

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

2503

16/5-83

et

P3-83-133

Э.Мюле

ПРЯМОЕ ВЫЧИСЛЕНИЕ ВЕРОЯТНОСТЕЙ МАГНИТНЫХ ДИПОЛЬНЫХ ПЕРЕХОДОВ ДЛЯ ТРЕХВАЛЕНТНЫХ РЕДКОЗЕМЕЛЬНЫХ ИОНОВ В КРИСТАЛЛИЧЕСКОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ С ГЕКСАГОНАЛЬНОЙ СИММЕТРИЕЙ

Гамильтониан 4f -электронов свободного редкоземельного кона полностью симметричен относительно группы вращения, поэтому основной уровень мультиплета, который характеризуется полным моментом количества движения 7, 27+1, кратно вырожден /1/. Под действием кристаллического электрического поля (КЭП) в кристаллах это состояние расшепляется в соответствии с неприводимыми представлениями точечной группы симметрии рассматриваемого иона в кристалле. Размерности таких представлений определяют остаточное вырождение. Чем ниже симметрия положения редкоземельного иона, тем большее количество параметров необходимо вводить в одночастичный гамильтониен. который описывает взаимодействие 4f-электронов с окружающим их электрическим полем. Для определения уровней и волновых функций 44 -электронов требуется решить скалярное уравнение. Вероятности переходов между подуровнями при магнитном рассеянии нейтронов зависят от волновых функций состояний 44 -электронов в КЭП и, следовательно, от параметров КЭП в гамильтониане, Подгонка параметров при описании экспериментальных спектров неупругого рассеяния медленных неятронов требует многочисленных повторений процедуры диагонализации гамильтониана и вычисления вероятности магнитных переходов.

Рассмотрям случай гексагональной симметрян КЭП $^{/2/}$. Гамильтониан взаямодействия КЭП с 4f-электронами редкоземельного иона представляется в виде $^{/3/}$

 $\mathcal{H}_{CEF} = B_2^{\circ} O_2^{\circ} + B_4^{\circ} O_4^{\circ} + B_6^{\circ} O_6^{\circ} + B_6^{\circ} O_6^{6}$, (I) где O_ℓ^{m} - операторы Стивенса, выражаемые через операторы \mathcal{J}_z , \mathcal{I}_+ и \mathcal{I}_- , а B_ℓ^{m} - параметры КЭП. Размерности неприводимых представлений не превышают трех, так как максимальное значение \mathcal{I} в основном состоянии равно 8. Поэтому при решении секулярного уравнения не

OOBCATER A THERE A

требуется диагонализация $(2 \mathcal{I} + 1)$ -кратной матрицы, достаточно решить алгебраическое уравнение не более, чем третьей степени. В гамильтониане при различных значениях \mathcal{I} в базисе (\mathcal{I}, m) имеются только четыре вида матриц, соответствующих разным неприводимым представлениям. Эти типы матриц и решения отвечающих им секулярных уравнений показаны в таблице I.

Интенсивности переходов между состояниями 4f-электронов в КЭП $/r_c > и / r_f >$ при неупругом магнитном рассеянии пропорциональны квадратам матричных элементов поперечного полного момента количества движения \mathcal{I}_{\perp} /4/, которые после усреднения в поликристаллическах веществах приводятся к виду

 $\left|\langle \Gamma_{f} \left| \mathcal{I}_{\perp} \right| \Gamma_{i}^{2} \rangle\right|^{2} = \frac{1}{3} \left\{ \left| \mathcal{K}_{f} \left| \mathcal{I}_{+} \right| \Gamma_{i}^{2} \rangle\right|^{2} + \left| \langle \mathcal{I}_{f} \right| \mathcal{I}_{\perp} \right| \Gamma_{i}^{2} \rangle\right|^{2} + 2\left| \langle \mathcal{I}_{f} \right| \mathcal{I}_{2} \left| \left| \Gamma_{i}^{2} \right\rangle\right|^{2} \right\}.$ (2)

В таблицах 2-8 приведены результаты прямого расчета значений (2) для всех трехвалентных редкоземельных ионов, представляющих интерес для нейтронной спектроскопии. Их основные параметры указаны в таблице 9.

В таблицах 2-8 приведены также волновые функции и гамильтонианы взаимодействия 4 f -электронов с гексагонально-симметричным КЭП в базисе $(\mathcal{I}_{j,m})$. В таблицах 7 и 8 для сокращения записи введены символы типа $F_{i}(\alpha_{j}; \alpha_{k})$, где α_{j} обозначают набор двух или трех чисел, указанных под таблицей. В качестве примера рассмотрим символ $F_{4}(\alpha_{4}; \alpha_{2})$ в таблице 7. Он по определению равен

$$\begin{split} F_{4}\left(\alpha_{1};\alpha_{2}\right) &\equiv F_{4}\left(1,2,3;4,5,6\right) \equiv \frac{1}{3} \left\{ \left(-13\,a_{1}\,a_{4}-a_{2}a_{5}+11\,a_{3}\,a_{6}\right)^{2} + \right. \\ &+ \left. 8\left[1\overline{12}\left(a_{1}a_{6}+a_{3}\,a_{4}\right) + 4\,a_{2}\,a_{5}\right]^{2} \right\} \,, \end{split}$$

где a_i - коэффициенты разложения волновой функции по базису (\mathcal{I}, m) .

При расчете уровней энергии, собственных функций и матричных элементов переходов можно непосредственно воспользоваться данными таблиц I-8, что оказывается чрезвычайно полезным при обработке экспериментальных данных. Таблица I.

Матрицы	Собственные значения	Собственные функции
-3) 3) -3) A C 3) C A	E _{1,2} = A ± C	$ 1,2\rangle = (-3\rangle \pm 3\rangle)/\sqrt{2}$
1m) 1m±6) 1m) A C 1m±6) C B	$E_{1,2} = \frac{1}{2} (A + B \pm D)$ $D^{2} = (A - B)^{2} + 4C^{2}$	$ 1\rangle = a m\rangle + b m \pm 6\rangle$ $ 2\rangle = -b m\rangle + a m \pm 6\rangle$ $a = -C/N, b = (1-a^{2})^{1/2},$ $N^{2} = D (D + A - B)/2$
-6) 0) 6) -6) A C O 0) C B C 6) O C A	$E_{1} = A$ $E_{2,3} = \frac{1}{2} (A + B \pm F)$ $E^{2} = (\Delta - R)^{2} + g(2)^{2}$	$ 1\rangle = (F6) - [6) / 12$ $ 2\rangle = a -6\rangle + b 0\rangle + a 6\rangle$ $ 3\rangle = (L 2) - 2a 0\rangle + b 6\rangle / 12$ $a = -C/N, \ b = (1 - 2a^2)^{1/2},$ $N^2 = F(F + A - B)/2$
m76) m) m m76) A D (m) D B m26) O F ($E^{3} - E^{2}(A + E) + F^{2}A + D^{2}$ $E_{i}, i = 1,2,3$	$b_{i}+C) + E (BC + AC + AB - D^{2} - F^{2}) + C - ABC = 0$ $no \ \phi op My AAM \ Kapgana$ $ i\rangle = a_{i} m \neq 6) + b_{i} m) + C_{i} m \neq 6)$ $a_{i} = -D/N_{i} ,$ $b_{i} = (A - E_{i}) / N_{i} ,$ $C_{i} = -F (A - E_{i}) / ((C - E_{i})N_{i}) + C_{i} m \neq 2)$ $N_{i}^{2} = (A - E_{i})^{2} [1 + \frac{F^{2}}{(C - E_{i})}] + D^{2} $

Таблица 2:
$$J = 5/2$$
; Ce^{3+}
Представления: $\Gamma_7(2) + \Gamma_8(2) + \Gamma_9(2)$
Волновые функции: $|\Gamma_7 \rangle = |\pm 1/2|$
 $|\Gamma_8 \rangle = |\pm 5/2|$
 $|\Gamma_9 \rangle = |\pm 3/2|$

Гамильтониан:

.

	± 1/2)	± 5½)	/± ³⁄₂)
1±1/2)	E7		
/± 5/2)		E ₈	
± 3½)	1		E,

Вероятности переходов:

4

ļ

4

-

Таблица 3:	= 7/2	; Y6 3+		
Представления:	F7(2) +	2 [g(2)	(2) و۲	
Волновые функции:	[7] > = [8 ¹ > = [8 ² > = [9] > =	± 1/2) a ± 5/2 = - 6 ± 5/ = ± 3/2)) + bl∓ 2) + al7	₹⁄2) : ₹⁄2)
Гамильтониан:	(±1/2)	(± 3/2)	(± 5/2)	∓∛2)
(± 1/2)	E,			
± 3/2)		Eg		
± 5/2)			В	С
<i> </i> ∓ 1 ⁄2)			с	А
Вероятности перехо	дов:			

	/r ₇ >	15.1>	1532>	119>
<i> </i> /;}>	11	0	0	10
151)		F(a,a,b,b)	F(a,b,a,b)	8a²
Γ ₈ ² ⟩			F(b,b,a,a)	8 6 ²
<i>[</i>]/				3

 $F(a, b, c, d) = [(5ab)^{2} + (7cd)^{2} + 7(ac)^{2} + (bd)^{2}]/3$

Таблица 4:
$$J = 4$$
; Pr^{3+} , P_m^{3+}

Представления:

$$I_{4} + I_{3} + I_{4} + 2I_{5}(2) + I_{6}(2)$$

Волновые функции:

$$|I_{1}\rangle = |0\rangle$$

$$|I_{3}\rangle = (1-3) + |3\rangle / |1_{2}\rangle$$

$$|I_{4}\rangle = (1-3) - |3\rangle / |1_{2}\rangle$$

$$|I_{5}\rangle = a | \pm 2\rangle + b | \mp 4\rangle$$

$$|I_{5}\rangle = -b | \pm 2\rangle + a | \mp 4\rangle$$

$$|I_{5}\rangle = |\pm 1\rangle$$

Гамильтониан:

Вероятности переходов:

Таблица	5:	フ=	9/2	ز	Nd 3+

Представления: $\frac{1}{7}(2) + 2\sqrt{g}(2) + 2\sqrt{g}(2)$

Волновые функции:

$$|I_{\overline{7}}\rangle = |\pm 1/2\rangle$$

$$|I_{\overline{8}}^{-1}\rangle = a|\pm 5/2\rangle + b|\mp 7/2\rangle$$

$$|I_{\overline{8}}^{-2}\rangle = -b|\pm 5/2\rangle + a|\mp 7/2\rangle$$

$$|I_{\overline{9}}^{-1}\rangle = c|\pm 3/2\rangle + d|\mp 9/2\rangle$$

$$|I_{\overline{9}}^{-1}\rangle = -d|\pm 3/2\rangle + c|\mp 9/2\rangle$$

Гамильтониан:

RJ

.

-

Вероятности переходов:

_	15+>	150	1582>	(تو <i>ا</i> /	//g²>
15>	17	0	0	16 c ²	16 d ²
1573		Fq (a,b)	F ₃ (9,6)	F(a,b,c,d)	F(a,b,-d,c)
15.2>			F ₁ (b,a)	F(b,a;-c,d)	F(b,a,d,c)
151				F ₁ (c,d)	48 (cd) ²
1/22					$F_1(d,c)$

 $F(a,b,c,d) \equiv 2(77 ac + 75 bd)^{2}$ $F_{1}(a,b) \equiv \frac{4}{3} \left[(5a^{2} - 7b^{2})^{2} + 128 (ab)^{2} \right]$ $F_{2}(c,d) \equiv 3(3c^{2} - d^{2})^{2}$ $F_{3}(a,b) \equiv \frac{32}{3} (a^{2} - b^{2})^{2} + 48 (ab)^{2}$ 7

Таблица 6:

$$J = 6$$
; Tb^{3+} , Tm^{3+}

Представления:

$$2\Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + 2\Gamma_5(2) + 2\Gamma_6(2)$$

Волновые функции:

$$|\Gamma_{1}^{4}\rangle = a |-6\rangle + b |0\rangle + a |6\rangle$$

$$|\Gamma_{2}^{2}\rangle = c |-6\rangle + d |0\rangle + c |6\rangle$$

$$|\Gamma_{2}\rangle = (|-6\rangle - |6\rangle) / |\overline{2}|$$

$$|\Gamma_{3}\rangle = (|-3\rangle + |3\rangle) / |\overline{2}|$$

$$|\Gamma_{4}\rangle = (|-3\rangle - |3\rangle) / |\overline{2}|$$

$$|\Gamma_{5}^{1}\rangle = e |\overline{2}\rangle + f |\underline{4}\rangle$$

$$|\Gamma_{5}^{2}\rangle = -f |\overline{2}\rangle + e |\underline{4}\rangle$$

$$|\Gamma_{6}^{1}\rangle = g |\overline{1}\rangle + h |\underline{5}\rangle$$

$$|\Gamma_{6}^{2}\rangle = -h |\overline{1}\rangle + g |\underline{5}\rangle$$

Гамильтониан:

Продолжение таблицы 6:

Вероятности переходов:

	151>	1572>	15	15>	114>	151>	<i>ا</i> آۍ؟>	151>	152>
/ <i>Г</i> ,'>	0	0	48a²	о	С	0	0	Fila, b, g, h)	F;(a,b,h,-g)
[ī ²>		0	48c ²	0	0	0	D	Fq(c,d,g,h)	F; (c,d , h;-g)
15>			С	0	0	0	υ	4 h ²	4g²
/r ₃ >				0	6	F2 (e,f)	F ₂ (f, -e)	U	0
14>				r	0	Fz(e,-f)	Fz(fie)	C	0
<i>ارچ1</i>					,	F ₄ (e,f)	48(ef) ²	Fz(e,f,g,h)	Fz(e,f,h,-g)
/15²>				3		,	F4 (f, e)	Fz(f,e,g,-h)	F3 (f,e,h,g)
151>		٠	,			e		F5(9,4)	48(gh) ²
/[2 ² >		•	,			۶	ł		F ₅ (h,g)

$$F_{1}(a, b, g, h) = 28(bg)^{2} + 8(ah)^{2} + 8 \overline{14} abgh$$

$$F_{2}(e, f) = 12e^{2} + 10f^{2} + 4\overline{130} ef$$

$$F_{3}(e, f, g, h) = \frac{1}{3} \{ 80(eg)^{2} + 44(hf)^{2} + 1b\overline{155} efgh \}$$

$$F_{4}(e, f) = \frac{16}{3} (e^{2} - 2f^{2})^{2}$$

$$F_{5}(g, h) = \frac{4}{3} (g^{2} - 5h^{2})^{2}$$

9

Таблица 7:

$$J = \frac{15}{2}$$
; $E + \frac{37}{9}$
Представления: $3 \int_{\frac{7}{7}}^{2} (2) + 2 \int_{\frac{8}{2}}^{2} (2) + 3 \int_{\frac{9}{2}}^{2} (2)$
Волновые функции:
 $\int_{\frac{7}{7}}^{1} c > = a_{3i \cdot 2} / \mp \frac{13}{2} + a_{3i \cdot 1} / \mp \frac{1}{2} + a_{3i} / \pm \frac{11}{2} , i = 1,2,3$
 $\int_{\frac{7}{9}}^{1} c > = a_{8+2j} / \mp \frac{3}{2} + a_{g+2j} / \pm \frac{5}{2} , j = 1,2$
 $\int_{\frac{7}{9}}^{1} c > = a_{41+3i} / \mp \frac{9}{2} + a_{42+3i} / \pm \frac{3}{2} + a_{43+3i} / \pm \frac{15}{2} , i = 1,2,3$

Гами льтониан:

.

	= ¹ 3/2)) /= 1/2)	1=11/2)	⊭秒)	[75/2)	179/2)	/t¾)	<u> * 15/2</u>)
<i> </i> ∓'¾)	A,	$\mathcal{D}_{\not\downarrow}$	0					
= ½)	\mathcal{D}_{p}	B ₇	F,					
# 1/2)	C	5	C7					
± 7/2)				Ag	C ₈			
∓ 5½)				C ₈	Bg			
7 9/2)						A _g	Dg	0
± 3/2)						\mathcal{D}_{g}	Bg	Fa
± 15/2)						0	Fg	C _g

Продолжение таблицы 7:

Вероятности переходов:

	151>	152>	/53>	15 1>	> /\[\[\]s ²	<' وَ'/	/1g 2>	/ [g 3 >		
「デ>	$F_{4}(a_{1};a_{1})$	F4(@1;@2)	F.(a4;a3)	0	0	F((a1;a6)	を(x1; x7)	F2(x1, x8)		
153>		F ₄ (92;92)	F4(~2;~3)	0	0	Fz(a2;a6)	Fz(az;az)	Fz(a2;a8)		
153>			F4((a3;a3)	0	0	Fz(a3; a6)	Fz(«3; «7)	F2(a3; a3)		
1581>				F=(04;04)	F5(a4;d5)	F3(\$4;\$6)	F3 (d4; d3)	F3(X4;X8)		
152 ² >					F ₅ (¤ _{5 ;} ¤ ₅)	F3(a5;36)	F3(x5;a7)	F3(\$\$; \$\$)		
15g1>						F(x6;x6)	F1(x6; x3)	F1(x6;\$8)		
/ <i>[</i> g²〉							F1(\$4;\$4;)	F=(a;dg)		
1193>								tq(∝s;∝s)		
$\alpha_1 \Rightarrow 1, 2, 3$ $\alpha_4 \Rightarrow 10, 11$ $\alpha_6 \Rightarrow 14, 15, 16$										
	∝ ₂ ⇒ ∝- ⇒	4,5,6 7,8,9	X	5 ⇒ 1:	2,13	α ₇ ⇒ α. ⇒	17,18,	19 22		
F	(1)2		() - 2	(-7.0	~ . ~ .		2 1 ²			
F ₂	(1,2,3	; + , 5,	6) = <u>2</u> 6) = 2 3	(-3 a. (115	$a_1 a_1 + a_2 a_1 + 1$	(5 + 5 a (3 a ₂ a	- + 139 0	$\left(2_3 a_4\right)^2$		
F3	(1,2;3	,4,(5)) = 8	(2a,	a3 + 15	⁻ α ₂ α ₄)) ²	.,,		
F ₄	(1,2,3	; 4, 5,	$\mathcal{L}) \equiv \frac{1}{3}$	[(- 13a	1,a4 - a2a	5 + 11 az	$(a_{c})^{2} +$			
				+ 8 {	17 (a1 a	6 + az a	4) + 4a	a5]2]		
F5	(1,2;	3,4)	≡ 1/3 [(-7a	1 ^a 3 + 50	a ₂ a ₄) ² +	но(а ₁ а	$(4 + (2a_3)^2)$		

Таблица 8:

 $J=8 \quad ; \quad Ho^{3+}$

Представления: $2 \overline{l_1} + \overline{l_2} + \overline{l_3} + \overline{l_4} + 3 \overline{l_5}(2) + 3 \overline{l_6}(2)$

Волновые функции:

$$|\Gamma_{4}^{i} \rangle = \alpha_{2j-1} |-6\rangle + \alpha_{2j} |0\rangle + \alpha_{2j-1} |+6\rangle , \ j=1,2$$

$$|\Gamma_{2} \rangle = \{ |-6\rangle - |+6\rangle \} / |\overline{2}$$

$$|\Gamma_{3} \rangle = \{ |-3\rangle + |+3\rangle \} / |\overline{2}$$

$$|\Gamma_{4} \rangle = \{ |-3\rangle - |+3\rangle \} / |\overline{2}$$

$$|\Gamma_{5}^{i} \rangle = \alpha_{3i+2} |\mp 8\rangle + \alpha_{3i+3} |\mp 2\rangle + \alpha_{3i+4} |\pm 4\rangle , \ i = 1,2,3$$

$$|\Gamma_{6}^{i} \rangle = \alpha_{3i+44} |\mp 5\rangle + \alpha_{3i+12} |\pm 1\rangle + \alpha_{3i+13} |\pm 7\rangle , \ i = 1,2,3$$

Гамильтониан:

	1-6)	10)	1+6)	1-3)	1+3)	178)	172)	1±4)	175)	1±1)	1±7)
1-6)	A1	C1	C					•			
10,7	C,	R;	C_{i}			l I		:			
1+6)	0	C1	A ₁			1		1			
1-3)				A	С			1			
1+3)				С	А						
IF 8)						Α5	D_{5}	C?			
(72)						\mathcal{P}_{S}	Bs	F <u>;</u>			
(±+)						0	F _s .	C5			
(75)									A,	\mathcal{D}_{6}	C
(± 1)									D.	B6	F
/± 7)							-		C	F	G

Продолжение таблицы 8:

Вероятности переходов:

$|\Gamma_{4}\rangle|\Gamma_{5}\rangle|\Gamma_{2}\rangle|\Gamma_{3}\rangle|\Gamma_{4}\rangle|\Gamma_{5}\rangle|\Gamma_{5}\rangle|\Gamma_{5}\rangle|\Gamma_{5}\rangle|\Gamma_{6}\rangle|\Gamma_{6}\rangle|\Gamma_{6}\rangle|\Gamma_{6}\rangle$

	0	0	48a12	0	0	0	0	0	$F_{3}(\alpha_{7},\alpha_{4})$	F. (x,;x,)	F_(~+;
		0	48a32	0	0	0	0	D	Fz (X 8; X4)	F3(a, a, a, s)	F3(08
			0	0	0	0	0	0	F2(Q14,Q16)	F2(a, , 9, 9)	F_ (a20
				0	6	$F_{i}(a_{6},a_{j})$	Fq (ag, a10)	$F_{4}(a_{42}, a_{43})$	0	C	C
					0	F;(a ₆₁ -q ₇)	F; (ag, -a,o)	F ₄ (a ₁₂₁ -a ₁₃)	С	C	0
						F ₄ (x1; x1)	F ₄ («1; «2)	F4(a1;d3)	F5(a4; a4)	F5(04; 05)	F= (X+;
							F4 (x2; x2)	F4 (a2; a3)	F5(x2; x4)	F5(a2;a5)	F5(a2;
								F4(a3;a3)	F5(X3;X4)	F5(013; N5)	F; (X3;
-									F6 (04; 14)	F (a4, a5)	F6(X+;
										Fg(¤s; ¤s)	Felxs;
											Fe (26;

$$\begin{split} F_{4}(a,b) &= 2(774a + 776b)^{2} \\ F_{2}(a,b) &= 2(774a + 776b)^{2} \\ F_{3}(a,b) &= 2(774a - 756b)^{2} \\ F_{3}(a,b) &= 2(774a - 756b)^{2} \\ F_{4}(a,b) &= 2(774a - 756b)^{2} \\ F_{4}(a,b) &= 2(774a - 756b)^{2} \\ F_{5}(a,b) &= 4(a,a,b)^{2} \\ F_{4}(a,b) &= 4(a,a,b)^{2} \\ F_{5}(a,b) &= \frac{16}{3}(4a,a,b) + 2a,b)^{2} \\ F_{5}(a,b) &= \frac{16}{3}(4a,a,b) + 2a,b)^{2} \\ F_{5}(a,b) &= \frac{16}{3}(4a,a,b) + 2a,b)^{2} \\ F_{6}(a,b) &= \frac{16}{3}(4a,a,b) + 2a,b) \\ F_{7}(a,b) &= \frac{16}{3}(4a,b) \\ F_{7}(a,b) &= \frac{16}{3}(4a,b$$

6	
пица	
Tao.	

					<u> </u>		~	
УЬ ³⁺	2 F 7/2	1,26		37	*	t.	+ (3	
T ^{m 34}	3H6.	070		127	6	19	+	
Er *	4 I 15/2	080	7,0	173	do	22	8(5)	
H° ³⁺	518	0,85	4,0	65	11	33	e,	
Dy ³⁺	⁶ Н _{5/2}	14.1		950	4 0	22	k (5)	
Tb ³⁺	т °	45,0		46	6	19	4	
Gd ³⁺	Sthe	4,5		00054	4	#	4(3)	
Eu ³⁺	10	89'0		4300				
č.	6 Н _{5/2}			5600	б	7	3(1)	
Pr, 34	514			0.5	, e	6	ы	
Nd ³⁺	+1 _{9/2}	8£ '0	11,0	4 te,	Ŋ	ď	5(3)	
Pr ³⁺	³ H4	o, 11	1,6	4',6	6.	9	ĸ	
و پ	² μ _{5/2}	0,48	0'0	48.	m	7	3 (1)	
	Основное состояние	Длина рассеян. нейтр. [10 ⁻² си]	Неког.сечение [барн]	Сечения поглош [$\delta a \rho \varkappa$]	число уровней КЭП	Число ненуле- вых переходов (неупруг.)	Число ненуле- вых упруг. (квезиупруг.) переходов	

Литература

- 1. G.H.Dieke. Spectra and Energy Levels of Rare Earth Ions in Crystals. Inter.Publ. New York, 1968.
- 2. E.Segal and W.E.Wallace. J.Soc.State Chem., 2, 347 (1970).
- 3. M.T.Hutchings. Solid State Physics, 16, 277 (1966).

 P.Fulde. In: Handbook on the Physics and Chemistry of Rare Earth, vol.2, Ed. K.L.Schneider and L.R.Eyring, North-Holland Publ. Co, Amsterdam (1978), p.295.

> Рукопись поступила в издательский отдел З марта 1983 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по пробл <mark>енам</mark> нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	P .	50	к.
410,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
A1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
A17-81-758	Труды II Международного симпоэиума по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
Д1,2-82-27	Труды Международного симпозиуна по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	75	к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	р.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	p.	00	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Мюле 3. Р3-82-133 Прямое вычисление вероятностей магнитных дипольных переходов для трехвалентных редкоземельных ионов в в кристаллическом электрическом поле с гексагональной симметрией Выполнены расчеты вероятностей магнитных дипольных переходов для трехвалентных редкоземельных ионов в кристаллическом электрическом поле с гексагональной симметрией. выполнены расчеты вероятностей магнитных дипольных переходов для трехвалентных редкоземельных ионов в кристаллическом электрическом поле с гексагональной симметрией. Эти вероятности переходов используются при расчете интенсивностей линий в спектрах неупругого рассенния медленных нейтронов. Использована симметрия гамильтониана 4f -электронов в гексагональном электрическом поле. При этом степень секулярного уравнения остается не выше трех. Метод прямого расчета энергий и вероятностей переходов сокращает

в значительной степени машинное время при подгонке параметров кристаллического электрического поля. Приведены таблицы волновых функций, уровней энергий и вероятностей магнитных дипольных переходов.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

Mühle E.

Direct Calculation of the Probabilities

P3-82-133

of Magnetic Dipole Transitions for the Three Valent Rare Earth Ions in the Crystalline Electric Field with Hexagonal Symmetry

Direct calculation of the probabilities of magnetic dipole transitions for the three valent rare earth ions in the crystalline electric field with hexagonal symmetry has been carried out. These transition probabilities will be applied to the calculations of the line intensities of the inelastic neutron scattering spectra of rare earth ions. In these calculations the symmetry properties of the Hamiltonian of 4f -electrons in the hexagonal crystalline electric field are used. This provides a reduction of the degree of the secular equation, which would be not more than three for every rare earth ion. This direct estimate of the energies and transition probabilities yields a considerable reduction of the computer time in the fit procedure of the experimental spectra using parameters of the crystalline electric field. The wave functions, the energy levels, and the transition probabilities are given in the tables.

The investigation has been performed at the Laboratory of Nuclear Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.