СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

17/11-23

C34211 A-954

P3 - 8470

Е.З.Ахметов, В.В.Голиков, Д.К.Каипов, В.А.Конкс, А.В.Стрелков

985/2-75

ГАЗОВЫЕ И НАМОРОЖЕННЫЕ КОНВЕРТОРЫ -ИСТОЧНИКИ УЛЬТРАХОЛОДНЫХ НЕЙТРОНОВ

ЛАБОРАТОРИЯ НЕЙТРОННОЙ ФИЗИНИ

P3 - 8470

Е.З.Ахметов, В.В.Голиков, Д.К.Каипов, В.А.Конкс, * А.В.Стрелков

ГАЗОВЫЕ И НАМОРОЖЕННЫЕ КОНВЕРТОРЫ -ИСТОЧНИКИ УЛЬТРАХОЛОДНЫХ НЕЙТРОНОВ

Объедлисылый енстатут SALANIX BECARDOBAH BHEINOTEKA

* Институт ядерной физики АН Казахской ССР.

Ахметов Е.З., Голиков В.В., Каипов Д.К., Конкс В.А., РЗ - 8470 Стрелков А.В.

Газовые и намороженные конверторы - источники ультрахолодных нейтронов

Приводятся метод и результаты расчетов выхода ультрахолодных нейтронов (УХН) из некоторых газовых и намороженных конверторов. Экспериментально полученные выходы УХН из водорода, дейтерия, гелия, воздуха при различных температурах и из ряда намороженных веществ (воды, тяжелой воды, спиртов) при температуре 80°К удовлетворительно согласуются с расчетными значениями. Выход УХН из водорода при комнатной температуре практически не отличается от выхода УХН из воды. Выход УХН из намороженной воды в 25 раз превышает выход УХН из алюминия.

Сообщение Объединенного института ядерных исследований Дубна, 1974

Akhmetov E.Z., Golikov V.V., Kaipov D.K., P3 - 8470 Konks V.A., Strelkov A.V.

Gas and Frozen Converters as the Sources of Ultracold Neutrons

The technique and the results of calculations of ultracols neutrons (UCN) yielding from some gas and frozen converters are presented. The experimentally obtained UCN yields from hydrogen, deuterium, helium, air at different temperatures and from a number of frozen matters (water, heavy water, alcohols) at room temperature doesn't practically differ from that of water, while the UCN yield from frozen water exceeds by about 25 times the yield from aluminium.

Communications of the Joint Institute for Nuclear Research. Dubna, 1974

B/1/ дан обзор используемых в экспериментальной практике способов получения ультрахолодных нейтронов /УХН/. Наибольшее распространение получили способы непосредственного извлечения УХН из замедлителя реактора и дальнейшая их транспортировка к экспериментальной установке с помощью горизонтального или вертикального нейтроновода. Поскольку из замедлителя могут выходить практически только УХН, образовавшиеся в поверхностном слое толщиной порядка средней длины свободного пробега УХН, то этот слой замедлителя /так называемый конвертор УХН/ обычно отделяется от основной массы замедлителя. К материалу для конвертора предъявляется ряд специфических требований: а/ в случае использования горизонтального транспортного нейтроновода граничная скорость конвертора /или его оболочки/ V К должна быть меньше граничной скорости нейтроновода у Н нейтроновода v^H_{Гр} / v_{Гр} - некоторая критическая скорость для данного материала, ниже которой нейтрон при любом угле падения отражается от границы раздела вакуум - среда/; б/ для увеличения выхода УХН из конвертора при его охлаждении до низких температур сечение поглощения УХН о должно быть много меньше сечения нагрева УХН $\sigma_{\rm HV}$; в/ поскольку конвертор находится близко к активной зоне реактора, он должен обладать высокой радиационной стойкостью и низким газовыделением в вакуумную полость нейтроновода.

Предъявляемые требования значительно сужают круг подходящих матерналов для конверторов. Например, такие вещества, как бериллий, графит, тяжелая вода, удовлетворяющие последним двум условиям, из-за своей высокой граничной скорости не могут быть эффективно использованы В горизонтальных нейтроноводах. В то же время по причине низкой радиационной стойкости не могут быть использованы в качестве конвертора полиэтилен и другие твердые органические вещества. Применение в качестве конвертора циркулирующих по замкнутому контуру охлажденного пропана, пентана, изопентана и т.д. осложнено трудностями, связанными с частыми закупорками трубопроводов контура, вызванными отложениями тяжелых высокомолекулярных полимеров, образующихся под действием интенсивного реакторного облучения.

В работах $^{/2,3/}$ было показано, что гидрид циркония является хорошим конвертором, выдерживающим при комнатной температуре в вакууме без значительной потери водорода большие дозы облучения вблизи активной зоны реактора. Измерения показали $^{/3,4/}$, что применение охлаждения гидрида циркония до температуры ~ 80° К не эффективно, так как это увеличивает выход УХН всего в $/1,5\div2/$ раза.

В данной работе рассматриваются возможности использования газообразного водорода, дейтерия и намороженных водородсодержащих жидкостей в качестве конверторов УХН. Проведены расчеты выходов УХН из указанных веществ в зависимости от их температуры $T_{\rm K}$ при облучении конверторов изотропным потоком тепловых нейтронов с максвелловским спектром с температурой $T_{\rm H}$. Частичная экспериментальная проверка проведенных расчетов была выполнена на канале УХН, установленном на реакторе BBP-К Института ядерной физики АН Казахской ССР /г. Алма-Ата/^{/2/}.

§1. Теория

Для расчета выхода УХН из газообразных конверторов был использован метод, описанный в $^{/4/}$. Согласно этой работе полный поток УХН ϕ в интервале энергий от О до $E_{\Gamma p}^{H}$, выходящий с 1 см² конвертора, можно представить в следующем виде:

$$\Phi = \frac{\Phi_0 (E_{\Gamma p}^{H})^2}{8} G (T_{H}, T_{K}), \qquad /1/$$

где Φ_0 - полный поток тепловых нейтронов, $E_{\Gamma p}^{H}$ - граничная энергия нейтроновода, а функция

$$G(T_{H}, T_{K}) = \frac{1}{T_{H}^{2}} \times \frac{0 \int E' [\sigma(E' \to E) \cdot E^{-1/2}] \exp(-E'/T_{H}) dE'}{[\sigma_{C}(E_{0})E_{0}^{1/2}] + \int_{0}^{\infty} [\sigma(E \to E')E^{1/2}] dE'} /2/$$

не зависит от энергии Е выходящих из конвертора УХН и определяется только характеристиками конвертора. Здесь Е' - энергия тепловых нейтронов, падающих на конвертор; $\sigma(E' \rightarrow E)dE$ - сечение неупругого рассеяния нейтронов с энергией Е' в интервал энергий Е, E+dE /сечение охлаждения тепловых нейтронов/; $\sigma(E \rightarrow E')dE'$ - сечение неупругого рассеяния УХН с энергией Е в интервал энергий Е', Е'+dE'/сечение нагрева УХН/; $\sigma_{C}(E_{0})$ - сечение поглощения нейтронов с некоторой фиксированной энергией E_{0} .

В настоящее время отсутствуют экспериментальные данные о сечениях неупругого рассеяния медленных нейтронов в широком интервале энергий и температур газообразного водорода и дейтерия. В связи с этим для расчета $G(T_H, T_K)$ использовались теоретические выражения для сечений неупругого рассеяния медленных нейтронов молекулярным водородом и дейтерием, полученных $^{/5/}$ при описании движения молекулы моделью твердого ротатора с учетом спиновых корреляций между атомами молекулы.

Как известно, при высоких температурах газа, когда энергия теплового возбуждения много больше, чем расстояние между вращательными уровнями молекулы-водорода, соотношение между пара- и ортомодификациями определяется статистическими весами состояний со спинами S = 0 и S = 1, что соответствует 3/4 ортоводорода и 1/4 параводорода. В обыкновенном водороде такое соотношение между пара- и ортокомпонентами практически достигается при комнатной температуре. При понижении температуры все молекулы постепенно переходят в более низкое состояние, т.е. в парасостояние. Однако необходимо отметить, что в отсутствие катализатора соотношение между концентрациями параводорода и ортоводорода при понижении температуры не меняется длительное время. Если, например, обыкновенный водород охладить до низкой температуры, то все молекулы параводорода переходят на самый низкий вращательный парауровень J = 0, а все молекулы ортоводорода - на самый низкий ортоуровень J = 1. В табл. 1 представлены процентные содержания молекул водорода при различных вращательных уровнях J в трех газовых смесях в зависимости от температуры: в равновесной смеси, в параводороде и в обыкновенном водороде /равновесная смесь при комнатной температуре/ $^{6/}$.

В отличие от водорода у дейтерия /поскольку дейтрон имеет спин 1/ устойчивой формой при низких температурах является ортомодификация J = 0, т.к. нижний вращательный уровень является ортосостоянием. Таким образом, нормальный дейтерий является смесью 2/3 ортодейтерия и 1/3 парадейтерия. В табл. 2 приведено процентное содержание молекул дейтерия при различных вращательных уровнях в равновесной смеси.

Поскольку основной вклад в образование УХН вносят тепловые нейтроны с энергией Е' < О,2 эВ, то согласно^{/5/} пренебрегая рассмотрением колебательных движений / все молекулы находятся в основном колебательном состоянии/, получим следующие выражения для сечений неупругого рассеяния:

а/ в случае параводорода и ортодейтерия

$$[\sigma(E' \rightarrow E)E^{-1/2}] = 4\pi \left(\frac{8M}{\pi T_{K} m}\right)^{1/2} \frac{1}{E'} \times \{\sum_{J=0,2,4..} P_{J} \times J \}$$

$$\times \sum_{J' \geq J} \Psi(J \rightarrow J') \exp\{-\frac{M}{2mE' T_{K}} \times [E' - \frac{m}{2M}E' - (E_{J'} - E_{J})]^{2}\};$$

$$[\sigma(E \to E')E^{1/2}] = 4\pi (\frac{8M}{\pi m T_K})^{1/2} \times \{\sum_{J=0,2,4} P_J \times /4/$$

$$\times \sum_{J' \leq J} \mathbb{W}(J \rightarrow J') \exp\{-\frac{M}{2mE'T_{K}} [E' + \frac{m}{2M}E' + (E_{J'} - E_{J})]^{2} \}\};$$

б/ в случае ортоводорода и парадейтерия

$$[\sigma(E' \rightarrow E)E^{-1/2}] = 4\pi \left(\frac{2m}{\pi M T_{K}}\right)^{1/2} \frac{1+\frac{M}{m}}{3} \frac{1}{E'} \times \{\sum_{J=1,3,5} P_{J} \times \{\sum_{J=1,3,5}$$

/5/

$$\times \sum_{J \leq J} \mathbb{W} (J \rightarrow J^{\prime}) \exp \{-\frac{M}{2mE^{\prime}T_{K}} [E^{\prime} - \frac{m}{2M} E^{\prime} - (E_{J^{\prime}} - E_{J})]^{2} \};$$

$$[\sigma(E \to E')E^{1/2}] = 4\pi \left(\frac{2m}{\pi M T_{K}}\right)^{1/2} \frac{1 + \frac{M}{m}}{3} \times \{\sum_{J=1,3,5...} P_{J} \times /6/$$

$$\times \sum_{\mathbf{J} \leq \mathbf{J}} \mathbb{W} (\mathbf{J} \rightarrow \mathbf{J}') \exp\{-\frac{\mathbf{M}}{2\mathbf{m}\mathbf{E}'\mathbf{T}_{K}} [\mathbf{E}' + \frac{\mathbf{m}}{2\mathbf{M}}\mathbf{E}' + (\mathbf{E}_{\mathbf{J}'} - \mathbf{E}_{\mathbf{J}})]^{2}\}\},\$$

где P_J - рассмотренный выше статистический вес молекулы в состоянии J; E_J - энергия вращательного уровня /для водорода $E_J = O,O15[J(J + 1)/2]$ эВ; для дейтерия $E_J = O,OO71[J(J + 1)/2]$ эВ; $E_J - E_J$ - энергия перехода между двумя вращательными уровнями J' и J; $W(J \rightarrow J')$ - зависящая от энергии нейтрона вероятность перехода молекулы из вращательного состояния J в состояние J', конкретный вид которой для ряда переходов приведен в $^{/5/}$; m - масса нейтрона; M - масса протона или дейтрона соответственно.

При расчете выходов УХН из газообразного конвертора, содержащего смесь орто-и парамодификаций водорода и дейтерия, сечения неупругого рассеяния нейтронов определялись как

$$\sigma(\mathbf{E} \to \mathbf{E}') = \frac{\mathbf{N}_{\Pi} a p a}{\mathbf{N}_{\Pi} a p a} + \mathbf{N}_{OPTO} \sigma_{\Pi} a p a} (\mathbf{E} \to \mathbf{E}')_{+} \frac{\mathbf{N}_{OPTO}}{\mathbf{N}_{\Pi} a p a^{+}} \mathbf{N}_{OPTO} \sigma_{OPTO} (\mathbf{E} \to \mathbf{E}'),$$

$$/7/$$

где $N_{\text{пара}}$ и $N_{\text{орто}}$ - число пара- и ортомолекул соответственно. На рис. 1 показано поведение рассчитанных значений сечений неупругого рассеяния медленных нейтронов $\sigma E^{1/2}$, связанного с нагревом нейтрона, для ряда конверторов.

Результаты расчетов $G(T_{\rm H}, T_{\rm K})$ для некоторых состояний газообразного водорода и дейтерия приведены в таблицах 3-6 /в целях единообразия представления данных за "1" принято значение $G(T_H, T_K)$ для поли-этилена при $T_H = T_K = 300°K^{/4}$ /. Видно, что в полном согласии с другими данными по водородсодержащим материалам /4/ выход УХН для газообразного водорода и дейтерия при фиксированной температуре нейтронного спектра заметно возрастает при охлаждении конвертора. Наряду с этим при фиксированной температуре конвертора наблюдается также возрастание выхода УХН при уменьшении температуры нейтронов Т_н /исключая случай параводорода/. Очевидно, что при уменьшении Т_и сечения охлаждения нейтронов также уменьшаются в случае рассеяния как на орто-, так и на парамодификациях водорода и дейтерия /из-за сокращения используемой доли движений молекул/. Однако в случае ортоводорода и парадейтерия сечения охлаждения уменьшаются значительно медленнее, чем у параводорода и ортодейтерия, и из-за наличия фактора Т_Н⁻² в /2/ ожидается увеличение выхода УХН при понижении температуры нейтронов.

Во избежание потерь УХН при их отражении от стенки контейнера, через которую они проникают в вакуумную полость нейтроновода, представляет особый интерес исследовать возможность использования некоторых водородсодержащих материалов в качестве конверторов УХН путем их намораживания на какую-либо охлажденную поверхность. В табл. 7 и 8 приведены результаты расчетов $G(T_H, T_K)$ для двух водородсодержащих жидкостей: для воды и дифенила. В этом случае для расчета входящих в $G(T_H, T_K)$ сечений неупругого рас-

Рис. 1. Рассчитанные значения сечений нагрева $\sigma_{\rm HV} E^{1/2}$ /барн. мэВ $^{1/2}$ / для медленных нейтронов /E < 1 мэВ/. 1 - равновесная концентрация орто-параводорода; 2 обыкновенный водород /равновесная концентрация при комнатной температуре/; 3 - параводород; 4 - равновесная концентрация орто-парадейтерия; 5 - вода.

сеяния согласно ^{/4/} использовалось однофононное некогерентное приближение, а спектры частот брались из работ ^{/7,8/}.

9

§2. Эксперимент

Газовый конвертор УХН /рис. 2/ представляет собой герметичный алюминиевый цилиндрический сосуд /1/ днаметром 17,5 см, длиной ~ 9 см. Он помещался в сквозном касательном канале реактора ВВР-К вблизи активной зоны, где поток тепловых нейтронов составлял ~5.10¹² см⁻² сек⁻¹ при мощности реактора ~10 MBm/2/.

По трубке /2/ от системы наполнения внутрь конвертора под различным давлением подавался водород, дейтерий н т.д. УХН, образованные в наполняющем конвертор газе, проходили в вакуумную полость нейтроновода через тонкую алюминиевую стенку /3/ толщиной 0,25 - 0,3 мм. Применением специальных внутренних стержней /4/ достигалась достаточная механическая прочность тонкой передней стенки /конвертор выдерживал давление до 5 атм/ и осуществлялся отвод радиационного тепла от этой стенки.

Влияние внутренних алюминиевых стенок на результаты измерений исключалось путем покрытия всей внутренней поверхности конвертора, кроме передней стенки /3/, медной фольгой /5/ толщиной ~50 мкм. Для охлаждения конвертора по трубкам /6/ подавался жидкий азот либо проточная вода. Температура измерялась термопарой медь-константан /7/.

С помощью проволочных пружин из нержавеющей стали /8/ производилась центровка конвертора в канале, чем предотвращался теплоприток к конвертору от стенок нейтроновода при охлаждении конвертора жидким азотом.

Выходящие из конвертора УХН по электрополированному медному нейтроноводу /9/ диаметром 17,5 см и общей длиной ~6 м попадали в детектор УХН. Нейтроновод имел два прямоугольных поворота, позволяющих расположить детектор вне видимости прямого пучка. УХН регистрировались парой фотоумножителей ФЭУ-52 со сцинтилляторами ZnS(Ag) диаметром 6 см, на поверхность которых наносились слои гидроокиси ⁶ Li. Эти слои поочередно закрывались медной шторкой толщиной ~10 мкм. Разница в интенсивности регистрации открытым и закрытым детектором и составляла интенсивность регистрации УХН.

оенил

HOB

8a 10

йтроновод

На рис. З показаны зависимости счета УХН от давления некоторых газов в конверторе. Выход УХН при откачанной полости конвертора составлял ~ 5 сек~! Последующие измерения показали, что такая же интенсивность регистрации УХН наблюдалась и в случае алюминиевого диска \$\$17,5 см и толщиной 5 мм. Это указывает на то, что интенсивность регистрации УХН при Р = 0 полностью определяется УХН, выходящими из тонкой передней стенки алюминиевого корпуса конвертора. При наличии внутренней отражающей медной стенки в конверторе и изотропного распределения образующихся УХН эффективная толщина передней алюминиевой стенки 1 мм; эта толщина совпадает с величиной составляет расчетного пробега УХН в алюминии, то есть является уже вполне достаточной для получения насыщения выхода УХН в зависимости от толщины алюминия.

Насыщение в выходе УХН из водорода, охлажденного до температуры ~ 80°К, наступает при давлении вдвое меньшем, чем для водорода при ЗОО°К. Это хорошо согласуется с расчетными значениями λ -глубины выхода УХН из водорода: $\lambda_{300°K}$ ~ 5,5 см, $\lambda_{80°K}$ ~ 3,3 см при давлении 1 атм /изменение λ от температуры происходит по причине изменения концентрации модификаций водорода с температурой при фиксированном давлении и температурного изменения сечений неупругого рассеяния на водороде/.

Наблюдаемое увеличение ~ в 3,2 раза выхода УХН при охлаждении водорода от 3ОО°К до 80°К находится в пределах расчетных значений увеличения выхода УХН при таком понижении температуры: фактор 2,6 для обыкновенного водорода /равновесная концентрация орто-пара при комнатной температуре/ /табл. 4/ и фактор 3,3 для равновесной концентрации при 80°К /табл. 3/, что указывает на вероятную возможность быстрого образования в водороде равновесной концентрации при 80°К под влиянием воздействия интенсивного реакторного облучения.

Для дейтерия /кривые 3 и 4 на рис. 3/ давление насыщения выхода УХН заметно превышает давление насыщения для водорода, что объясняется меньшими значениями неупругого сечения рассеяния и сечения захвата для дей-

терия. Несколько неожиданным является то, что выход УХН из дейтерия незначительно отличается от выхода УХН из водорода, несмотря на то, что сечение захвата на водороде ~ в 6ОО раз больше, чем на дейтерии. Объяснение этому факту дает рис. 1, где видно, что в случае дейтерия основным процессом, приводящим к потере УХН, является неупругое рассеяние, связанное с нагревом УХН, которое такого же порядка величины, как и в случае водорода /в рассматрнваемом интервале температур/.

Кривая 5 на рис. 3 показывает, что наблюдается незначительное количество УХН, образующихся на воздухе, заполняющем полость конвертора. Практическое отсутствие выхода УХН из ⁴ Не /кривая 6/ объясняется сравнительно малой вероятностью рождения УХН в гелии при таких давлениях вследствие относительной малости сечений неупругого рассеяния УХН на ядрах ⁴ Не.

При полном заполнении внутренней полости газового конвертора дистиллированной водой получено значение скорости счета ~12,5 cek^{-1} , что подтверждает теоретически рассчитанный результат о незначительной разнице в выходе УХН из газообразного водорода и воды /см. табл. 7/.

Во избежание потерь УХН при их отражении от алюминиевого окна контейнера представляет особый интерес использование открытых поверхностей некоторых водородсодержащих веществ в качестве конверторов УХН путем их намораживания на какую-либо охлажденную поверхность. Помещение значительных количеств таких веществ внутрь вакуумного объема нейтроновода приводит к радиационному разложению вещества конвертора и интенсивному газовыделению /водород, метан и т.д./ в объем нейтроновода^{/9/}. Малая глубина выхода УХН из водородсодержащих материалов /менее 1 мм/ позволяет использовать в качестве конвертора тонкие слои намороженных летучих водородсодержащих веществ. При этом значительно уменьшается количество выделяемого водорода, а большинство испарившихся от излучения реактора отдельных молекул вещества конвертора после некоторого количества ударов о стенки нейтроновода снова конденсируется на охлажденной поверхности, и лишь незначительная их доля уходит в вакуумные коммуникации откачной системы.

Намораживание летучих водородсодержащих веществ происходило на поверхность помещенного на место установки конвертора алюминиевого диска / ϕ 175 мм и толщиной 5 мм/, охлаждаемого жидким азотом.

Дозированное количество воды, спирта и т.д. вводилось /при закрытом вентиле вакуумной откачки/ в полость нейтроновода на расстоянии ~ 6 *м* от конвертора. Наблюдалось ухудшение вакуума с 10^{-4} Top до ~ 10^{-2} Top, однако через несколько минут он восстанавливался до прежнего значения, после чего открывались насосы для поддержания вакуума.

На рис. 4 представлены зависимости интенсивности регистрации УХН от толщины намороженного слоя воды, этилового и бутилового спирта. Выход УХН из намороженной воды /кривая 1/ превысил выход УХН из алюминия ~ в 23 раза. Насыщение выхода достигалось при толщинах конвертора ~ $O,O5 \ c/cm^2$. Выходы УХН из этилового и бутилового спиртов оказались несколько меньшими, чем из воды /кривая 2/.

Приняв отношение выходов УХН из воды и алюминия /при $3OO^{\circ}$ К/ 1 : O,14 /табл. $3^{/4/}$, а также табл. 7 этой работы/, получаем увеличение выхода УХН из воды при охлаждении от $3OO^{\circ}$ К до $8O^{\circ}$ К ~ в 3,4 раза, что составляет ~ O,6 от теоретического значения. Для полиэтилена и гидрида циркония при их охлаждении ранее также наблюдался только ~ $6O^{\circ}_{\circ}$ -ный рост выхода УХН по отношению к теоретически предсказанному $^{/4/}$.

Одной из возможных причин такого расхождения может являться неправильное предположение о поведении спектра колебаний указанных веществ в области низких частот /при энергии фононов < 1 мэВ. При расчете сечений неупругого рассеяния нейтронов как в /4/ так и в данной работе использовались экспериментально полученные спектры частот при энергии фононов >1 мэВ; в области же низких частот спектр фононных состояний описывался дебаевской моделью. Однако экспериментальные данные о поведении теплоемкости ряда веществ

/стекло, полиэтилен, полистирол и т.д./ показывают, что при низких температурах /< 1° К/ величина теплоемкости сильно превышает значения, рассчитанные с помошью дебаевской модели /см., например, /10,11/ /, что свидетельствует о том, что в этих веществах плотность фононных состояний в несколько раз превышает плотность фононных состояний при низких энергиях, предсказываемую дебаевской моделью. Доля низкочастотных фононных состояний с энергией < 1 мэВ, рассчитанная по дебаевской модели, например, в воде и гидриде циркония, составляет всего ~ 0,03% от общего числа. При $T_{\rm K} = 300^{\circ}$ К они вносят только 2% в величину сечения неупругого рассеяния нейтронов, и таким образом неточность данных о фононном спектре этих веществ при низких частотах не оказывает существенного влияния на расчеты выхода УХН. Однако при понижении температуры конвертора до T_и=80^{°°}К их вклад в величину сечения нагрева УХН возрастает до 20%, и в этом случае отклонение реального спектра при низких частотах от дебаевской модели должно приводить к увеличению сечения нагрева УХН и, следовательно, к более медленному увеличению выхода УХН при понижении температуры конвертора.

Намораживание тяжелой воды осуществлялось на подложку из гидрида циркония. На рис. 5 показана зависимость интенсивности регистрации УХН от толщины намороженной D_2 О. Относительно малый выход УХН по сравнению с гидридом циркония и намороженной водой объясняется тем, что от такого конвертора получаются УХН только в узком диапазоне скоростей: от~ 5,5 м/сек граничной скорости для тяжелого льда, до ~ 5,7 м/сек граничной скорости меди - материала стенок нейтроновода. Резкое падение интенсивности регистрации УХН при малых толщинах намороженной тяжелой воды наглядно иллюстрирует проявление отражения выходящих из гидрида циркония УХН от тонких слоев тяжелого льда.

Несмотря на малые сечения захвата и неупругого рассеяния для D₂O, наблюдается довольно рано наступающее насыщение выхода УХН, что может быть объяснено значительным влиянием рассеяния УХН на микрокристаллах тяжелого льда и примесью обычной воды.

16

17

Рис. 5. Зависимость интенсивности регистрации УХН $J/се\kappa^{-1}$ / от d - толщины /г.см⁻²/ намороженной тяжелой воды на поверхность гидрида циркония при температуре 80° К.

При температуре жидкого азота давление паров воды намного ниже значения предельного вакуума /~ $1O^{-5}$ Top/, получаемого откачными насосами, а во время намораживания и возгонки воды /в течение нескольких минут/ давление паров воды не превышало ~ $1O^{-2}$ Top. По этой причине в течение нескольких месяцев при работе с намораживаемыми конверторами не было замечено уменьшения выхода УХН из нейтроновода в связи с коррозией стенок медного нейтроновода.

§3. Выводы

Конвертор из газообразного водорода является практически удобным источником УХН при использовании его на высокопоточном реакторе, так как такой конвертор не подвержен радиационному разложению под действием излучения реактора. В отличие от гидрида циркония, полиэтилена и воды, где эффект увеличения выхода УХН при охлаждении не достигает расчетной величины, для газообразного конвертора эффект охлаждения соответствует расчетному значению.

Потери в результате отражения УХН от стенки алюминневого окна конвертора не позволяют получить выход УХН из обычного водорода, существенно превышающий выход УХН с открытой поверхности гидрида циркония. Согласно расчету / табл. 5/ выход УХН из газообразного параводорода при температуре ~20°К почти в 30 раз должен превышать выход УХН из обычного водорода при комнатной температуре. Этот факт еще требует экспериментальной проверки. В то же время согласно полученным экспериментальным данным намороженная вода при температуре жидкого азота обладает максимальным выходом УХН. Практическое удобство, регенерация, отсутствие дополнительной коррозин стенок нейтроновода от паров воды, возможность легкого изменения толщины конвертора делают намораживаемый водяной конвертор в настоящее время нанболее перспективным источником УХН.

В заключение авторы благодарят В.И.Лущикова и В.К.Игнатовича за полезные обсуждения и замечания, И.М.Франка за интерес к этой работе, коллектив ВВР-К /2/ за обеспечение бесперебойной работы реактора.

Таблица I роцентное содержание молекул водорода а различных вращательных уровнях $\underline{A} = J = 0 J = I J = 2 J = 3 J = 4$ новес-
$\begin{array}{c} \mathbf{H} \\ $
EOBEC- T T C OZ O 45
кон- птрация заводо- 51,40 - 47,0 - 1,59 кновен- водород 12,85 65,84 II,75 9,08 0,45
виовесная нцентра 18,65 71,67 7,27 2,38 0,03
раводо- д 71,82 - 28,05 - 0,13 ыкновен- й водо- 17,95 72,59 7,01 2,41 0,03 од
авновесная энцентра- зя 37,36 61,46 I,15 0,02 - араводород 97,02 - 2,98 -
ин водо- од 24,25 74,97 0,74 0,03 - авновесная концентра- пс ва 23 II 0.0I
шя 76,66 25,11 0,02 нараводо- род 99,98 - 0,02 -

20

21

У(T_н,T_к)для газообразного водорода (равновесное соотношение между концентрациями параводорода и ортоводорода)

THOK	K 20	50	100	200	300	
50	I8,9	27,9	17,9	10,4	7,5	
100	28,9	14,9	8,3	4,7	3,4	
200	33,3	9,3	3,9	2 , I	I , 5	
300	27,8	6,7	2,5	I,3	0,94	
600	14	3,4	I,I	0,6	0,4	

Таблица 4

У(T_H,T_K)для обыкновенного газообразного водорода (равновесная концентрация при 300⁰К)

	فسادي والمكاف المتحجي والم				
Thok	20	50	100	200	300
50	60	31	18,2	10,4	7,4
100	24	13,6	8,2	4,8	3,4
200	8,9	5,9	3,7	2,2	I,5
300	5,6	3,5	2,2	I,3	0,94
600	2,2	I ,4	I,0	0,6	0,4

	•					
JHOK JHOK	20	50	100	200	300	
50	18,3	12,8	6,6	I,2	0,56	
100	28,3	19,8	9,9	I,6	0,63	
200	33	23,3	II,8	I,9	0,77	
300	27,4	20,3	10,6	I,8	0,76	
600	13,7	12,7	6,6	I,2	0,56	

 $\mathcal{Y}(\mathcal{T}_{\mu},\mathcal{T}_{\kappa})$ для газообразного параводорода

Таблица 6

 $\mathcal{Y}(\mathcal{T}_{\mathsf{H}},\mathcal{T}_{\mathsf{K}})$ для газообразного дейтерия (равновесное соотношение между концентрациями ортодейтерия и парадейтерия)

J' ok Jr ok	20	50	100	200	300
50	60	37,2	22,4	I3,5	I0.2
100	20,I	13,7	9,I	5,8	4,5
200	6,8	4,9	3,4	2,3	I,8
300	3,5	2,5	I,8	I,2	I,0
600	I,2	0,8	0,6	0,43	0,36

Таблица 7

TH °K	4	20	40	80	150	220	300
20	8,2	9,0	9,6	8,0	5,2	3,7	2,7
40	13,2	13,3	12,7	9,5	5,7	3,9	2,9
70	I 4, 5	14,3	12,8	8,8	5,0	3,3	2,4
100	14,2	I3, 9	12,0	7,8	4,2	2,8	2,0
I50	13,7	I3,3	II , 3	6,9	3,5	2,2	I,5
200	I3 , 5	I3,0	10,9	6,4	3 , I	I,8	I , 3
250	13,3	I2,8	10,7	6,I	2,8	I , 7	I,I
300	I3 , 0	I2,5	I0 ,3	5,8	2,6	I,5	I
البير المرابع فتفيره							

 $\mathcal{Y}(T_{\mu},T_{\kappa})$ для $H_{2}O$

Таблица 8

J(14,1K) ADA 015 F116									
THOK	4	20	40	80	I50	220	300		
20	38,5	40,0	35,0	24,4	I6,I	12,8	10,5		
40	37,8	35,5	28,3	I8,3	II , 7	8,9	7,2		
70	32,8	28,9	21,1	12,8	7,5	5,6	4,7		
100	28,3	25,0	17,2	9,4	5,6	4, I	3,3		
150	23,9	20,0	I3,3	7,2	3,8	2,7	2,2		
200	20,5	17,2	II,I	5,6	2,8	2,0	I,5		
250.	I7,8	I5,0	9,4	4,7	2,3	I,6	I,2		
300	I6 , 0	I3 , 3	8,3	3,9	I, 9	I , 3	I		

У(Т_н, Т_к) для С₁₅ Н₁₆

Литература

- 1. Ф.Л.Шапиро. Сообщение ОИЯИ, РЗ-7135, Дубна, 1973.
- 2. Е.З.Ахметов, Д.К.Каипов, В.А.Конкс, В.Й.Лущиков, Ю.Н.Покотиловский, А.В.Стрелков, Ф.Л.Шапиро. Сообщение ОИЯИ, РЗ-7457, Дубна, 1973.
- 3. Л.В.Грошев, В.Н.Дворецкий, А.М.Демидов, В.И.Лущиков, С.А.Николаев, Ю.Н.Панин, Ю.Н.Покотиловский, А.В.Стрелков, Ф.Л.Шапиро. Сообщение ОИЯИ, P3-7282, Дубна, 1973.
- 4. В.В.Голиков, В.И.Лущиков, Ф.Л.Шапиро. ЖЭТФ, 64, 73 /1973/.
- 5. J.A.Young, J.U.Koppel. Phys. Rev., 135, A603 (1964).
- 6. А.Фаркас. Ортоводород, параводород и тяжелый водород. ОНТИ, Москва, 1936.
- 7. B.C.Haywood. J.Nucl.Energy, 21, 249 (1967).
- 8. В.И. Мостовой, И.М. Садиков, А.А. Чернышев, И.П.Еремеев. Сборник "Исследования по применению органических теплоносителей-замедлителей в энергетических реакторах". Атомиздат, 1964, стр. 211.
- 9. J.Robson, D.Winfeld. Phys.Lett., 40B, 537 (1972).
- 10. H.Bottger. Phys.Stat.Sol., 62, 9 (1974).
- 11. R.B.Stephens. Phys.Rev., B8, 2896 (1973).

Рукопись поступила в издательский отдел 23 декабря 1974 года.