При $t \le \frac{X-8}{V_m}$ нейтроны из источника еще не подошли к точке X и n(X,t) = 0.

б/ При $\frac{x-a}{v_m} \leq t \leq \frac{x+a}{v_m}$ в точке x находятся нейтроны с продольными компонентами скорости от $\frac{x-a}{t}$ до v_m . Тогда, интегрируя /3/ в указанных пределах, получим средние по спектру значения плотности n(x,t) и потока i(x,t):

$$n(x,t) = \frac{1}{2}n_0 \left\{1 - \frac{1}{2} \frac{x-a}{v_m t} \left[3 - \left(\frac{x-a}{v_m t}\right)^2\right]\right\},$$
 (5/

$$i(x,t) = \frac{1}{2} n_0 \tilde{v}_{x0} \{1 - \left(\frac{x-a}{v_m t}\right)^2 [2 - \left(\frac{x-a}{v_m t}\right)^2]\}, \qquad /6/$$

где n_0 ~ начальная плотность УХН в источнике, $\overline{v}_{\pm 0} = 0,375 \ v_m$ - среднее значение продольной скорости для компоненты потока с $v_{\pm} \ge 0$ при t = 0. Из /5/ и /6/ имеем $\overline{v}_{\pm}(x,t) = i(x,t)/n(x,t)$. в/ При $t \ge \frac{x+a}{v_m}$. спектр v_{\pm} ограничен значениями $\frac{x-a}{t}$ и $\frac{x+a}{t}$. В этом случае:

$$n(x,t) = \frac{1}{2} n_0 \left\{ \frac{3a}{v_m t} - \frac{1}{2} \left[\left(\frac{x+a}{v_m t} \right)^8 - \left(\frac{x-a}{v_m t} \right)^8 \right] \right\},$$
 (7/

$$i(x,t) = \frac{1}{2} n_0 \,\overline{v}_{x0} \frac{4ax}{(v_m t)^2} \{ 2 - \left[\left(\frac{x+a}{v_m t} \right)^2 - \left(\frac{x-a}{v_m t} \right)^2 \right] \}.$$
 (8/

В этой временной области зависимость п от t достигает максимума при $t_{akc} = \sqrt{3x^2 + a^2/v}_m$, которое при x >> a переходит в соответствующее выражение для плоского источника.

3. Теперь перейдем к рассмотрению распространения сгустка нейтронов в нейтроноводах конечной длины, концы которых закрыты зеркально отражающими плоскостями. Левый торец, примыкающий к источнику, разворачивает компоненту потока нейтронов с $v_x \leq 0$ в сторону нейтроновода, что для плоского источника /рис.1в/ приводит просто к удвоению плотности нейтронов /2/.

В случае объемного источника /рис.1г/ вторая компонента появляется внутри нейтроновода с задержкой на $2a/v_m$, поэтому интегрирование выражения /3/ с ее учетом дает выражения, аналогичные /5/-/8/, только в них вместо х должно фигурировать х+2a.

Правый торец, расположенный при x = b, начиная с момента времени $t = b / v_m$ / в случае плоского источника/ отражает нейтроны в обратном направлении. Распределение плотности отраженных нейтронов получается из выражения /2/ с помощью преобразования $x \to -x + 2b$. В точке наблюдения x отраженные нейтроны начнут давать вклад начиная с момента $t_{\min} = \frac{-x+2b}{v_m}$. Если теперь распределения плотности отраженных нейтронов помечать порядковыми номерами отражений от левого (i) и правого (j) торцов, то:

$$n_{ij}(x,t) = \frac{\pi \rho v_m^2}{St} \left[1 - \left(\frac{t_{\min,ij}}{t} \right)^2 \right], \qquad (9/2)$$

где $t \ge t_{\min,ij} = [(-1)^{H-j} x + 2jb] / v_m$, причем $i \le j$. Для получения полной плотности нейтронов в трубе надо просуммировать /9/ по i и j с учетом временных границ для каждой составляющей. На рис.2 приведены результаты такого суммирования для нескольких значений x/b в зависимости от относительной временной координаты $r = \frac{1}{2} = \frac{v_m t - x}{b}$. При достаточно большом г кривые, осциллируя, сходятся к стационарному значению плотности N_0/bS .

Аналогичным образом проводятся вычисления плотности нейтронов внутри нейтроновода для объемного источника /puc.lr/.

Рис.2. Зависимость относительной плотности УХН $p = n(x,r) / (N_0 / bS)$ от r для схемы на рис.1в при значениях x/b: 1 - 0,3; 2 - 0,5; 3 -0,7.

4. Практический интерес представляет определение средней плотности и спектра скоростей в процессе перетекания нейтронов из сосуда в сосуд. Проведем анализ этого процесса на примере идеализированной схемы, когда сосуды представляют собой оди-

наковые участки нейтроновода, выделяемые затворами при x = -a, a, b - 2a и b /рис.1д/. Пустъ для определенности в левый сосуд производится накачка УХН от какого-нибудь источника. Затем нейтроны выпускаются в нейтроновод и происходит заполнение правого сосуда. Закрывая этот сосуд в разные моменты времени, можно захватить в него нейтроны с разным спектром скоростей /метод временной отсечки/ и с разной примесью нейтронов, испытавших многократное отражение от внешних торцов сосудов.

Для определения средних значений плотности нейтронов и продольной компоненты скорости /ee абсолютного значения/ по объему правой ловушки надо усреднить соответствующие выражения типа /5/-/0/ по интервалу b -2 a < x < b . На первом этапе анализа

Рис.3. Качественное представление пространственного распределения УХН в ловушке для схемы на рис.1д в первых пяти временных интервалах.

рассмотрим временную область от момента появления в ловушке первых нейтронов $t_1 = \frac{b-3a}{v_m}$ до появления дважды отраженных от обоих торцов нейтронов, т.е. $t \leq \frac{3b-a}{v_m}$. При $t \leq t_1$ в ловушке нет нейтронов. При $t > t_1$ в ловушку входят нейтроны компоненты потока с $v_x \geq 0$ с распределением плотности /5/, которое при $t_1 \leq t \leq t_2 = \frac{b-a}{v_m}$ надо проинтегрировать в пределах (b-2a , $v_m t + a$)/рис.3a/. Результат усреднения следующий: $\bar{n}_1(t) = \frac{1}{2} n_0 \frac{v_m t}{a} A_1 [1-B_1(3-C_1)],$ /10/

где
$$A_i = \frac{1}{4} (1 - \frac{t_i}{t}), \quad B_i = \frac{1}{4} (1 + \frac{t_i}{t}), \quad C_i = \frac{1}{2} [1 + (\frac{t_i}{t})^2],$$

i – номер временного интервала.

При $t_2 \le t \le t_3 = \frac{b+a}{v_m}$ в ловушке помимо нейтронов, описываемых распределением /5/ с плотностью $\mathtt{n}_{2,2}(\mathtt{x},t)$, появляются: а/ нейтроны компоненты с $v_{\mathtt{x}} \le 0$, отраженные от левого торца и описываемые /5/ с заменой $\mathtt{x} + \mathtt{x} + \mathtt{2a}$; плотность этой составляющей обозначим через $\mathtt{n}_{2,1,1}(\mathtt{x},t)$; б/ нейтроны компоненты с $v_{\mathtt{x}} \ge 0$, отраженные от правого торца и описываемые /5/ с заменой $\mathtt{x} \to -\mathtt{x} + \mathtt{2b}$ /обозначение $\mathtt{n}_{2,1,2}$ /; в/ нейтроны компоненты с $v_{\mathtt{x}} \ge 0$, описываемые распределением /7/, с плотностью $\mathtt{n}_{2,3}$. Качественное представление этих составляющих в виде распределений по \mathtt{x} дано на рис. 36. Составляющие $\mathtt{n}_{2,1,1}$ и $\mathtt{n}_{2,1,1}$ дают одинаковый вклад в количество нейтронов в ловушке, так как они обусловлены равными компонентами потока, входящими в ловушку одновременно, но как бы с разных сторон. Для того чтобы различать такие совпадающие составляющие, был введен третий индекс. Несложные, но громоздкие вычисления дают для средней плотности всех составляющих во втором временном интервале:

$$\overline{n}_{2,1,1} (t) = \overline{n}_{2,1,2} (t) = \frac{1}{2} n_0 \frac{v_m t}{a} A_2 [1 - B_2 (3 - C_2)], \qquad /11/$$

$$\widetilde{n}_{2,2}(t) = \frac{1}{2} n_0 A_2 \{3 - \frac{v_m t}{a} B_2 [C_2 - (1 - \frac{1}{\frac{v_m t}{a} B_2}) (\frac{v_m t - 2a}{v_m t})^2 D_1]\}, \qquad /12/$$

$$\bar{n}_{2,3}(t) = -\frac{1}{2}n_0 \frac{v_m t}{a} A_3 \{1 - B_1 (3 - (\frac{v_m t - 2a}{v_m t})^2 D_2]\},$$
 /13/

где $D_i = \frac{1}{2} [1 + (\frac{v_m t_i}{v_m t_i - 2a})^2]$. Средняя плотность всех нейтронов в ловушке равна сумме /11/-/13/.

Выражения /10/ и /11/ имеют одинаковую структуру, а отличие их заключается в сдвиге области применимости на 2a / v_m , что математически выражается в увеличении индекса і на единицу.

Отсюда ясно, что в третьем временном интервале $t_3 \leq t \leq t_4 = \frac{b+3a}{v_m}$ такой структурой должно обладать выражение для средней плотности $\overline{n}_{3,1}(t)$ нейтронов компоненты с $v_x \leq 0$, отраженных сначала от левого, а затем от правого торца и описываемых выражением /5/ с последовательной заменой $x \rightarrow x + 2a \rightarrow -x + 2b + 2a$ /рис.3в/. Прямые вычисления это подтверждают. В следующих двух временных интервалах (t_4 , $t_5 = \frac{b+5a}{v_m}$) и (t_5 , $t_6 = \frac{3b-a}{v_m}$) составляющих такой структуры уже не будет. Они снова дадут вклад в плотность нейтронов в ловушке в 6-8 интервалах и т.д.

Возвращаясь снова к третьему интервалу, выпишем средние плотности остальных составляющих /обозначения даны на рис.3в/:

$$\overline{n}_{3,2,1}(t) = \overline{n}_{3,2,2}(t) = \frac{1}{2} n_0 A_3 [3 - \frac{v_m t}{a} B_3 [C_3 - (14)]]$$

$$= (1 - \frac{1}{\frac{\mathbf{v}_{\mathrm{m}} \mathbf{t}}{\mathbf{a}} \mathbf{R}_{\mathrm{g}}}) \left(\frac{\mathbf{v}_{\mathrm{m}} \mathbf{t} - \mathbf{a}}{\mathbf{v}_{\mathrm{m}} \mathbf{t}} \mathbf{D}_{\mathrm{g}} \right) \},$$

$$\overline{n}_{3,3,1}(t) = \overline{n}_{3,3,2}(t) = \frac{1}{2} n_0 \frac{v_m t}{a} A_4 \{1 - B_2 [3 - (\frac{v_m t - 2a}{v_m t})^2 D_3]\}, \quad /15/$$

$$\overline{n}_{3,4}(t) = \frac{1}{2} n_0 (\frac{3}{2} \frac{a}{v_m t} - \frac{1}{(2t)^3} (S_2 R_2 - S_1 R_1)], \qquad (16)$$

где $S_i = t_i + \frac{a}{v_m}$, $R_i = t_i^2 + t_{i+1}^2$. Закономерность, найденная при обсуждении выражений для \overline{n}_1 , $\overline{n}_{2,1}$ и $\overline{n}_{3,1}$, наблюдается также в последовательностях $\overline{n}_{2,2}$, $\overline{n}_{3,2}$, ..., и $\overline{n}_{2,3}$, $\overline{n}_{3,3}$, ..., т.е. составляющие такой структуры вносят вклад в плотность нейтронов в ловушке в 2-4, 7-9, ... интервалах.

Новым моментом в третьем интервале является возникновение составляющей $\bar{n}_{3,4}$, действующей во всех последующих интервалах с теми же постоянными S и R. Из рис.3г видно, что в четвертом интервале появляются составляющие $\bar{n}_{4,5,1}$ и $\bar{n}_{4,5,2}$ такой же структуры, равные друг другу, в которых индексы постоянных S и R увеличиваются на единицу по сравнению с $\bar{n}_{3,4}$. Наконец, в пятом интервале /рис.3д/ возникает составляющая $\bar{n}_{5,6}$, в выражении для которой индексы в S и R увеличиваются еще на единицу.

На этом первый этап формирования распределения нейтронов в ловушке заканчивается. Он связан с первым отражением от правого торца ловушки. На втором этапе, включающем второе отражение, на фоне постоянно действующих составляющих $\bar{n}_{3,4}$, $\bar{n}_{4,5}$ и $\bar{n}_{5,6}$, в той же последовательности, что и на первом этапе, появляются составляющие такой же структуры,как /11/-/13/,/16/, индексация в которых коррелирована с номером временного интервала.

Такая периодичность в формировании распределения нейтронов в ловушке позволила написать компактный алгоритм вычисления средней плотности и среднего абсолютного значения продольной скорости в ловушке как функции времени.

Графическое представление результатов вычислений $\bar{n}(t)$ и $\bar{v}_{x}(t)$ удобно сделать, введя по аналогии с рис.2 относительное время $r = \frac{1}{2} \frac{v_{m}t - (b - 3a)}{b + a}$. На рис.4 приведены зависимости $n(r)/n_{0}$ для двух значений $\frac{a}{b}$ /кривые 1 и 2/. Кривые проходят через максимальные значения $\bar{n}_{max} = 16/(\frac{v_{m}}{a}\sqrt{\frac{v_{m}}{a}}W)$ при $t_{max} = \frac{1}{4}\sqrt{\frac{v_{m}}{a}}W$, где $W = -S_{2}R_{2} - S_{3}R_{3} + S_{4}R_{4} + S_{5}R_{5}$, и при больших r выходят на уровень, соответствующий отношению объемов

Рис.5. Зависимость среднего значения продольной скорости УХН $|\overline{v_x}|$ в ловушке для схемы на рис.1д от времени накопления r при значениях a/b : 1 - 0,125; 2 - 0,25.

ловушки и всей трубы $\frac{2a}{b+a}$. Максимум всегда приходится на пятый временной интервал, а вклад нейтронов, побывавших в ловушке и вторично возвратившихся в нее после отражения от левого торца, в полное число нейтронов в ловушке начинается с шестого интервала. Таким образом, если затвор ловушки закрыть в промежутке между t_{max} и t_6 , то в ней будет захвачено максимальное количество нейтронов без примеси нейтронов, испытавших многократное отражение от торцов /кривые 3 и 4 на рис. 4/.

венно.

1,0

0.6

0.2

⊽_×

Рис.4. Зависимость относительной

полной плотности УХН $p = \overline{n}(r) / n$

/кривые 1 и 2/ и плотности примесных нейтронов р' = [n (r) -

 $-\sum_{i=4}^{6} \overline{n}_{5,i}$ (r)]/ n /кривые 3 и

4/ от г для схемы на рис. 1д при

а/b = 0.125 и 0.25 соответст-

Каков при этом спектр захваченных нейтронов? На рис.5 показана эволюция среднего абсолютного значения $\bar{v_x}$ (t) нейтронов, находящихся в ловушке, в процессе ее наполнения. Хотя спектр становится максвелловским через достаточно большое время /кривые на рис.5 выходят на уровень $|\bar{v_{xo}}| = 0,375 v_m$ при $\tau > 2/$, однако уже при t = t₈ / $\tau = 1$ на рис.5/ он близок к таковому, а если допустить примесь многократно отраженных нейтронов до 2%, то спектр при соответствующих t практически будет максвелловским. Альтернативой является введение некоторой степени диффузности при отражении от стенок ловушки. Это тем более необходимо, если проводятся спектрометрические исследования многократного пропускания через один и тот же образец методом временной отсечки. Для того чтобы в каждом последующем пропускании с образцом взаимодействовали нейтроны такого же спектра, в ловушке должна произойти рандомизация их направлений.

5. Для учета диффузного рассеяния и поглощения, а также для расчетов перетекания УХН при различных геометрических конфигурациях сосудов и нейтроновода была создана программа расчетов по методу Монте-Карло, в которой стартовые значения направления вылета / θ и ϕ /, места вылета /радиус г и координата х / и скорости v выбирались из равномерного распределения по $\cos \theta$, ϕ , r^2 , х и v⁸ соответственно. Для зеркального отражения без учета поглощения оба метода расчетов $\overline{n}(t)$ и $\overline{v_x}(t)$ дали совпадающие результаты /при количестве разыгранных нейтронов ≥ 32000 /.

В заключение отметим, что аналитический подход к задаче перетекания нейтронов из сосуда в сосуд, даже при допущенной идеализации, оказался полезным для выяснения основных характеристик этого процесса, качественно сохраняющихся и для практических случаев.

ЛИТЕРАТУРА

- 1. Golub R. et al. Z.Phys.B, 1983, 51, p.187.
- Игнатович В.К., Таран Ю.В. В кн.: Нейтронная физика. Материалы 6-й Всесоюзной конференции по нейтронной физике. ЦНИИатоминформ, М., 1984, т.4, с.17.
- 3. Егоров А.И. и др. ЯФ, 1974, 19, с.300; Altarev I.S. et al. Phys.Lett.A, 1980, 80, p.413.
- 4. Berceanu 1., Ignatovich V.K. Vacuum, 1973, 23, p.441.
- 5. Франк И.М. ОИЯИ, РЗ-9846, Дубна, 1976.

Рукопись поступила в издательский отдел 6 июня 1985 года.

8

9