

P3-85-272

1985

Ю.М.Гледенов, Ю.П.Попов, Х.Риголь, В.И.Салацкий

ИССЛЕДОВАНИЕ РЕАКЦИИ ³⁶ Cl(n,p) ³⁶ S ПРИ ЭНЕРГИИ НЕЙТРОНОВ ДО 10 КЭВ

Направлено в "Z. für Phys."

Изучение различных характеристик нейтронных резонансов ядер, лежащих в долине бета-стабильности, дало много информации о структуре возбужденных состояний ядер и о механизме ядерных реакций ¹¹. Разумно ожидать, что изучение нейтронных резонансов ядер, лежащих вне области стабильности, даст новый материал для понимания этих явлений. В последнее время появились работы,где изучаются нейтронные резонансы на радиоактивных ядрах /см. обзор ¹²⁷/. Одним из направлений таких исследований является использование реакции (n,p), весьма перспективной для нейтронно-дефицитных ядер¹⁸/ поскольку здесь энергия связи для протона В_р уже заметно ниже, чем для нейтрона В_л.

Исследование нейтронных резонансов ряда радиоактивных ядер по регистрации заряженных частиц имеет определенные преимущества по сравнению с наиболее распространенными методами исследований: измерениями пропускания, радиационного захвата, рассеяния нейтронов. Во-первых, на медленных нейтронах реакции с эмиссией заряженных частиц происходят обычно только на одном изотопе; во-вторых, эффективность регистрации заряженных частиц, вылетающих из тонких мишеней, близка к 1, в то время как эффективность регистрации у-квантов может быть сделана крайне малой / \leq 10⁻⁶ /; в-третьих, такие исследования позволяют обойтись небольшим количеством ядер /=10¹⁴ ÷ 10¹⁷ / исследуемого изотопа, что весьма существенно при работе с радиоактивными ядрами-мишенями.

В настоящей работе представлены результаты изучения реакции (п.р) на радиоактивном ядре ³⁶ CI /рис.1/. Для этого ядра нейтронные резонансы ранее не были известны ^{74/.} Первые результаты наших измерений были доложены на совещании ^{75/.} Измерения проводились на нейтронном спектрометре по времени пролета на импульсном реакторе ИБР-30 Лаборатории нейтронной физики ОИЯИ ^{76/.} Использовалось пролетное расстояние 85 м (разрешение 47 нс/м). В качестве детектора заряженных частиц служила ионизационная камера с сеткой ^{77/}. Для калибровки энергетического спектра заряженных частиц и нормировки сечений исследуемой реакции проводились измерения на мишени ⁸L1, а для калибровки шкалы энергии нейтронов были использованы известные нейтронные резонансы на ядре ⁸⁵C1 с Е₀ = 398 и 4249 эВ.

Мишень ³⁸С1, активностью около 300 мкКи, была приготовлена на алюминиевой подложке толщиной 1 мм осаждением NaCl из раствора в HCl. Толщина мишени была 1,8 мг/см² в основном за счет ядер ²³Na и ³⁵Cl, а количество ядер ³⁸Cl составляло 1.1.10¹⁷ атом/см².

Obbean init KitCTETYT

REPRESE BCORRADBAHR

Таблица

³⁶ С1(n, р)³⁶ S. t - номер канала.

Двумерная информация об энергии регистрируемых частиц и о времени пролета захваченных нейтронов записывалась на магнитную ленту измерительного модуля на базе ЭВМ СМ-3. Сортировка и обработка данных проводились на ЭВМ CDC-6500.

В результате экспериментального исследования реакции ³⁶Cl(n, p)³⁶S получен набор спектров по времени пролета захватываемых нейтронов для заряженных частиц в различных амплитудных окнах. Аналогичные спектры « -частиц и тритонов получены в результате измерений выходов мониторной реакции ⁶ Li(n,t)⁴ Не в тех же экспериментальных условиях.

В амплитудном окне, соответствующем энергии протонов из реакции ³⁶Cl(n,p) / E_p = 1,87 МэВ/, получен времяпролетный спектр выхода протонов /рис.2/. При энергии нейтронов E_n = 1,3; 3,5 и 8,2 кэВ проявились неизвестные ранее нейтронные резонансы, отвечающие высоковозбужденным уровням ³⁷С1 с энергией возбуждения $E^* = E_n + B_n / B_n = 10311, 4\pm0, 2 ext{ кэВ}^{/8/}$ /. В таблице для этих уровней приведены параметры $A_p = g\Gamma_n \Gamma_p / \Gamma$, полученные из выражения $\Sigma \sigma_i \Delta E_i = 2\pi^2 \pi^2 A_p$, где $\sigma_i -$ экспериментальное серез.

чение реакции; ΔЕ; - интервал энергии; λ - длина волны нейтрона при энергии резонанса, деленная на 2π.

Е _п , кэВ	Е; кэВ	Е, ^{*/10/} кэВ	A _p , 9B	Α _γ , эВ	Г <u>n</u> *, эВ	Гр*** эВ
-	-	10308,3	-	0,21+0,06	-	-
1,3+0,1	10312,7	10312,7	0,07+0,01	1,01+0,19	0,7	/0,4/
3,5+0,3	10314,8	10314,9	0,08+0,03	5,9+0,9	0,14	≥10
8,2+0,9	10319,4	10318,7	1,7+0,3	3,7+0,6	4,6	≥10

* в предположении $\Gamma_{\nu} = 1$ эВ.

в предположении $\Gamma_{\nu} = 1$ эВ, g = 0.6.

До сих пор изучение возбужденных состояний 87 Cl проводилось с помощью реакций 87 Cl(n, n' γ), 87 Cl(p, p' γ), 40 Ar(p, a), 34 P(a, p γ) и др. /см., например, $^{/8/}$. Но наиболее полные экспериментальные сведения о положениях высоковозбужденных уровней ядра ³⁷Cl получены при исследовании реакции радиационного захвата протона ³⁶ S(p, y)³⁷Cl ^{/9,10/} В работе^{/10/} получены наиболее точные положения уровней, а также параметры $A_{\nu} = (2J+1) \Gamma_{\nu} \Gamma_{\mu} / \Gamma$, которые также представлены в таблице. Видно хорошее соответствие найденных нами уровней ³⁷Cl в реакции ³⁶Cl(n,p)³⁶S с уровнями, возбуждаемыми в реакции 36S(p, y) 37Cl с учетом значений B_n^{/8/} и B_p = /8386,3+0,2/ кэВ^{/10/} Из параметров A_p и A_v можно оценить нейтронные ширины резонансов: Г_n =10 · Г_y А_p/А. Оценки Г_n, полученные в предположении Гу = 1 эВ для этих уровней, приведены в таблице. Далее, полагая g = 0,6, можно получить и грубые оценки протонных ширин резонансов Г /см. таблицу/.

Отметим, что в резонансах 3,5 и 8,2 кэВ протонный канал распада составляет существенную долю полной ширины резонансов. Последний резонанс "совпадает" по энергии нейтронов с резонансом 8,3 кэВ в изотопе ⁸⁷Cl, которого в мишени было почти на 2 порядка больше, чем исследуемого ³⁶С1. Поэтому только изучение протонного канала распада /реакция ³⁷С1(n,p) не идет/ позволило однозначно установить наличие резонанса с Ео = 8,2 ков в ядремишени ³⁶С1.

Исследования протонного распада высоковозбужденных состояний на примере ³⁶Cl показывают, что они полезны для получения параметров нейтронных резонансов и позволяют уточнить энергетическую шкалу высоковозбужденных состояний легких и средних ядер.

Авторы выражают благодарность Т.С.Зваровой за изготовление мишеней и Н.И.Линькову за подготовку аппаратуры.

ЛИТЕРАТУРА

- 1. Пикельнер Л.Б., Попов Ю.П., Шарапов Э.И. В сб.: Нейтрон. "Наука", М., 1983, с.80.
- 2. Вертебный В.П. В сб.: Труды IV школы по нейтронной физике. ОИЯИ, Д3,4-82-704, Дубна, 1982, с.66.
- 3. Gledenov Yu.M. et al. Z.Phys., 1982, 308, p.57.
- Mughabghab S.F. et al. Neutron Cross Sections. Academic Press, N.Y., 1981.
- Гледенов Ю.М. и др. Тезисы докладов на XXXIV Совещании по ядерной спектроскопии и структуре ядра. "Наука", Л., 1984, с.56.
- 6. Франк И.М. ЭЧАЯ, 1972, т.2, вып.4, с.807.
- 7. Попов Ю.П. и др. ЯФ, 1971, т.13, с.913.
- 8. Endt P.M., Van der Leun C. Nucl. Phys., 1978, A310, p.451.
- 9. Коваль А.А. и др. Письма в ЖЭТФ, 1965, т.11, вып.8,с.402.
- Nooren G.J.L., Van der Leun C. Nucl. Phys., 1984, A423, p.197.

Гледенов Ю.М. н др. Исследование реакции ³⁶Cl(n,p)³⁶S при энергии нейтронов до 10 кэВ P3-85-272

Представлены результаты измерений реакции ⁸⁶ Cl(n,p)⁸⁶ S, выполненных на реакторе ИБР-30 ЛНФ ОИЯИ. Обнаружены резонансы при E₀ = 1,3; 3,5 и 8,2 кэВ, получены для них параметры A_p = (gГ_n Γ_p / Γ), равные 0,07+0,01; 0,08+0,03 и 1,7+0,3 эВ соответственно. Сравнение положения этих уровней ³⁷Cl с набором состояний, полученных в реакции ⁸⁶ S(p, y) ⁸⁷Cl, позволило уточнить энергетическую шкалу возбужденных состояний ядра⁸⁷ Cl.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1985

Перевод О.С.Виноградовой

Gledenov Yu.M. et al. Study of the ³⁶ Cl(n,p) ³⁶S Reaction in the Neutron Energy Range up to 10 keV P3-85-272

The ${}^{36}\text{Cl}(n,p){}^{36}\text{S}$ reaction cross section was measured by the time-of flight method in the IBR-30 pulsed reactor, JINR. The measured cross section shows three, not observed previously, neutron resonances with energies E_n = 1.3; 3.5 and 8.2 keV for which there were determined the parameters A_p = = $(\mathbf{g}\Gamma_n\Gamma_p/\Gamma)$: 0.07+0.01; 0.08+0.03 and 1.7+0.3 eV, respectively. The comparison of these results with the excited states obtained by the ${}^{36}\text{S}(\mathbf{p},\gamma){}^{37}\text{Cl}$ reaction made possible a more exact determination of the scale-energy of the ${}^{37}\text{Cl}$ nucleus excited states.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1985

4

Рукопись поступила в издательский отдел 15 апреля 1985 года.