

В.П.Алфименков, С.Б.Борзаков, Во Ван Тхуан, Л.Б.Пикельнер, Э.И.Шарапов

ВЗАИМОДЕЙСТВИЕ ПРОМЕЖУТОЧНЫХ И БЫСТРЫХ НЕЙТРОНОВ С ЯДРОМ ⁶ Li

Направлено в журнал "Ядерная физика"

1982

1. Перспектива использования лития-6 в будущих термоядерных энергетических реакторах-размножителях требует повышения точности нейтронных сечений и более глубокого понимания механизма взаимодействия нейтронов с литием-6.

При энергии до ~3 МэВ здесь существенны два процесса: упругое рассеяние ⁶Li(n,n) ⁶Li и реакция ⁶Li(n,t)⁴He. Слабым радиационным захватом в большинстве случаев можно пренебречь. Ядро ⁶Li имеет положительную четность, поэтому медленные s-волновые нейтроны могут возбуждать в литии-7 уровни положительной четности. Однако энергетическая зависимость нейтронных сечений лития-6 не проявляет явной резонансной структуры за исключением хорошо известного p -резонанса при энергии 250 кэВ. Он соответствует уровню отрицательной четности J^T = 5/2⁻ с энергией 7,46 МэВ в схеме, приводимой на <u>рис.1</u>/1/.

3/2 1-3/2 11.24 3 99 9.98 9.9 T=1/2 2.65 2.42 9.62 9.67 7.46 0.21 T=1/2 6 6 8 T = 1/2 4.63 7/2~ 2.47 t 4He F °= 0

Рис.1. Схема уровней ядра ⁷Li согласно работе ^{/1/}. Справа – энергии порогов соответствующих каналов реакций, слева – шкала кинетической энергии в системе центра масс с отсчетом от нейтронного порога.

-

Нейтронные сечения лития-6 активно изучались. Работами последнего времени ^{(2,3,4/} заметно пополнена информация по нейтронным данным лития-6, содержащаяся в обзорах ^{(5,6/} Однако рассеяние нейтронов литием-6 осталось изученным слабо. Известны лишь результаты давних измерений дифференциальных сечений рассеяния в работах ^{(7/} и^{/8/}, которые, как уже было отмечено в ^{(6/}), не согласуются друг с другом при энергии ниже 100 кэВ.

В настоящей работе измерено полное сечение рассеяния в интервале энергий 0,6-80 кэВ с точностью 3%. Результаты проанализированы совместно с данными по полному сечению ^{/9/} и сечению реакции ^{/4/} для уточнения сведений о возбужденных уровнях ядра ⁷Li, в частности, об уровнях положительной четности, отсутствующих на схеме <u>рис.1</u>

\$. M. O. . .

2. Измерения выполнены по методу времени пролета на импульсном реакторе ИБР-30 при его работе как в реакторном, так и в бустерном режимах.Режимы различаются длительностью нейтронной вспышки и соответственно энергетическим разрешением нейтронного спектрометра.Использовалась пролетная база 500 м, на которой располагался сцинтилляционный детектор большого объема¹⁰. Метод измерений был относительным: сечение определялось относительно сечения рассяния нейтронов литием-7, известного из работы¹⁰. Исследуемый и калибровочный образцы устанавливались в вакуумированном канале детектора поочередно. Пучок нейтронов имел диаметр 150 мм при диаметре образцов 180 мм. Образцы были упакованы в одинаковые контейнеры с лавсановыми стенками толщиной 15 мкм. Механическая обработка и упаковка образцов осуществлялись в боксе с гелиевой атмосферой. Их характеристики даны в табл.1.

				<u>Таблица I</u>
Образец	Обогащение	Bec, r	n ₆ , 10 ²² яд/см ²	п ₇ ,10 ²² яд/см ²
Li-6 Li-7	90,9 96,3	51,05 45,95	1,627 0,047	0,165 1,353

Согласно паспорту Госфонда стабильных изотопов СССР суммарное количество примесных элементов /в основном кальция и кремния/ не превышало 0,1% в образце лития-6. Образец лития-7 был приготовлен из химически чистого лития, использованного в $^{/10/}$.

Пример аппаратурных спектров нейтронов, рассеянных различными образцами, показан на <u>рис.2</u>. Ширина канала временного анализатора равнялась 4 мкс, длительность нейтронных вспышек – 4,5 мкс, их частота – 10² с⁻¹.Время измерений составляло 10 ч для каждого спектра. В нейтронном пучке постоянно находился борный фильтр для подавления рециклических нейтронов. На спектре видны начальная гамма-вспышка ускорителя, резонансы лития-6 и лития-7 при энергии ~250 кэВ и ряд провалов из-за наличия в пучке конструкционных материалов.

Согласно расчету фон в измерениях с образцами ⁶Li должен быть на 5%÷25%/при E=15-80 кэВ/выше фонового спектра, полученного с пустым контейнером.Это связано с наличием в пучке запаздывающих нейтронов деления и быстрых нейтронов во время плавного спада реактивности бустера. Однако для принятого метода относительных измерений с эквивалентными по рассеянию образцами существенно только абсолютное различие фонов, которое в данном эксперименте не превышало 3%/оценка получена из измерений с резонансными фильтрами/. Поэтому измерение с пустым контейнером использовалось при обработке в качестве фонового.

Отношение сечений исследуемого, $\sigma(^6 \mathrm{Li})$, и эталонного, $\sigma(^7 \mathrm{Li})$,

образцов получали по формуле

4.6

 $\frac{\sigma(^{6}\text{Li})}{\sigma(^{7}\text{Li})} = \frac{N(^{6}\text{Li})}{N(^{7}\text{Li})} \cdot \frac{n_{7}(^{7}\text{Li})}{n_{6}(^{6}\text{Li})} \cdot \frac{11 - [n_{7}(^{6}\text{Li})/n_{7}(^{7}\text{Li})][N(^{7}\text{Li})/N(^{6}\text{Li})]] \cdot K}{(1 - [n_{6}(^{7}\text{Li})/n_{6}(^{6}\text{Li})][N(^{6}\text{Li})/N(^{7}\text{Li})]]}$ где п соответствуют величинам, приведенным в <u>табл.1</u>; N(^{6}\text{Li}) и N(^{7}\text{Li}) - числа отсчетов анализатора для соответствующих образцов /после вычитания фонов/ и K = 1/[(1 - ll_{1})(1 - \Pi_{2})] - поправочный фактор на поглощение первичного пучка (II_{1}) и на поглощение нейтронов образцом после рассеяния (II_{2}). Поправка II_{2} более существенна, чем II_{1}, ввиду большого диаметра образца. О масштабе поправок и их зависимости от энергии нейтронов E_n можно судить по <u>табл.2</u>, составленной на основании расчета по формулам /П1/и/IN2//см. приложение/. Здесь же содержится верхняя

оценка поправок Π_{Φ} из-за различия фонов. Она не вносилась в результат, но была учтена в величине погрешности сечения.

Π ₁ , %	Π ₂ , %	П _ф , %
4,6	11	1,0
3,0	7	1,0
1,5	4	1,0
0,9	2	2,0
0,5	1,3	3,0
	Π ₁ , % 4,6 3,0 1,5 0,9 0,5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Таблица 2

аблица	3	
,		

Е _п , кэВ	<u>Δ</u> Е _п , кэВ	σ _n , ď	${\Delta \sigma}_{ m n}$, 6	Е _п , кэВ	ΔЕ _п , кэВ	σ _n , σ	$\Delta \sigma_{\rm n}$,
0,69 0,79 0,93 1,0 1,3 1,8 2,5 3,4 4,6 6,2	0,06 0,05 0,08 0,1 0,2 0,3 0,4 0,4 0,4 0,7	0,73 0,74 0,73 0,72 0,70 0,71 0,69 0,71 0,71	0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02	13,1 16,0 19,0 22,3 26,5 32,0 38,5 45,0 52,0 59,5	1,4 1,5 1,5 2,0 3,0 3,5 3,0 4,0 3,5	0,71 0,70 0,73 0,72 0,74 0,73 0,73 0,73 0,74 0,75 0,75	0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02
8,2 10,5	1,0 1,2	0,73 0,70	0,02 0,02	66,5 80,0	3,5 10,0	0,78 0,84	0,03 0,04

Поскольку геометрия и характеристики детектора, а также сечение поглощения нейтронов литием-6 известны, неопределенность расчетных поправок внесла малую дополнительную погрешность: ~1% при энергии ~1 кэВ, где поправка максимальна. Результаты измерений сечения рассеяния нейтронов литием-6 представлены в табл.3. В качестве ошибки указана систематическая неопределенность, связанная в основном с погрешностью сечения использованного образца-стандарта лития-7. Статистическая ошибка измерений не превосходила 1%. Выбор лития-7 в качестве стандарта был обусловлен поразительной схожестью сечений $\sigma(^{7}Li)$ и $\sigma(^{6}Li)$,что существенно упростило учет фона при обработке результатов измерений. 3. Сечение рассеяния, как следует из табл.3, постоянно при энергии нейтронов ниже 10 кэВ. Поэтому можно использовать найденное значение

$$\sigma_{\rm n}(^{6}{\rm Li}) = 0,72\pm0,02$$
 6 /2/

совместно с данными о длинах рассеяния для уточнения зависящих от спина длин (n⁶Li) -рассеяния. Ввиду сильного поглощения нейтронов литием-6 в обоих спиновых каналах длины рассеяния $a^+(J = 3/2)$ и $a^-(J = 1/2)$ комплексны. Соответствующая процедура определения длин рассеяния известна. Ее результат представлен на <u>рис.3</u>. Здесь использованы поляризационные данные для разности длин ($b_{3/2}^+ - b_{1/2}^-$)^{/3/}, пересчитанные для свободного ядра, и когерентная длина $a_{KOF}^{-/11/*}$. Мнимая часть длин рассеяния определялась по сечениям поглощения $\sigma_{3/2}^+$ и $\sigma_{1/2}^-$ из работы ^{/3/} согласно оптической теореме. Такой расчет дал следующий набор длин (n⁶Li) -рассеяния;

$$a_{1/2} = /4,00\pm0,06/ - i/0,53\pm0,02/ \Phi M,$$
 /3/

$$a_{3/2}^{+} = /0,65\pm0,03/ - i/0,07\pm0,01/ \Phi M.$$

Результаты /2/ и /3/ согласуются с ранее полученными в ^{/7/}, но имеют меньшую погрешность. Существующие данные по угловым распределениям рассеяния нейтронов слева ^{/7/} и справа ^{/8/} от резонанса 250 кэВ позволяют оценить величину длины рассеяния $a_{3/2}^+$ в этой области энергий. Р-волновой резонанс 250 кэВ имеет полный момент J = l+j=5/2 и интерферирует в дифференциальных сечениях с компонентой потенциального рассеяния в s-волне со значением спина канала j=3/2. По формуле /ПЗ/ Приложения нами были получены значения $a_{3/2}^+ / E_n \approx 100 \text{ кзВ/=/0,93+} \pm 0,30/фм$ и $a_{3/2}^+ / E_n \approx 600 \text{ кзВ/= /1+0,1/} Фм$, мало отличающиеся от /3/. Полное сечение $\sigma_n(E)$ также слабо зависит /см. ниже/ от энергии. Таким образом, можно сделать вывод о том, что

<u>Рис.3</u>. Определение длин п⁶Li – рассеяния графическим методом. Обозначения на осях соответствуют реальным частям длин рассеяния для свободного ядра. Использованы данные: a_{KOF} , $\binom{+}{3/2} - \frac{+}{51/2}$, σ_n /настоящая работа/.

*Работа $^{/11/}$ содержит результат для свободного ядра без указания ошибки. В последующем анализе принято, как обычно, что погрешность а ког меньше, чем у $\sigma_{\rm n}$.

Рис.4. Сечение рассеяния $\sigma_n(E)$ в зависимости от энергии нейтронов в лабораторной системе. Сплошные точки до 80 кэВ – данная работа, открытые точки – из работ^{/4/} и^{/9/}. Различные кривые описаны в тексте.

сильная спиновая зависимость длин (n, $^{6}\,{\rm Li})$ -рассеяния сохраняется до энергий нейтронов ~1 МэВ.

4. Большое сечение поглощения тепловых нейтронов литием-6 часто объясняют /см., например, работы $^{/2,6,7/}$ / влиянием отрицательного по отношению к нейтронному порогу уровня с энергией возбуждения $E^* \approx 6,6$ МэВ и спином $J^{\pi} = 1/2^{+}$. Такого уровня нет на схеме рис.1, т.к. в других реакциях, и в частности в обратной, 4 Не $(\overline{T,n}) {}^{6}$ Li ${}^{/13}$, он не был обнаружен. Дополнительную информацию по этому вопросу возможно получить из энергетического хода сечений 8 -волнового взаимодействия нейтронов с литием-6 в широком интервале энергий.

от энергии нейтронов в лабораторной системе. Различные кривые описаны в тексте.

С этой целью был выполнен анализ нейтронных данных, в состав которых вошли: сечение рассеяния $\sigma_n(E)$ настоящей работы /<u>рис.4</u>/, сечение реакции $\sigma_a(E)^{/4/}$ /<u>рис.5</u>/ и полное сечение $\sigma_t(E)^{/9/}$. Из разности $\sigma_t - \sigma_a$ было получено сечение рассеяния при энергии выше 100 кэВ, показанное на <u>рис.4</u>/при этих энергиях сечение рассеяния становится доминирующим процессом: $\sigma_n \geq 2/3 \sigma_t$ /. Указанные данные имеют высокую /2-3%/ точность.

Для выделения вклада s-волны в сечениях требовалось надежно выделить p-волновой резонанс 250 кэВ. Как следует из схемы puc.1, следовало ожидать интерференции уровней с энергиями $E^*=7,46$ и 6,68 МэВ, обладающих одинаковыми квантовыми числами. Поэтому первоначально была предпринята попытка использовать двухуровневый формализм для описания сечений вблизи резонанса 250 кэВ / $E^* = 7,46$ МэВ/. Результат оказался отрицательным: при значениях параметров уровня 6,68 МэВ, известных из ^{/18/}, введение интерференции исключало возможность одновременной подгонки экспериментальных значений σ_n и σ_a вблизи резонанса 250 кэВ.

7

Последующий анализ данных был проведен в одноуровневом приближении R-матричной теории /12/ с феноменологическим описанием энергетической зависимости s-волновых сечений:

$$\sigma_{n} = \pi \lambda^{2} \frac{\Gamma_{n} [\Gamma \cos \phi - 2(E_{\lambda} + \Delta_{\lambda}(E) - E) \sin 2\phi]}{(E_{\lambda} + \Delta_{\lambda}(E) - E)^{2} + \Gamma^{2}/4} + 4\pi \lambda^{2} \sin^{2} \phi + 0.72 + \gamma \cdot E; /4/$$

$$\sigma_{a} = \pi \lambda^{2} \frac{\Gamma_{n} \Gamma_{a}}{(E_{\lambda} + \Delta_{\lambda}(E) - E)^{2} + \Gamma^{2}/4} + \frac{149.5}{\sqrt{10^{3} \cdot E}} - 0.025 + \beta \cdot \sqrt{E}; /5/$$

 $\sigma_t = \sigma_n + \sigma_a$. Здесь энергия E выражена в кэВ, длина волны λ - в единицах 10⁻¹² см, поэтому формулы дают сечения в барнах. Резонансные члены определяются характеристиками уровня 7,46 МэВ при нулевом значении параметра граничных условий B_c в выражении для сдвига уровня: $\Delta(E)=-\sum\limits_c \gamma_c^2(S_c-B_c)$. Второй член в /4/ - слабое рволновое потенциальное рассеяние, определяемое фазой ϕ = $= kR_n - arctgkR_n$, где R_n - радиус канала рассеяния. Третье слагаемое в /4/ - основная, постоянная компонента измеренного в данной работе сечения $\sigma_n \, (^6\,{\rm Li})$, и последнее слагаемое - малая компонента сечения рассеяния, выбранная линейно зависящей от энергии с коэффициентом пропорциональности у В формулу /5/ входят s-волновое сечение вида $1/\sqrt{E}^{\,/6/}$, постоянная отрицательная слагающая /сопутствующая согласно $^{/14/}$ такому сечению/ и член с коэффициентом пропорциональности β , описывающий отклонение от закона 1/ /Е. Величина - 0,025 б была рассчитана с использованием значений поляризационного и полного сечений поглощения в тепловой точке. В последнем члене формулы /5/ согласно работе $^{/14/}\beta < 0$, если отклонение от закона 1/v связано с уровнем при отрицательной энергии нейтронов, и $\beta > 0$ для уровней при положительных энергиях. Параметры формул /4/, для уровней при положитсялям систериман-/5/ были определены из подгонки к указанным выше эксперимен-/2,9//

тальным данным при различном выборе широко используемых/см. значений радиусов каналов R_n и R_a.Результаты представлены в табл.4.

							$\frac{T\epsilon}{T}$	аблица 4
R _n Фм	R _а Фм	Е _λ кэВ н	у <mark>2</mark> хэВ	γ ² кэВ	Г _п (Е _р) кэВ	Г _а (Е кэВ	_р) β.10 ³ б.кэВ ⁻¹	<i>у</i> .10 ⁴ б.кэВ−1
3,88	2,5	-1837/14/	1161/8/	410/4/	101	39	2,0/2/	-1,6/2/
3,88	4,2	-801/6/	1106/8/	22,8/3	/ 96	37	2,2/2/	-1,6/2/

930/6/ 22,3/3/ 93 36 2,2/2/

-1.8/2/

Из данных табл.4 видно, что присущая R -матричному формализму неопределенность в выборе радиусов каналов практически не повлияла на результаты для ширин уровней Γ_n, Γ_a и параметров β и γ . Вариант в третьей строке дал подгонку несколько лучше $/\chi^2 = 259$ при 188 точках, в других вариантах $\chi^2 = 270 - 290/$ и рекомендуется для приложений. Новым важным результатом анализа является установление положительного знака коэффициента β , свидетельствующее об отклонении сечения реакции 6 Li (n. a) T от закона 1/v в сторону возрастания.

В соответствии с последним вариантом подгонки на рис.4 и 5 представлены кривые, обозначенные цифрой 1. Небольшие систематические расхождения кривых с экспериментом в области резонанса, по-видимому, связаны со сдвигом ~ 7 кэВ энергетической шкалы эксперимента /9/ относительно эксперимента /4/. После вычитания резонансного вклада были получены s-волновые сечения /кривые 2/. Для них при Е >100 кэВ изображен коридор погрешности подгонки. Эти "экспериментальные" кривые s-волнового взаимодействия нейтронов с литием-6 были сравнены с ожидаемыми в рамках гипотезы о существовании отрицательного уровня со спином $J^{\pi} = 1/2^+$ и положительного уровня со спином $J^{\pi} = 3/2^+$. Положение этих уровней было зафиксировано согласно работе /9/, а другие параметры уточнены по современным данным из тепловой области энергий. Соответствующие расчетные кривые обозначены индексом спина канала, а их суммами являются кривые 3. Они прошли вне коридоров погрешности "экспериментальных кривых". Отклонение не объясняется известными /1,2/ высоколежашими р уровнями.

Основным источником такого расхождения является гипотетический отрицательный резонанс. Отказ от него позволяет удовлетворить полученным результатам, если использовать по крайней мере один резонанс в канале с $J^{\pi} = 3/2^+$ с параметрами /согласно нашим расчетам/ $E_0 = 1420$ кэВ /л.с./, $\gamma_n^2 = 903$ кэВ, $\gamma_a^2 = 19$ кэВ и сохранить сечение реакции в канале с $J^{\pi} = 1/2^+$, следующее закону 1/v с сопутствующей отрицательной составляющей. Введение уровня в канале с $J^{\pi} = 3/2^+$ при положительных энергиях - единственное известное нам* объяснение сильной спиновой зависимости длин '(n⁶Li)-рассеяния /малой величины длины $a^+_{3/2}$ /. Отказ от отрицательного резонанса в канале J π =1/2+ не ведет к трудностям в трактовке большой величины сечения ре-

4.08 4.4 -625/5/

^{*} В работе Nucl.Phys., 1982, vol.373, р.305, опубликованной после написания нашей работы, предложено введение недиагональной фоновой R-матрицы как способ учета нерезонансных механизмов поглошения нейтронов литием-6. Там же приведены другие аргументы против отрицательного уровня с $J^{\pi} = 1/2^+$.

акции ${}^{.6}$ Li(n, a) в тепловой области, т.к. согласно работе ${}^{/15/}$ такое сечение можно описать количественно, учитывая кластерную (d + ⁴ He) структуру ядра 6 Li и механизм реакции прямой передачи дейтрона налетающему нейтрону.

Таким образом, энергетический ход сечений взаимодействия s -волновых нейтронов с литием-6 не служит доказательством в пользу резонанса в системе $n + {}^6Li$, а скорее является указанием на его отсутствие.

Авторы благодарны И.М.Франку и В.И.Лущикову за поддержку работы, а также В.Б.Беляеву, Г.Г.Бунатяну и В.И.Салацкому за полезные обсуждения.

приложение

1. Для тонкого (п $\sigma_t \leq 0,1)$ образца поправка на самоэкранировку описывается очевидным соотношением

$$\Pi_1(\mathbf{E}) = \frac{\mathbf{n}\,\sigma_a(\mathbf{E})}{2} \,. \tag{11}$$

Поправка на поглощение в образце нейтронов, падавших на него перпендикулярно и испытавших рассеяние, может быть рассчитана аналитически. Будем использовать подход работы $^{/16/}$ и дополнительно учтем зависимость эффективности детектора, $\epsilon(\mu)$, от угла вылета рассеянного нейтрона, θ , из образца, помещенного в центр цилиндрического детектора. Тогда:

$$\begin{split} \Pi_{2}(E) &= \begin{cases} \frac{1}{2} \int_{0}^{1} d\mu \epsilon(\mu) \frac{\sigma_{\alpha}(E')}{\sigma_{t}(E')} - [(1 - e^{-\Sigma}) - (e^{-z/\mu} - e^{-\Sigma}) \frac{\Sigma}{(\Sigma - z/\mu)}] + \\ &+ \frac{1}{2} \int_{-1}^{0} d\mu \epsilon(\mu) \frac{\sigma_{\alpha}(E')}{\sigma_{t}(E')} [(1 - e^{-\Sigma}) - (1 - e^{-\Sigma + z/\mu}) \frac{\Sigma}{(\Sigma - z/\mu)}] \end{cases} / (1 - e^{-\Sigma}); \\ \mu &= \cos \theta; \quad \Sigma = n \sigma_{t}(E); \quad z = n \sigma_{t}(E'); \\ E' &= [\frac{A^{2} + 1}{(A + 1)^{2}} + \frac{2A}{(A + 1)^{2}} \mu] \cdot E. \end{split}$$

2. Определяя B_1 как коэффициент при втором члене в разложении дифференциального сечения по полиномам Лежандра, в случае единственного р-волнового резонанса со спином J^{π} . 5/2 можно получить следующее выражение в R-матричном формализме:

$$B_{1} = \frac{\Gamma_{n}}{2k^{2}} \frac{(E - E_{\lambda}^{J=5/2} - \Delta) \sin 2k a_{3/2}^{+}}{(E - E_{\lambda}^{J=5/2} - \Delta)^{2} + \Gamma^{2}/4},$$
 /Π3/

в котором $a_{3/2}^+$ (E) - эффективная амплитуда s -волнового рассеяния для спина канала j = 3/2 +.

ЛИТЕРАТУРА

- 1. Ajzenberg-Selove F. Nucl. Phys., 1979, vol. A320, p.1.
- 2. Chiu Y.H., Firk F.W.K. Nucl. Phys., 1981, vol. A364, p.43.
- 3. Glattli H. et al. Phys.Rev.Lett., 1978, vol.40, p.748.
- 4. Gayther D.B. Ann. of Nucl.Energy, 1977, vol.4, p.515.
- 5. Fort E. In: Neutron Standard Reference Data, IAEA, Vienna, 1974, p.119.
- 6. Uttley C.A. et al. Proc. Conf. on Neutron Standards and Flux Normalization. ANL, 1970, p.80, Argonne.
- 7. Asami A., Moxon M.C. Proc. Conf. on Nucl.Data for Reactors, Helsinki, 1970, vol.1, p.153.
- 8. Lane R.O. et al. Phys.Rev., 1964, vol.B136, p.1710.
- 9. Meadows J.W., Whalen J.F. Nucl.Sci.Eng., 1972, vol.48, p.221.
- 10. Алфименков В.П. и др. ЯФ, 1982, т.35, с.542.
- 11. Peterson S.W., Smith H.G. J.Phys.Soc.Jap., Suppl., 1962, 11B, vol.17, p.335.
- Лейн А., Томас П. Теория ядерных реакций /пер. с англ./.
 ИЛ, М., 1960; Лукьянов А.А. Структура нейтронных сечений.
 Атомиздат, М., 1978.
- 13. Spiger R.J., Tombrello T.A. Phys.Rev., 1967, vol.163, p.964.
- 14. Бергман А.А. и др. В кн.: Ядерные реакции при малых и средних энергиях. Изд-во АН СССР, М., 1957, с.17; Шапиро Ф.Л. Собрание трудов, Физика нейтронов. Изд-во "Наука", М., 1976, с.201.
- 15. Weighman H., Manakos P. Z.für Phys., 1979, vol.A289, p.383.
- 16. Draper J.E. Nucl.Sci.Eng., 1956, vol.1, p.522.

Рукопись поступила в издательский отдел 12 февраля 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

. если они не были заказаны ранее.

				Алфименков В.П. и др. РЗ-82-111 а
Д1,2-9224	IV Международный семинар по проблемам физики высоких энергий. Дубна, 1975.	3 р. 60 к.	* k i	Взаимодействие промежуточных и быстрых нейтронов с ядром [°] Li
Д-9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3 р. 50 к.		Измерено эффективное сечение рассеяния нейтронов изото- пом ⁶ Li в зависимости от энергии в диапазоне 0,6-80 кэВ.
д9-10500	Труды II Симпозиума по коллективным методам ускорения. Дубна, 1976.	2 р. 50 к.	* 2	Энергетический ход сечения совместно с другими данными проана- лизирован в рамках R-матричного подхода для уточнения ин-
Д2-10533	Труды X Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3 р. 50 к.	4	формации о возбужденных уровнях ядра ⁷ Li.
Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	, 5 р. 00 к.	+	Работа выполнена в Лаборатории нейтронной физики ОИЯИ.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6 р. 00 к.	1	
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2 р. 50 к.	i	
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3 р. 00 к.		
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6 р. 00 к.		
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 р. 40 к.		Препринт Объединенного института ядерных исследований. Дубна 1982
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5 р. 00 к.		Alfimenkov V.P. et al. P3-82-111 Interaction of Intermediate and Fast Neutrons with ⁶ Li
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3 р. 00 к.		The 6 Li cross section value and its dependence on the neutron energy in the 0.6-80 keV region are measured. The
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 р. 00 к.	l	cross section energy dependence together with other data have been analysed in the frame of the R-matrix formalism to cla-
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в такатических вычислений на ЭВМ и их применению	2 - 50 - 4		rify the information on the levels of the ^{7}Li nucleus.
ль-80-271	в теоретической физике, дуона, 1979	3 р. 50 к.		The investigation has been performed at the Laboratory
дч 00 271	нескольких тел в ядерной физике. Дубна, 1979.	3 р. 00 к.		of Neutron Physics, JINR.
д4-80 - 385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 р. 00 к.		
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 р. 50 к.	1	
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 р. 50 к.	4	
Barroot	LI US VROMSUVING KUMPK MORVI BUTS BUTS STATUS	INDECY:	1 <u>1</u> 1 1	Preprint of the Joint Institute for Nuclear Research. Dubna 1982
Заказь Издатель	101000 Москва, Главпочтамт, п/я 79 ский отдел Объединенного института ядерных иссл	иедований		Перевод О.С.Виноградовой.

•

.

į.

ſ

*