

P3-84-810

Ю.Н.Покотиловский

О НЕКОТОРЫХ ВОЗМОЖНОСТЯХ ИССЛЕДОВАНИЙ С ОЧЕНЬ ХОЛОДНЫМИ НЕЙТРОНАМИ НА ИМПУЛЬСНЫХ ИСТОЧНИКАХ

В последние годы усиливается интерес к исследованиям с применением очень холодных нейтронов /длина волны > 10 Å/. Исследования на импульсных нейтронных источниках имеют свои особенности. В данной работе приводится анализ некоторых возможностей в применении к реактору ИБР-2 ЛНФ ОИЯИ /1/ Во-первых, интервал между вспышками 200 мс допускает спектрометрию нейтронов при длине пролетной базы 10-20 м вплоть до скоростей 100-50 м/с /длина волны 40-80 Å/. В настоящее время в мире нет и не строится периодических источников нейтронов со столь длительным интервалом между импульсами. Во-вторых, довольно большая длительность вспышки /~200 мкс/, не позволяя проводить с высоким энергетическим разрешением исследования в области тепловых нейтронов, тем не менее дает возможность получить хорошее абсолютное разрешение для медленных нейтронов ~1 мкэВ. В связи с этим здесь предлагается построить специальный нейтроновод для вывода из реактора очень холодных нейтронов, и кратко очерчен круг возможных экспериментов.

1. НЕЙТРОНОВОД

Зеркальные нейтроноводы, предназначенные для вывода тепловых нейтронов, непригодны для вывода холодных. Во-первых, длинный воздушный промежуток ~ 3 м между источником нейтронов ИБР-2 и входом в нейтроновод сильно ослабляет поток холодных нейтронов, /коэффициент ослабления ~ 3 для нейтронов с длиной волны 10 А и далее увеличивается пропорционально длине волны/. Вовторых, большой радиус кривизны нейтроноводов, оптимальный для вывода тепловых нейтронов, приводит к значительной примеси тепловых, запаздывающих и сателлитных. Это существенно из-за быстрого падения интенсивности холодных нейтронов ~ λ^{-3} . Например. при λ = 30 А примесь запаздывающих тепловых нейтронов может в несколько раз превысить поток холодных нейтронов /см. ниже/. Поэтому для вывода чистого пучка очень холодных нейтронов необходим нейтроновод с малым радиусом кривизны и, возможно, с дополнительным поворотом относительно оси пучка. В качестве примера приведем результаты расчета интенсивности нейтронов из нейтроновода со следующими параметрами: длина L 0 = 10 м, ширина a = 3 см, высота h = 10 см, радиус кривизны ρ = 300 м, покрытие - никель, E_{\perp} = 1,9 10⁻⁷ эВ - граничная энергия никеля, $E^* = E_{1,p} \rho/2a = 1$ мэВ, $\lambda^* = 9$ А. Интенсивность на выходе (H/CM · C)

$$F_0(E, L, \rho)dE = \Phi_0(E)4\theta_k^2(E)R(E, L)T_0(E, \rho)T(E, L_0) = I_0f(E)dE, /1/$$

где $\Phi_0(E) = I_0 \frac{E}{E_T^2} e^{-E/E_T}$ - плотность потока в замедлителе в 1 сте-

радиан на единицу энергии нейтрона; E_T - температура нейтронного спектра; $4\theta_k^2(E) \doteq E/E$ - выигрыш за счет применения отражающего нейтроновода, $\tilde{E} = 0,98$ мкэВ; R(E, L) - проигрыш из-за удаления L входа в нейтроновод от замедлителя,

ELAN DE COLORDER

$$T_{0}(E, \rho) = \begin{cases} \frac{2}{3} \frac{E^{*}}{E} & - для E > E^{*}, \\ \frac{2}{3} \frac{E^{*}}{E} [1 - (1 - \frac{E}{E^{*}})^{3/2}] & - для E < E^{*} - деформация \end{cases}$$
 /2/

спектра из-за изгиба нейтроновода ^{/6/}; T(E, L_d)- потери из-за шероховатостей поверхности нейтроновода и других дефектов. Для вывода очень холодных нейтронов необходимо предельно сократить расстояние от замедлителя, при этом R(E, L) \rightarrow 1. Не будем сейчас учитывать и потери на шероховатостях, которые зависят от качества стекла и покрытия. Результаты испытания ^{/2/} модели /a = 1,7 мм, h = 170 мм, L₀ = 3 м/ показали, что для $\lambda > 8$ Å потери составили 20%. В терминах длины волны имеем соответствующее /1/ выражение

$$I_{0}f(\lambda) = I_{0} \frac{2\lambda_{T}^{4}}{\lambda^{5}} e^{-\lambda_{T}^{2}/\lambda^{2}} 4\theta_{k}^{2}(\lambda) T_{0}(\lambda), \qquad /3/$$
rge $4\theta_{k}^{2}(\lambda) = 1, 2 \cdot 10^{-5} \lambda^{2} / \lambda B \dot{A}/,$

$$T_{0}(\lambda) = \begin{cases} -\frac{2}{3} \frac{\lambda^{2}}{\lambda^{*2}} & \text{при } \lambda < \lambda^{*} \\ 2 \lambda^{2} [1 (1 - \lambda^{*2})^{3/2}] & \text{при } \lambda > \lambda^{*} \end{cases}$$

Результаты расчета f(E) и f(\lambda) представлены в табл.1 и 2.

3 1*2

Таблица 1

Pe	зульт	гаты	расче	га фун	сции f((E) /	мкэВ	-1 /			
Е /мэВ/	0,0)5	0,1	0,2	0,4	0,7	7 1	2	4	10	20
f(E) · 10 ¹⁰	8,5	5	8,3	7,9	7,5	6,7	75,	5 2,7	1,3	0,43	0,1
	Pes	ульт	аты ра	асчета	функц	ин f(λ) /	Ta(Å ⁻¹ /	5лица	a 2	
$\lambda / \mathring{A} /$	1	2	-4	6	8	10	20	30	40	50	
$f(\lambda) \cdot 10^8$	10	32	25	18	14	11	1,7	0,52	0,	22 0,	11

Поскольку на выходе прямого или слабоизогнутого нейтроновода интенсивность запаздывающих $\sim I_0 \eta / T$, где доля запаздывающих $\eta =$ = 0,06 и T - интервал между импульсами, то из приведенных формул следует отношение интенсивности запаздывающих и холодных, равное $E_T t/2ET$, где t - время пролета. По данным предварительных измерений I_0 в гребенчатом водяном замедлителе ^{/3/} при 2 МВт составляет 5-10¹¹ н/см² с стерадиан. Таким образом, без учета потерь в нейтроноводе и без применения дополнительного холодного замедлителя можно получить на выходе из нейтроновода скорость счета в канале шириной 250 мкс $/\Delta\lambda_{\sim}0,1$ Å/ 8,5·10² н/см² с в области $\lambda = 20$ Å.

Интенсивность очень холодных нейтронов можно поднять еще в несколько раз /не имея в виду разработку жидководородного замедлителя/, если создать дополнительный охлаждающий конвертор /например жидкопропановый/ толщиной 2 см при температуре 100 К. Конструкция и техника безопасности работы с таким источником несравненно проще, чем с жидководородным замедлителем ^{/4,5/}.

II. ВОЗМОЖНЫЕ ОБЛАСТИ ИССЛЕДОВАНИЙ

1/ Измерение полных сечений в диапазоне длин волн 5-50 Å. Здесь, например, интерес представляют сжатые газы с точки зрения образования кластеров /ван-дер-ваальсовы молекулы/ и фазовые переходы.

2/ Квазиупругое рассеяние в диапазоне переданных импульсов /10⁻⁸÷ 1/А⁻¹ и переданных энергий вплоть до 1 мкэВ. Наболее интересна область малых переданных импульсов. Основное преимущество здесь связано с возможностью применения корреляционного анализа на импульсном реакторе 171. Если для исследования неупругих процессов этот метод не всегда приемлем /из-за увеличения статистической ошибки в присутствии мощных упругих пиков/, то для исследования упругого и квазиупругого рассеяния корреляционный анализ обладает большим преимуществом. В таком методе измеряется двумерная функция рассеяния в плоскости (Q, $\Delta \omega$) даже при использовании одного детектора. Возможные области применения - это диффузионные движения в жидкостях, растворах, гидридах, сплавах, воде в полимерах; сегментная подвижность в полимерах и т.д., а кроме того критическое рассеяние при фазовых переходах. Отметим, что в простой модели диффузии, когда $\Delta \omega_{-}Q^{2}$ выгодно уменьшить во времяпролетной методике энергию нейтронов, поскольку при фиксированных длительности вспышки и угле рассеяния квазиупругое уширение ~ Е, а разрешение ~ Е^{3/2}.

3/ Эксперименты, связанные с исследованием отражения нейтронов от поверхности раздела и плоскостей с градиентом коэффициента преломления для нейтронов /пленки, мембраны, ферромагнетики/. Работа с более медленными нейтронами, когда угол скольжения при наблюдении отражения ~ λ увеличен, существенно легче, чем работа с тепловыми нейтронами.

4/ Дифракция на объектах с большим параметром решетки, на сверхрешетках и т.д.

5/ Поиск и исследование солитонных возбуждений в твердых телах, полимерах.

6/ Исследование ширин фононных линий в некоторых объектах, например, в жидком гелии.

7/ Интерферометрия с фазовым разделением. Использование временной развертки и позиционного детектора сильнейшим образом

2

3

увеличивает статистическую точность, поскольку измеряется двумерная интерферограмма координата - длина волны.

8/ Исследование неупругих процессов с применением корреляционного анализа возможно в случаях, когда упругий пик существенно подавлен по той или иной причине. В ином случае необходима дополнительная монохроматизация в прямой или обратной геометрии. Здесь требуется более высокая интенсивность, хотя области применения крайне интересны. В частности, спектр низкочастотных возбуждений в полимерах /в том числе биологических/ исследуется, например, методом низкотемпературной калориметрии /интегральный способ/ ^{/8/}; неупругое рассеяние даст спектр непосредственным образом. В этом же плане интересны и стеклообразные объекты с туннельными переходами, дающими линейную зависимость теплоемкости от температуры ^{/9/}.

Для исследования неупругих процессов с высоким разрешением можно предложить вариант спектрометра обратной геометрии с кристаллическим фильтром из графита / $\lambda_{rp} = 6,69$ Å/ или висмута / λ_{rp}_{rp} = 6,5 Å/, и кристаллическим монохроматором из фторфлогопита ¹⁰/d = 10 Å для направления /001// перед детектором. Длина волны регистрируемых детектором нейтронов выбирается с таким расчетом, чтобы $\lambda/2 < \lambda_{rp}$ поликристаллического фильтра, т.е. высшие порядки отражения от кристалла-монохроматора отсекались бы фильтром. При длине пролетной базы 20 м достигаемое разрешение в области упругого пика составляет 10 мкзВ. Эффективная работа такого спектрометра требует существенного увеличения интенсивности холодных нейтронов.

Автор благодарен В.В.Голикову и Ю.М.Останевичу за замечания, В.М.Назарову за консультации и обсуждения, а также П.Пахеру и Л.Роште за интерес к работе.

ЛИТЕРАТУРА

- 1. Ананьев В.Д. и др. ПТЭ, 1977, №5, с.17; ОИЯИ, Р13-84-538, Дубна, 1984.
- 2. Корнилов В.В. и др. ОИЯИ, Р13-80-496, Дубна, 1980.
- 3. Гундорин Н.А., Назаров В.М. ОИЯИ, РЗ-80-721, Дубна, 1980.
- 4. Землянов М.Г. и др. ПТЭ, 1973, №5, с.34; Nucl.Instr. and Meth., 1976, 136, p.425.
- 5. Galotto C. et al. Nucl.Instr. and Meth., 1976, 134, p.369.
- Meier-Leibnitz H., Springer T. Reactor Sci.Technol. (J.Nucl.Energy A/B), 1963, 17, p.217.
- Kroo N. et al. IAEA, Neutron Inelastic Scattering. Vienna, 1972, p.763.
- 8. Мревлишвили Г.М. УФН, 1979, 128/2/, с.273.
- 9. Anderson P. Phil.Mag., 1972, 25, p.1.
- 10. Зеленюк Ф.М. и др. ПТЭ, 1973, №2, с.57.

Рукопись поступила в издательский отдел 17 декабря 1984 года. Покотиловский Ю.Н.

Некоторые возможности исследований с очень холодными нейтронами на импульсных источниках

Кратко рассмотрены различные экспериментальные возможности при использовании очень холодных нейтронов / λ > 5 Å/ на импульсных нейтронных источниках. Рассчитан выход холодных нейтронов из кривого зеркального нейтроновода с относительно малым радиусом кривизны /300 м/, установленного на неохлаждаемом замедлителе реактора HБР-2. Отмечены возможные области применения спектроскопии очень холодных нейтронов. В частности, перспективными являются исследование квазиупругого рассеяния с использованием корреляционной спектроскопии на импульсном реакторе, "отражательная" спектроскопия для изучения одномерных структур, нейтронная интерферометрия с использованием позиционно-чувствительных детекторов. Предложен вариант спектрометра неупругого рассеяния очень холодных нейтронов с использованием кристалла фторфлогопита в качестве монохроматора.

P3-84-810

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

3

Pokotilovskij Yu.N. P3-84-810 Some Possibilities of Investigation with Very Cold Neutrons at Pulsed Sources

Various experimental possibilities of using very cold neutrons $(\lambda > 5 \ \AA)$ at pulsed neutron sources are briefly discussed. The outflow of cold neutron flux from curved mirror neutron guide with a relatively small radius of curvature (300 m) installed on a noncooled moderator of IBR-2 reactor is calculated. Possible regions of application of spectroscopy of very cold neutrons are indicated. In particular, promising are quasielastic scattering study with the use of correlation spectroscopy at a pulsed reactor, "reflective" type spectroscopy for investigation of one-dimensional structures, neutron interferometry with a position-sensitive detector. A variant of spectrometer of inelastic scattering of very cold neutrons is proposed in which the fluoroflogopit crystal is used as a monochromator.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research, Dubna 1984

4