

P3-83-470

Зо Ин Ок, В.Г.Николенко, А.Б.Попов, Г.С.Самосват

НАБЛЮДЕНИЕ СПИН-ОРБИТАЛЬНОГО РАСЩЕПЛЕНИЯ Зр-МАКСИМУМА НЕЙТРОННОЙ СИЛОВОЙ ФУНКЦИИ

Направлено в журнал "Письма в ЖЭТФ"

1983

В начале 60 гг. экспериментальные данные о р-нейтронных силовых функциях давали основание предполагать, что в районе атомных весов A ~80-120 имеется "двуглавый" максимум, существование которого интерпретировалось как следствие спин-орбитального расщепления одночастичного состояния 3p на $3p_{1/2}$ и $3p_{3/2}$.

Однако затем выяснилась ошибочность как некоторых экспериментальных, так и теоретических результатов, и вопрос о расщеплении 3p-максимума остался экспериментально нерешенным.

Согласно современным представлениям, силовые функции $S_{1/2}^{1}$ и $S_{3/2}^{1}$, соответствующие двум значениям полного момента p - нейтрона, должны образовывать в области 3p -максимума примерно одинаковые пики, разнесенные по шкале A на величину $\Delta A \sim 7$ -10. A так как ширина пиков существенно больше ΔA , то максимум

обычно измеряемой величины $S^1 = \frac{1}{3}(S^1_{1/2} + 2S^1_{3/2})$ не раздваива-

ивается.

Раздельное определение $S_{1/2}^1$ и $S_{3/2}^1$ возможно по параметпам отдельных резонансов. Наиболее просто использовать четночетные ядра-мишени, у которых спин р -резонанса совпадает с полным моментом нейтрона. В настоящее время спины у 10 и более р-резонансов определены для 12 четно-четных изотопов Zn, Sr, Zr, Mo и Sn. Используя информацию из ^{/2/}, мы вычислили значения $S_{1/2}^1$ и $S_{3/2}^1$, которые показаны на рис.1. Эти данные не противоречат представлению о том, что пик $S_{3/2}^1$ расположен левее пика $S_{1/2}^1$, но в пределах больших ошибок пики совпадают. Этот результат показывает, что даже спектрометры с рекордным разрешением не дают возможности наблюдать спин-орбитальное расщепление по параметрам отдельных резонансов.

Как и в случае силовых функций S^0 и S^1 , лучшую точность определения $S^{1}_{1/2}$ и $S^{1}_{3/2}$ можно достигнуть путем измерения усредненных по резонансам сечений. Для этого нужно измерить дифференциальные сечения упругого рассеяния и воспользоваться тем фактом, что резонансное рассеяние на четночетных ядрах изотропно для компаунд-состояний со спином 1/2 и пропорционально $1 + P_9(\cos\theta)$

в случае спина компаунд-состояний 3/2. Учет потенциального рассеяния и интерференции с ним резонансного рассеяния, а также усреднение по неперекрывающимся резонансам в предположении постоянства их радиационных ширин и с учетом портер-томасовских флуктуаций приведенных нейтронных ширин приводят к формулам, содержащимся в работе $^{/8/}$. В этих формулах члены разложения дифференциального сечения $\sigma_{\rm g}(\theta)$ по полиномам Лежандра выражены через нейтронные и радиационные силовые функции и сдвиги фаз потенциального рассеяния для s и р-нейтронов. Последние однозначно связаны с параметрами R_0^∞ и R_1^∞ R-матричной теории.

В работе ^{/3/} измерены $\sigma_{\rm s}(\theta)$ для пяти изотопов олова и получены значения параметров S⁰, S¹_{1/2}, S¹_{3/2}, R[∞]₀ и R[∞]₁. В настоящей работе измерены значения $\sigma_{\rm s}(\theta)$ еще для 12 элементов с четными Z, содержащих в основном четно-четные изотопы. Измерения проводились на пучке нейтронов реактора ИБР-30 с помощью аппаратуры и методики, описанных в ^{/4,5/}. В отличие от ^{/3/}, анализировались данные до энергии ~400 кэВ, при этом учитывался анизотропный вклад d-волны потенциального рассеяния. Для каждого элемента и изотопа олова мы дополнительно включили в анализ все значения gl[°]_n из ^{/2/} без использования идентификации резонансов по четности. При этом в подгонке использовалось выражение

$$\frac{\Sigma g \Gamma_n}{\Delta E} = \sqrt{E} \left[S^0 + v_1 (S^1_{1/2} + 2S^1_{3/2}) \right],$$

где v_1 - фактор проницаемости центробежного барьера для P -нейтронов. Для образцов-элементов $\Sigma\,g\Gamma_n/\Delta E$ бралось усредненным по изотопам; для каждого образца использовались значения для 3-10 энергетических интервалов. Наконец, во всех выражениях S⁰ и S $_{1/2,3/2}^1$ были заменены на S⁰/d₀ и S $_{1/2,3/2}^1/d_1$, где d $_\ell$ -факторы, учитывающие влияние далеких уровней на ширины резонансов в R-матричном формализме $^{/6},7^/$.

Полученные нами значения $s_{1/2}^1$ и $s_{3/2}^1$ приведены на рис.2; там же показаны кривые, проведенные методом наименьших квадратов при трех варьируемых параметрах и соответствующие кривым Лоренца в энергетической шкале. Из рисунка и численных значений параметров следует, что 1/ пики $s_{1/2}^1$ и $s_{3/2}^1$ раздвинуты в ожидаемую сторону на $\Delta A = 17 \pm 4$ и 2/ амплитуды и ширины пиков в пределах ошибок совпадают. Необходимо, однако, заметить, что более последовательным было бы использовать при анализе данных R_1^∞ , "расщепленное" на $R_{1/2}^\infty$ и $R_{3/2}^\infty$ *. Тогда, как показывают проведенные оценки, пик $s_{1/2}^1$ стал бы примерно вдвое выше пика $s_{3/2}^1$. Бо́льшую амплитуду пика у $s_{1/2}^1$ мы наблюдали также с

"нерасщепленным" R_1^{∞} при использовании граничных условий $B_{\ell} = -\ell$, дающих другие значения факторов d_{ℓ} , вместо условий $B_{\ell} = 0$, при которых получены результаты, показанные на рис.2. Вопрос влияния расщепления R_1^{∞} и граничных условий на соотношение амплитуд пиков $S_{1/2}^1$ и $S_{3/2}^1$ требует дальнейшего изучения.

Таким образом, наблюденное спин-орбитальное расщепление 3p -максимума нейтронной силовой функции качественно согласуется с предсказанием оптической модели. С меньшей определенностью можно говорить о том, что величина расщепления несколько больше теоретической, а пик S $^1_{1/2}$ выше пика S $^1_{3/2}$. Причину заниженной амплитуды пика S $^1_{3/2}$ в сравнении с пиком S $^1_{1/2}$ можно было бы искать в наличии динамических деформаций у исследованных ядер и соответствующего расщепления 3p $_{3/2}$ -максимума.

ЛИТЕРАТУРА

- 1. Fiedeldey H., Frahn W.E. Ann. Phys., 1962, 19, p.428.
- Mughabghab S.F. et al. Neutron Cross Sections, Academic Press, 1981, vol.1, part A.
- Николенко В.Г., Попов А.Б., Самосват Г.С. ОИЯИ, РЗ-82-436, Дубна, 1982; Nikolenko V.G., Ророv А.В., Samosvat G.S. Nuclear Data for Science and Technology. Proc.Int.Conf. Antwerp., 6-10 September, 1982, p.781.
- 4. Гребнев А.В. и др. ОИЯИ, РЗ-82-514, Дубна, 1982.
- 5. Вагов В.А. и др. ОИЯИ, РЗ-82-770, Дубна, 1982.
- 6. Лейн А., Томас Р. Теория ядерных реакций при низких энергиях, ИЛ, М., 1960, гл.Х!!, § 1.
- 7. Николенко В.Г. ОИЯИ, Р4-83-225, Дубна, 1983.

Рукопись поступила в издательский отдел 6 июля 1983 года.

^{*}В нашем анализе $R_{1/2}^{\infty}$ и $R_{3/2}^{\infty}$ не определяются раздельно и однозначно из-за сильной корреляции между ними.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

.

Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3 р. 00 к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6 р. 00 к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тона/	7 р. 40 к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5 р. 00 к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3 р. 00 к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 р. 00 к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3 р. 50 к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3 р. 00 к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 р. 00 к.
A 2-81-543	Томлы VI Международного совещании по проблемам квант. товой теории поля. Алушта, 1981	2 р. 50 к.
410,11-81-622	Труды Неждународного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 р. 50 к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3 р. 60 к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 р. 40 к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3 р. 20 к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна. 1981.	3 n 80 v
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
Д3,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5 р. 00 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Зо Ин Ок и др.	P3-83
Наблюдение спин-орбитального расщеплени нейтронной силовой функции	я 3р-максимума
Для ядер в области массовых чисел A дифференциальных сечений упругого рассе но определены значения р -волновых нейт для значений полного момента нейтрона l результаты являются, по-видимому, первы блюдением спин-орбитального расщепления тичного состояния.	50-130 из усреднен яния нейтронов разд ронных силовых функ /2 и 3/2. Полученны м непосредственным несвязанного одноч
Работа выполнена в Лаборатории нейтр	онной физики ОИЯИ.
Zo In Ok et al.	P3-83
Observation of the Spin-Orbit Splitting	
of the Neutron Strength Function 3p-Ma	; ximum
of the Neutron Strength Function $3p-Ma$ For the nuclei in mass region A ~50- strength functions for the states $p_{1/2}$ separately from averaged differential m tering cross sections. The obtained res rently for the first time the spin-orbi bound state.	ximum 130 the p-wave neu and $p_{3/2}$ are found eutron elastic scat ults demonstrate ap t splitting of an u
of the Neutron Strength Function $3p-Ma$ For the nuclei in mass region A -50- strength functions for the states $p_{1/2}$ separately from averaged differential m tering cross sections. The obtained res rently for the first time the spin-orbi bound state. The investigation has been performed of Neutron Physics, JINR.	ximum 130 the p-wave neu and p _{8/2} are found eutron elastic scat ults demonstrate ap t splitting of an u at the Laboratory
of the Neutron Strength Function $3p-Ma$ For the nuclei in mass region A ~50- strength functions for the states $p_{1/2}$ separately from averaged differential in tering cross sections. The obtained res rently for the first time the spin-orbi bound state. The investigation has been performed of Neutron Physics, JINR.	ximum 130 the p-wave neu and p _{g/2} are found eutron elastic scat ults demonstrate ap t splitting of an u at the Laboratory

Перевод О.С.Виноградовой.