1578 82

L

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P3-82-11

5/1V-82

Х.Малэцки, А.Б.Попов, К.Тщецяк

АНАЛИЗ СРЕДНИХ РАДИАЦИОННЫХ ШИРИН НЕЙТРОННЫХ РЕЗОНАНСОВ

В последние годы появились новые данные о полных радиационных ширинах нейтронных резонансов различных изотопов/1-13/.Наличие дополнительного экспериментального материала стимулировало получение новой оценки средних радиационных ширин по всей доступной совокупности данных и выполнение аналогичного проведенному ранее в/14,15/ анализа зависимости Γ_{γ} от основных параметров ядра.

Оценки средних радиационных ширин и их ошибок выполнены для ядер в интервале атомных весов от A=50 до A=250. Использованы параметры нейтронных резонансов из^{/1/}, полученные до середины 1973 г., и более поздние данные, опубликованные до 1981 г. Для каждого ядра усреднение проводилось по всем s-резонансам, для которых были известны Γ_{y} . В большинстве случаев в качестве Γ_{y} вычислялись средневзвешенные значения

$$\overline{\Gamma}_{\gamma}^{*} = \sum_{i=1}^{n} w_{i} \Gamma_{\gamma i} , \qquad /1/$$

где n - число резонансов для данного изотопа, а веса

$$w_{i} = \frac{\left(\Delta \overline{\Gamma}_{\gamma i}\right)^{-2}}{\sum_{i=1}^{n} \left(\Delta \overline{\Gamma}_{\gamma i}\right)^{-2}} .$$
 /2/

Здесь $\Delta \Gamma_{\gamma i}$ - экспериментальные ошибки радиационных ширин. Ошибки $\Delta \overline{\Gamma}_{\gamma}$ оценивались в границах с доверительной вероятностью P=0,95 следующим образом:

$$\Delta \overline{\Gamma}_{y} = \begin{cases} t_{\alpha}(\mathbf{n})\mathbf{S} & \text{для } \mathbf{S} > \sigma, \\ 2\sigma & \text{для } \sigma > \mathbf{S}, \end{cases}$$
(3/

где

$$S = \left(\frac{\sum_{i=1}^{n} w_{i} \Gamma_{yi}^{2} - \left(\sum_{i=1}^{n} w_{i} \Gamma_{yi}\right)^{2}}{n-1}\right), \qquad (4/4)$$

$$\sigma = \frac{1}{\sqrt{\sum_{i=1}^{n} (\Delta \Gamma_{\gamma i})^{-2}}},$$
 /5/

 t_{α} (n) - коэффициент Стьюдента для $\alpha = 1 - P$. Если оказывалось, что χ^2 -критерий не выполнялся /т.е. (n-1)S²/ σ^2 было больше χ^2_{α} (n-1))/, то вычислялось среднеарифметическое значение

$$\vec{\Gamma}_{\gamma} = \sum_{i=1}^{n} \Gamma_{\gamma i} / n , \qquad /6/$$

$$\vec{C} = C_{1} + C_{\gamma i} / n , \qquad /6/$$

$$\vec{C} = C_{1} + C_{1} + C_{2} + C_{$$

а ошибка бралась в виде

$$\Delta \overline{\Gamma}_{\gamma} = t_{\alpha}(n) \sqrt{\frac{\sum_{i=1}^{n} (\Gamma_{\gamma i} - \overline{\Gamma}_{\gamma})^{2}}{n (n-1)}}.$$
 (7/

Оценки Γ_{γ} представлены на <u>рис.1</u> и включены в табл.1.

В этой таблице для первых 132 ядер $\overline{\Gamma_y}$ получены усреднением трех и более значений Γ_y для разных резонансов каждого ядра. Для ядер с №133 по №144 оценки $\overline{\Gamma_y}$ вычислены только по двум резонансам, а в конце таблицы помещены ядра, для которых значения Γ_y известны только для одного резонанса.

В настоящее время теория, будучи не в состоянии описывать правильно свойства высоковозбужденных состояний ядер, способна на основании ряда моделей предсказывать характеристики уровней, усредненные по многим состояниям, и их глобальную зависимость от числа нуклонов в ядре или энергии возбуждения. Теоретические оценки полных радиационных ширин проводились не раз, начиная с Блатта и Вайскопфа^{/18}/ в предположении различных представлений для матричных элементов электромагнитных

переходов. В^{/16/} с использованием одночастичной оценки для матричного элемента и в предположении, что основной вклад в Γ_{γ} вносят E1-переходы, было получено следующее выражение для полной радиационной ширины:

$$\Gamma_{\gamma} \simeq 0.2 \, A^{2/3} \, \frac{1}{D_0} \, \int_0^U E_{\gamma}^3 \, \frac{D(U)}{D(U - E_{\gamma})} \, dE_{\gamma} \, , \qquad /8/$$

где U- энергия возбуждения, D (U) - расстояние между уровнями при энергии возбуждения U, D₀ - расстояние между уровнями вблизи основного состояния. /Здесь Γ_{γ} - в эВ, E_{γ} , D₀, D(U) - в МэВ/. Если воспользоваться общепринятой в статистической модели формулой для плотности уровней

$$\rho(U) = \frac{1}{D(U)} = \frac{1}{aU^2} \exp(2\sqrt{aU})$$
/9/

и оценкой $D_0 \sim A^{-1/3}$, то из /8/ можно получить

$$\Gamma_{\gamma} = \left(CA \left(\frac{U}{a} \right) \right)^2 .$$
 /10/

Следуя Акселю^{/17/}, можно связать вероятность радиационного перехода с характеристиками дипольного гигантского резонанса/ДГР/. В этом случае можно получить^{/14/} такую зависимость полной радиационной ширины от параметров A,U,a:

$$\Gamma_{y} = CA^{7/3} \Pi^{2,2} a^{-2,8}$$
 (11)

или

$$\Gamma_{\gamma} = CA^{7/3} (U/a)^{5/2}$$
, /12/

как это показано в работе^{/18/} в предположении, что ширина ДГР постоянна в широком диапазоне атомных весов. В работе Зарецкого-Сироткина^{/19/} была предпринята попытка

В работе Зарецкого-Сироткина Γ'' была предпринята попытка использовать оболочечный подход к описанию ДГР, что приводит к следующему выражению для Γ_{γ} :

$$\Gamma_{\gamma} = CA^{7/3} (U/a)^{7/2}$$
 . /13/

Более детальное количественное рассмотрение низкоэнергетической части сечения фотопоглощения в рамках оболочечного подхода и на этой основе анализ полных радиационных ширин проведены в недавней работе Бондаренко-Урина^{/18}. Из полученной в этой работе связи ширины ДГР с мнимой частью оптического потенциала и параметрами A, U и a следует, что

$$\Gamma_{\gamma} = C_1 A^{5/3} \left(\frac{U}{a}\right)^{5/2} + C_2 A^{7/3} \left(\frac{U}{a}\right)^{7/2}$$
 /14/

Как видно из формул /10/-/14/, разные теоретические подходы приводят к существенно различающимся зависимостям Γ_{γ} от параметров A , U , a. Ниже приводятся результаты сравнения рассчитанных по формулам /10/-/14/ значений Γ_{γ}^{P} с полученными экспериментальными оценками средних радиационных ширин.

Экспериментальные данные по $\overline{\Gamma}_{\gamma}$, $\Delta\overline{\Gamma}_{\gamma}$ и использованные при анализе параметры представлены в <u>табл.1</u>, где приведены заряд Z и массовое число A компаунд-ядра, энергия связи нейтрона B_n, параметр Δ , учитывающий спаривание нуклонов в ядре при вычислении эффективной энергии возбуждения U = B_n- Δ , параметр плотности уровней а. Параметры а и Δ взяты из работы^{/20}/в которой они вычислены в рамках модели ферми-газа с введением фиктивного основного состояния, и описывают плотность уровней при низкой энергии возбуждения и при энергии связи нейтрона. Для некоторых ядер, не рассматривавшихся в ^{/20}, а и Δ вычислены указанным в этой работе методом.

Для сравнения экспериментальных данных с теоретическими предсказаниями использовалась программа, которая с помощью стандартной процедуры FUMILI ^{/21/} минимизировала функционал

$$\chi^{2} = \sum_{i=1}^{m} \left(\frac{\Gamma_{\gamma i}^{p} - \overline{\Gamma}_{\gamma i}^{9}}{\Delta \overline{\Gamma}_{\gamma i}^{9}} \right)^{2},$$

В сумму были включены данные для т =131 ядра из верхней части табл.1 до 144 номера. Часть ядер из этой группы была исключена из анализа из-за большого вклада их в χ^2 йсключенные ядра в основном расположены вблизи замкнутых оболочек и отмечены в таблице знаком *

На основании формул /10/-/13/ радиационную ширину можно представить в виде

$$\Gamma_{\gamma}^{p} = CA^{a} U^{\beta} a^{\gamma} . \qquad (15)$$

Программа позволяла проводить расчеты для любой комбинации фиксированных и свободных параметров C, a, β , γ . Для варианта Бондаренко-Урина подгонка проводилась для суммы из двух членов /14/ с указанными в этой формуле наборами значений a, β , γ и для свободных положительных коэффициентов C_1 и C_2 .

Результаты анализа представлены в левой части табл.2. Для каждого варианта помимо величины $\chi^{2/m}$ в отдельном столбце приведено среднее относительное отклонение расчетных от экспериментальных значений

$$\delta = \frac{1}{m} \sum_{i=1}^{m} \frac{|\Gamma_{\gamma i} - \Gamma_{\gamma i}^{3}|}{\overline{\Gamma}_{\gamma i}^{3}}$$

В нашем случае эта величина является более реальной мерой соответствия расчетных значений экспериментальным, т.к. параметр χ^2 в значительной мере чувствителен не только к отклонениям

 $\Gamma_{\gamma}^{\rm p}$ от $\overline{\Gamma}_{\gamma}^{\rm p}$, но и к оцененным ошибкам $\Delta\overline{\Gamma}_{\gamma}$. Для каждого варианта проводились повторные вычисления χ^{2}/m и δ с включением в анализ данных для ядер с №145 по №172 из табл.1 с фиксированными значениями коэффициентов С /и α , β , γ в случае свободных параметров/, полученными в расчетах для m=131. Эти результаты, соответствующие m=158, также представлены в табл.2 и показывают, что включение в анализ ядер, для которых известны Γ_{γ} только для одного резонанса, не оказывает существенного влияния на значения χ^{2}/m и δ .

Как показывает табл.2, из теоретических оценок Γ_{γ} наименьшие значения $\chi^{2/m}$ и δ дает формула Вайскопфа /10/ /вариант 1/. Более низкие значения $\chi^{2/m}$ и δ получены лишь для варианта 6, когда все параметры были свободны. Для вариантов 1 и 6 расчетные значения Γ_{γ}^{p} отличаются от $\overline{\Gamma}_{\gamma}^{3}$ в среднем не более чем на 28%. Для варианта 5 /Бондаренко-Урин/ согласие расчетных значений Γ_{γ}^{p} с экспериментальными несколько хуже: δ =0.32. Заметим, что при подгонке в варианте 5 был "выключен" член с большими степенями /т.е. в расчетах C₂ получилось равным 0/. Наибольшее расхождение Γ_{γ}^{p} и $\overline{\Gamma}_{\gamma}^{3}$ имеет место для вариантов 2 и 3 /Аксель/, δ =0.44, причем в этих вариантах расчетные ширины систематически меньше экспериментальных в области A < 140.

Принимая во внимание, что статистическая модель предсказывает приблизительную линейную зависимость параметра плотности уровней а от атомного веса, мы использовали еще один способ сравнения теоретических оценок Гу с экспериментальными радиационными ширинами, полагая в вариантах 1÷5 а пропорциональным А. В случае свободных параметров мы исключили вообще зависимость Γ_{a}^{p} от a. Результаты этих расчетов приведены в правой части табл.2, а также на рис.2, где показаны отношения $\bar{\Gamma}_{,,}^{3}/\Gamma_{,}^{p}$ в зависимости от А. При принятой гипотезе а~А соответствие расчетных значений Γ_{c}^{p} экспериментальным становится для вариантов 1+5 по χ^2/m в 2+3 раза лучше, чем при учете индивидуальных значений а, величины **8** при этом уменьшаются на 10÷60%. Интересно отметить, что если из левых и правых формул табл.2 оценить с учетом найденных значений коэффициентов С коэффициент пропорциональности k (a = kA), то для вариантов 1÷5 получим одно и то же значение k = 0.110. которое близко к оценке k=0,125, полученной, например. Малышевым^{/22/}.Таким образом. результаты, приведенные в правой части табл.2, показывают, что отказ от индивидуальных значений параметра плотности уровней а в теоретических оценках Γ_{ν} приводит к лучшему соответствию $\Gamma^{\mathrm{p}}_{\nu}$ экспериментальным значениям $\Gamma^{\mathrm{p}}_{\nu}$. Это обстоятельство указывает на нечувствительность полных радиационных ширин к структуре a(A). т.е. к структуре в зависимости плотности уровней от атомного веса.

номерам вариантов из правой части табл.2 при вычислениях Γ_{γ}^{p} .

Следует обратить внимание на то, что формула для Γ_{γ}^{p} , полученная для свободных параметров без учета зависимости Γ_{γ} от а, фактически совпадает с формулой Бондаренко-Урина для случая a = k A:

$\Gamma_v^{\rm p} = 32.1 {\rm U}_{\rm o}^{2.56} / {\rm A}_{\rm o}^{0.823}$	-	свободные параметры,
$\Gamma_{v}^{y} = 37.8 \text{ U}^{2.5} / \text{A}^{0.833}$	-	формула Бондаренко-Урина.

Результаты, представленные в табл.2 и на рис.2, показывают, что ни одному из вариантов теоретических оценок Γ_{γ} нельзя отдать явного предпочтения по соответствию Γ_{γ}^{p} экспериментальным значениям, особенно в случае принятия гипотезы a=kA, когда δ меняется всего в пределах от 0,23 до 0,33. Кроме того, из <u>рис.2</u> видно, что ни один из теоретических подходов не способен детально описать экспериментальные радиационные ширины: во всех вариантах имеет место значительный нерегулярный разброс около единицы отношений $\Gamma_{\gamma}^{p}\Gamma_{\gamma}^{p}$ для соседних ядер. Поэтому сведение оценки Γ_{γ} к простой зависимости от таких параметров ядра, как A, U, a, следует понимать только как грубое приближение. Можно надеяться, что дальнейшее развитие

полумикроскопического подхода $^{/18,19\prime}$ и последовательное использование более тонких характеристик компаунд-ядра позволит достигнуть лучшего соответствия теоретических оценок Γ_{γ} экспериментальным данным. Интересным и важным для всех вариантов теоретических оценок Γ_{γ} остается вопрос о правильной абсолютной нормировке $\Gamma_{\gamma}^{\ p}$, который требует особого рассмотрения.

В заключение авторы выражают глубокую благодарность М.Г.Урину и В.И.Бондаренко за замечания и неоднократные полезные обсуждения. Мы признательны также Л.Б.Пикельнеру и В.И.Фурману за интерес к работе и ее поддержку.

Ta	блица	1
10	олица	

ББ 11/11	Z	Ą	Bn	Δ	a	۲ <u>۶</u>	Лятера- тура
I	20	44	II,I4	0 ,79	5,48	778 ± 133	/2/
2 ^{**}	22	4 8	II,63	0,66	5,85	2020 ± 115	/1/
3	23	52	7,31	-2,38	5,59	1240 ± 250	/I,4/
4 [*]	24	51	9,26	0,45	5,58	1760 ± 614	/1/
5 ^{**}	24	53	7,94	0,14	6,06	2090 ± 1380	/I/
6 ^{**}	24	54	9,72	0,55	6,01	2350 ± 620	/1/
7 [#]	26	58	10,04	0,82	6,79	2150 ± 925	/1/*
8	27	6 0	7,49	-2,16	6,86	503 ± 230	/1/
9*	28	59	9,00	-0,76	5,77	3130 ± 214	/1/
10 [#]	28	61	7,82	-0,56	6,69	1730 ± 320	/1/
Π^{*}	28	62	10,60	I,07	7,27	2108 ± 194	/1/
I2.	29	64	7,92	-1,07	8,40	556 ± 55	/1/
13	29	66	7,07	-0,63	8,92	334 ± 61	/1/
14	31	70	7,66	-0,94	9,46	261 ± 26	/1/
I5	31	72	6,52	-I,7I	9,69	241 ± 20	/1/
16	32	71	7,42	-I,II	9,39	160 ± 33	/1/
17	32	73	6,78	-I,II	9,86	154 ± 90	/1/
18	32	74	10,20	0,94	I0,26	196 ± 18	/I/

Таблица 1 /продолжение/

9

Таблица 1 /продолжение/

## ∎/□	Ζ	A	Bn	Δ	a	Ī	Литера- тура	1	₩ 1/11 	Z	Α
19	33	76	7,33	-I,45	10,81	290 ± 30	/1/	Ĩ	45	48	II
20	34	75	8,02	-I,03	IO,37	246 ± 48	/I/		46	4 8	II
2I	34	77	7,42	-1,02	IO, 3 5	230 ± 37	/1/		47	48	II
22	34	7 8	10,50	I,I5	10,66	381 ± 33	/1/		4 8	4 8	II
23	34	79	6,9 8	-0,5I	10,95	223 ± 43	/1/		4 9	49	II
24	35	80	7,88	-1,32	IO,93	334 ± 38	/1/		50	49	11
25	3 5	82	7,60	-0 ,64	II,79	294 ± 82	/1/		51	50	II
26	37	86	8 ,6 5	-I,IO	8,61	121 ± 40	/1/		52	5I	12
27	40	9I	7,20	0,57	10,26	270 ± 50	/1/		53	5I	12
29	4 0	92	8 ,64	I,I6	IO ,87	194 ± 27	/1/		54	52	12
29	4 0	93	6,76	0,8I	12,31	190 ± 48	/1/		55	52	12
30	4 I	94	7,23	-0,76	II ,9 8	135 ± 11	/1/		56	52	12
31	42	93	8,07	0,66	I0 .36	177 ± 16	/1/		57	52	12
32	42	· 95	7,38	0,22	11,27	177 ± 33	/1/		58	52	12
33	42	96	9,15	0,83	II,34	151 ± 13	/1/		5 9	52	12
34	42	97	6,82	-0,15	12,04	152 ± 71	/1/		60	5 3	12
35	42	98	8,64	0,67	12,06	126 ± 14	/1/		61	54	13
36	42	99	5,92	-0,50	13,43	86 ± 15	/1/		62	54	13
37	42	IOI	5,39	-0,21	15,03	56 ± 15	/1/		63	55	13
38	44	100	9,67	0 ,5 0	II ,7 7	195 ± 22	/1,10/		64	56	13
39	44	102	9,22	0,48	13,01	174 ± 18	/1,10/		65	59	14
40	45	104	7,00	-1,02	14,67	1 8 5 ± 12	/1/	٩,	66	60	14
4 I	46	106	9 ,56	1,21	I 4,44	152 ± 12	/I,II/		67	6 0	14
42	4 7	108	7,27	-0,90	14,80	I40 ± 8	/1/	ý	68	60	14
43	47	110	6 , 8I	-0,92	15,79	129 ± 5	/1/		69	60	15
44	48	III	6,98	-0,42	I3,7 0	100 ± 16	/1/				

₩₩ 11/11	Ζ	Α	B _n	Δ	a	Γ ₈	Лятера- тура
4 5	48	112	9,40	1,31	14,82	103 ± 10	/I/
4 6	48	113	6,54	-0,38	I 4, 8I	102 ± 18	/1/
47	48	II4	9,04	I ,4 6	15,74	113 ± 20	/1/
4 8	4 8	115	6,15	-0,20	16,31	III ± 20	/1/
4 9	4 9	114	7 , 3I	-0,26	15,23	74 ± 7	/1/
50	49	116	6,78	-0,78	15,33	77 ± II	/1/
5I	50	118	9,33	I ,4 5	14,59	72 ± 11	/I/
52	5I	122	6,8I	-1,21	14,90	91 ± 5	/1/
5 3	51	124	6,47	-1,39	I4,04	97 ± 11	/1/
54	52	123	6,93	0,06	15,80	141 ± 80	/I/
55	52	124	9,42	I,I2	14,85	129 ± 27	/I/
56	52	125	6,59	-0,5I	15,33	II9 ± 40	/1/
57	52	126	9,11	1,27	15,10	145 ± 13	/1/
58	52	127	6,30	-0,08	16,18	158 ± 51	/1/
59	52	129	6,09	-0,35	15,79	126 ± 31	/1/
60	5 3	128	6,82	-1,20	14, 95	120 ± 9	/13/
6 I	54	I3 0	9,26	1,02	I 4, 74	121 ± 12	/1/
62	54	132	8,94	1,32	14,91	114 ± 13	/1/
63	5 5	134	6,89	-1,32	I4, 0I	II8 ± 7	/1,13/
64	56	1 3 6	9,II	I ,4 5	14,83	107 ± 4	/1/
65	5 9	142	5,84	-0,4I	15,58	83 ± 12	/1/
66	60	I 44	7,82	I ,4 8	I6,5 8	73 ± 4	/1/
67	60	I 4 6	7,57	I,29	17,76	52 ± 5	/1/
68	60	I 4 9	5,07	-0,4I	18,70	64 ± 8	/1/
69	60	151	5,31	-0,36	19,39	69 ± II	/1/

8

.

Таблица 1 /продолжение/

Таблица 1 /продолжение/

355 1/11	Z	А	Bn	Δ	α	Ī,	Литера- тура
70	61	148	5,89	-0,60	17,30	68 ± 7	/1/
7I	62	I 4 8	8,14	0,64	16,80	89 ± 10	/1,12/
72	62	I5 0	7,99	0,61	18,98	9I ± II	/1,12/
73	62	152	8 , <i>2</i> 7	0,0	18,33	57 ± 16	/I/
74	62	153	5,86	-0,97	I8 ,3 5	63 ± II	/1/
75	62	155	5 , 8I	-0,95	17,08	78 ± 18	/1/
76	63	I52	6,30	-1,02	21,16	9I ± 3	/1/
77	63	I5 4	6,44	-0,65	21,04	94 ± 3	· /ɪ/
78	64	I53	6,49	-0,74	19 ,64	55 ± 18	/1/
79	64	I55	6,45	-0,78	19 ,8 6	85 ± 5	/1/
80	64	156	8,53	0,15	18,14	II2 ± 6	/1/
8 I	64	157	6,37	-0,67	17,93	87 ± 12	/1/
82	64	I5 8	7,93	0,28	17,83	98 ± 7	/I/
83	64	159	7,93	0,63	18,03	IOI ± 5	/1/
84	64	161	5,63	-0,48	17,99	107 ± 14	/I/
85	65	160	6,38	-0 ,9 8	18 ,9 9	88 ± 4	/I/
86	66	162	8,20	0,15	17,75	II4 ± 5	/I,I2/
87	66	I64	7,66	-0,14	16,52	III ± 7	/1,12/
88	67	I66	6,24	-1,02	18,07	72 ± 3	/I/
89	68	I67	6,44	-0,49	18,7 I	90 ± 8	/1/
90	68	I6 8	7,77	0,17	17,86	87 ± 4	/1/
91	6 8	I69	6,00	-0,42	18,42	86 ± 13	/1/
92	69	170	6,59	-0,83	19,26	103 ± 7	/1/
93	7 0	172	8,08	0,27	18,81	75 ± 4	/I/
94	70	173	6,37	-0,51	18,1 9	73 ± 21	/1/
9 5	7 0	174	7,47	0 ,4 7	18,43	79 ± 2	/1/

.

жи п/п	Z	A	Bn	\bigtriangleup	α	$\overline{\Gamma_{s}}$	Інтера - тура
96	71	17 6	6,29	-0,75	19,66	71 ± 10	/1,9/
97	72	178	7,26	0,29	19,40	6 6 ± 5	/1,8/
98	73	182	6,06	-0,87	I9 ,4 2	56 ± 3	/1/
9 9	74	I83	6,19	-0,67	18,35	58 ± 10	/1/
100	74	184	7,4I	0,42	19,7 0	76 ± 6	/1/
101	74	185	5,75	-0,86	I8 ,46	69 ± 10	/1/
102	74	187	5,47	-0,15	20,46	59 ± 5	/1/
103	75	186	6,18	-0,8I	20,19	55 ± 2	/1,7/
I04	75	188	5,87	-0,90	20,52	58 ± 4	/1,7/
105	76	188	7,99	0,73	19,66	84 ± 3	/10,13/
106	76	190	7,79	0,59	I9 , 95	80 ± 2	/I0,I3/
107	77	192	6,20	-0,80	21,25	73 ± 10	/I/
I08	78	193	6,29	-0,70	18,10	55 ± 15	/I/
I09	78	196	7,92	0,75	I9 ,55	II6 ± 9	/I/
110	79	198	6 , 5I	-0,84	17,76	125 ± 5	/I/
III	80	199	6,65	-0,66	17,43	129 ± 18	/I/
112 [#]	80	200	8,03	0,55	16,32	290 ± 18	/1/
113 [#]	80	202	7,76	0,83	16,13	384 ± 66	/1/
II 	81	206	6,50	-0,77	II,52	767 ± 100	/1/
115 [#]	82	205	6,73	-0,02	I5,55	920 ± 447	/I/
116	90	230	6,79	0,25	25,38	34 ± 20	/1/
117	90	23 I	5,13	-0,61	26,43	26 ± 3	/I/
II 8	90	233	4,79	-0,58	26,27	2I ± I	/1/
119	9 1	232	5,58	-0,80	15,10	44 ± 4	/1/
120	92	234	6,84	0,II	24,74	43 ± IO	/I/
12I	92	236	6,55	0,36	26,34	43 ± 2	· /I/

.

Таблица 1 /продолжение/

Таблица 1 /продолжение/

ва п/п	Ζ	A	Bn	Δ	a	Γ ₈	Литера- тура
122	92	237	5,12	-0,23	26,56	24 ± I	/1/
123	92	239	4,80	-0,58	27,33	23 ± I	/1/
124	93	238	5,48	-0 ,67	26,62	43 ± 3	/1/
125	94	239	5,66	-0,53	24,22	37 ± 3	/1/)
126	94	240	6,53	0,58	26,79	41 ± 2	/1/
127	94	2 4 I	5,24	-0,67	25,04	3I ± I	/1/
128	94	242	6,31	1,09	26,0	3 9 ± 3	/1/
129	94	243	5,02	-0,70	26,04	23 ± I	/1/
130	95	242	5,53	-0,60	26,40	4 I ± 6	/1/
131	96	245	5,52	-0,37	25,02	40 ± 2	·/I/
132	96	249	4,71	-0,60	25,29	48 ± 14	/1/
1 33	26	57	7,65	-0,48	6,22	1045 ± 405	/1/
134	30	68	10.20	0.75	7.97	460 ± 140	/1/
135	32	75	6,49	-1,22	9,14	195 ± 50	/I/
136	34	81	6,70	-0,21	II ,4 5	230 ± 97	/1/
137	4 0	95	6,48	0,48	12,39	280 ± 80	/1/
138	60	I 4 7	5 ,3 0	-0,45	18,12	55 ± 8	/1/
139	62	I5 I	5,59	-0,96	18,23	89 ± 10	/1/
I4 0	70	175	5,82	-0,36	18,22	83 ± 14	/1/
141	71	177	7,07	-0,41	I8,74	59 ± 2	/1/
142	77	194	6,07	-0,83	19,61	90 ± 14	/I/
I43	78	195	6,12	-0,72	18,50	69 ± 17	/1/
I 44	96	247	5,16	-0,55	23,69	35 ± 5	/1/
I45	23	51	II,05	0,21	6,39	600 ± 80	/1/
146	24	55	6,26	-0,56	6,28	190 ± 50	/1/
I 4 7	25	56	7,27	-2,46	6,45	732 ± 113	/3/

.

1/1	Z	A	B _n	Δ	a	Īş	Інте- ратура
TAR	26	55	9.30	_0_40	5 70	2500+500	/ . /
T49	28	63	6.84	0.44	7 94	200-000	/1/
T50	28	65	6.84	0.30	7,5 4 8 TA	760-120	/ ±/
151	30	65	7.98	_0.84	8 04	294430	/ - / / Ţ /
152	30	67	7.05	-0,02	8,85	T70±20	/1/
153	30	69	6.48	-0.29	8,43	180±30	/1/
I54	32	77	6.02	-0.32	10.50	115±25	/1/
155	37	88	6.08	-0.70	8.70	95 ± 13	/1/
156	38	88	II.II	I.97	9,25	205±20	/1/
157	38	89	6.36	0.92	8,95	100±10	/1/
I58	40	97	5,57	0,52	12.30	250±20	/I/
I59	50	113	7,74	0,69	15,97	110=21	/1/
16 0	50	117	6,94	0,39	15,30	52 ± 8	/1/
16I	54	136	7,99	I ,4 2	15,01	91 ± 10	/1/
162	56	131	7,49	-0,10	15,70	120 ± 20	/1/
I63	56	I35	6,98	-0,22	15,51	80 ± 20	/1/
164	57	1 3 9	8,78	0,08	13,15	95 ± 6	/I,5/
I65	57	I40	5,16	-1,07	13,91	60 ±4	/I/
166	60	145	5,76	0 ,3 I	17,19	80 ± 12	/I/
167	66	163	6,27	-0,88	17,22	155 ±3 0	/I/
I68	66	16 5	5,72	-0,77	17,04	55 ± 3	/1/
169	70	I69	6,84	0,88	17,20	70±10	/I/
I7 0	81	204	6 ,6 6	-0,37	12,69	6 4 0 * 70	/1/
171	83	210	4,60	-1,23	II ,4 3	45-5	/I,6/
172	92	235	5,3I	-0,36	25,82	25 ± 6	/1/

.

2
-
Ъ
21
.51
See.
Ë l

New L	Номер формулн	нг Dwlo ф Флян	E	en la construction de la construcción de la constru	Ś	Вад формулн	Ε	<i>X</i> /m	S
н	(II)	ସ୍ଟ_=2, 86A (<u>ଅ</u>) ² 2.2	13I 158	I5,9 I3,5	0,28 0,30	[5=235 <u>↓</u> 2	13I 158	9,0 4 9,48	0,23 0,25
2	(11)	[y=0,0192A ^{7/3} 07,8	13I 158	35,2 33,0	0,44 0,45	$f_{y=10,3} = \frac{0.7}{A_{0,4/7}}$	13I 158	12,6 11,9	0,28 0,30
ო	(12)	$\left[\int_{a}^{a} (0.044h^{7/3} \left(\frac{U}{d}\right)^{2}$	I3I I58	34,6 32,7	0,44 0,46		13I 158	I5,3 I5,8	0,32 0,35
4	(13)	$\left(\int_{a}^{a} 0, 0122 A^{7/3} \left(\frac{U}{d} \right)^{2} \right)^{2}$	13I 158	32,9 33,2	0,37 0.39	[_{y=27,2} <u>U</u> ²² A <u>7</u> 6	13I 158	17,8 18 ,5	0,33 0,35
ß	(14)		13I 158	21,4 23.3	0,32	$r_{3=37,8} \frac{U_{3/2}}{\Delta^{5/6}} + 0$	13I 158	8,60 9,4I	0,26 0,28
9	свободные свободные	[y=38,7 U473 Aq632 Q9311	I3I I58	3,50 9,4I	0,23	$\int_{a}^{a_{22},1} \frac{V^{2,36}}{A^{0,623}}$	13I 158	8 ,6 0 9 ,44	0,24 0,26

ЛИТЕРАТУРА

- Mughabghab S.F., Garber D.I. Neutron Cross Sections. BNL-325, 3rd ed., 1973, vol.1.
- 2. Macklin R.L. Nucl.Phys., 1977, A279, p.317.
- 3. Garg J.B., Macklin R.L., Halperin J. Phys.Rev., 1978, C18, p.2079.
- 4. Winter R.R., Macklin R.L., Halperin J. Phys.Rev., 1978, C18, p.2092.
- 5. Hocken G. et al. Phys.Rev., 1976, C13, p.1884.
- 6. Singh U.N. et al. Phys.Rev., 1976, C13, p.124.
- 7. Namenson A.I., Stolovy A. Nucl. Phys., 1976, A266, p.83.
- 8. Rohr G., Weigmann H. Nucl. Phys., 1976, A264, p.93.
- Namenson A.I., Stolovy A., Smith G.L. Nucl. Phys., 1975, A237, p.45.
- 10. Попов А.Б., Тшецяк К., Хван Чер Гу. ЯФ, 1979, 29, с.561.
- 11. Попов А.Б., Тшецяк К., Хван Чер Гу. ОИЯИ, РЗ-11013, Дубна, 1977.
- 12. Попов А.Б., Тшецяк К., Хван Чер Гу. ЯФ, 1980, 32, с.603.
- 13. Попов А.Б., Тшецяк К. ОИЯИ, РЗ-81-19, Дубна, 1981; ОИЯИ, РЗ-81-721, Дубна, 1981.
- 14. Малэцки Х. и др. ЯФ, 1971, 13, с.240.
- 15. Гаруска У., Малэцки К., Тшецяк К. Acta Physica Polonica, 1977, vol.B8, No.3, p.219.
- Блатт Дж., Вайскопф В. Теоретическая ядерная физика. ИЛ, 1954.
- 17. Axel P. Phys.Rev., 1962, 126, p.671.
- 18. Бондаренко В.И., Урин М.Г. ЯФ, 1982, 35, с. 675.
- 19. Зарецкий Д.Ф., Сироткин В.К. ЯФ, 1978, 27, с.5347.
- 20. Dilg W., Schantl W., Vonach H. Nucl. Phys., 1973, A217, p.269.
- 21. Федорова Р.Н. и др. ОИЯИ, Б1-11-5190, Дубна, 1970, с.88.
- 22. Малышев А.В. ЖЭТФ, 1963, т.45, вып.2, с.316.

Рукопись поступила в издательский отдел 11 января 1982 года.

14

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

A1,2-9224	IV Международный семинар по проблемам физики высоких энергий. Дубна, 1975.	3	p.	60	к.
A-9920	Труды Международной конференции по избраиным вопросам структуры ядра. Дубна, 1976.	3	p.	50	к.
A9-10500	Труды II Симпозиума по коллективным методам ускорения. Дубна, 1976.	2	p.	50	к.
A2-10533	Труды X Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3	p.	50	к.
A13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	p.	00	к.
A17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	p.	00	к.
д6-11574	Сборник амнотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	p.	50	к.
A3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
A13-11807	Труды III Международного совещания по пропорциональ- ным-и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труди VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
A1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к.
P18-12147	Труды III Совещання по использованню ядёрно-физиче- ских методов для решения научно-технических и народно- хозяйственных задач. Дубиа, 1978.	2	p.	20	к.
A1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
P2-12462	Труды V Международного совещания по нелокальным теориям поля. Алушта, 1979.	2	p.	25	к.
A-12831	Труды Международного симпозиума по фундаментальним проблемам теоретической и математической физики. Дубна, 1979.	. 4	p.	. 00	и.
Д4-80-271	Труды Международной конференции по проблеман нескольких тел в ядерной физика. Дубна, 1979.	3	P	. 0) к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p	. 0	0 к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/		8 1	. ()0 K.
A11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979		3 1	. 5	60 K.
Д2-81-158	Труды XIV Международной школы молодых ученых по физике высоких энергий, Дубна, 1980		3 1	. :	50 K.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного миститута ядерных исследований

Малэцки Х., Попов А.Б., Тшецяк К. P3-82-11 Анализ средних радиационных ширин нейтронных резонансов С использованием доступных данных о параметрах нейтронных резонансов вычислены средние значения радиационных ширин для широкого круга ядер в интервале атомных весов от 50 до 250. Проводится сравнение экспериментальных значений с разными вариантами теоретических оценок $\Gamma_{\mathbf{v}}$, которые сводятся к зависимости Γ_{γ} от атомного веса A, энергии возбуждения U и параметра плотности уровней в виде $\Gamma_{\gamma} = CA^{\alpha} U^{\beta} a^{\gamma}$. Кроме того, подбирались эмпирические значения С, а., В , у, наилучшим образом удовлетворяющие экспериментальным данным. Установлено, что использование гипотезы а = kA приводит к существенно более хорошему соответствию всех теоретических оценок Г. экспериментальным значениям. При этом оказалось, что оценки Г, по Вайскопфу Бондаренко-Урину или с эмпирически подобранными параметрами находятся примерно в одинаковом соответствии с экспериментальными данными. Работа выполнена в. Лаборатории нейтронной физики ОИЯИ. Сообщение Объединенного института ядерных исследований. Дубна 1982 Malecki H., Popov A.B., Trzeciak K. P3-82-11 Analysis of Average Radiation Widths of Neutron Resonances On the basis of the available data on parameters of neutron resonances average values of radiation widths are calculated for a wide range of nuclei in the 50 upto 250 atomic weight range. Experimental values are compared with different variants of theoretical estimates of $\Gamma_{\rm v}$ which are reduced to the Γ_{γ} dependence upon atomic weight A, excitation ⁷ energy U and level density parameter a as $\Gamma_{\gamma} = CA^{\alpha} U^{\beta} a^{\gamma}$. Besides, empirical values C, α , β , y are selected satisfying to the experimental data best of all, it is determined that the use of a=kA hypothesis leads to a sufficiently better agreement between all theoretical estimates of Γ_{ν} to experimental values. It turned out that the estimated by Weisskopf, Bondarenko-Urin or with empirically chosen parameters give an approximately similar correspondence of calculated values Γ_{ν}^{p} to experimental data. The investigation has been performed at the Laboratory of Neutron

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.

Physics, JINR.