

ОбЪЄДИНЕННЫЙ Институт Ядерных Исследований Дубна

6434 2-81

28/11-81 P3-81-719

В.П.Алфименков, С.Б.Борзаков, Во Ван Тхуан, Ю.Д.Мареев, Л.Б.Пикельнер, А.С.Хрыкин, Э.И.Шарапов

НАРУШЕНИЕ ПРОСТРАНСТВЕННОЙ ЧЕТНОСТИ В НЕЙТРОННОМ РЕЗОНАНСЕ ЛАНТАНА-139 С ЭНЕРГИЕЙ 0,75 эВ

Направлено в "Письма в ЖЭТФ"

Недавнее экспериментальное исследование /1/несохранения пространственной четности в нейтронном резонансе олова-117 с энергией 1,33 эВ подтвердило теоретические предсказания работ /2.8/о существенном усилении эффекта вблизи компаунд-состояний ядер. Целесообразно использовать открывшиеся новые экспериментальные возможности для изучения этого явления в различных ядрах с тем, чтобы выяснить специфику резонансного вклада в несохраняющую четность амплитуду реакции под действием нейтронов. Ниже мы сообщаем результаты измерений различия резонансной части сечения ядра лантана-139 для нейтронов, поляризованных по направлению их импульса и против него.

Измерения выполнены на импульсном реакторе ИБР-30 в условиях, аналогичных описанным в/1/.Измерялось пропускание продольно-поляризованных нейтронов образцом естественного лантана толщиной 4,7 см / $n = 1,25 \cdot 10^{23}$ ядер/см²/. Пучок нейтронов с поперечным сечением 5х6 см² поляризовался методом пропускания через динамически поляризованную протонную мишень. Величина поляризации f_n составляла 0,55, реверс осуществлялся через 40 с. Нейтронные спектры по времени пролета регистрировались детектором, находившимся на расстоянии 58 м от активной зоны реактора, и измерительной системой на базе малой ЭВМ. Полезное время набора статистики составило, 7 суток.

На <u>рис.1</u> показан участок спектра с резонансом 0,75 эВ, полученный за 40 ч для одного из направлений поляризации пучка. Пунктиром указан спектр в отсутствие резонанса, полученный на основании измерения без лантана с учетом известной энергетической зависимости полного сечения вне резонанса. Удлиненное левое крыло обусловлено примесным резонансом ¹⁴⁹Sm с энергией 0,87 эВ. На <u>рис.2</u> показан экспериментальный эффект нарушения четности

$$\epsilon = \frac{N^+ - N^-}{f_- (N^+ + N^-)},$$

где N⁺ и N⁻ - число отсчетов по участку спектра при положительной и отрицательной спиральностях нейтронов. Величина эффекта в максимуме достигает 2% и имеет ярко выраженный резонансный характер. Были измерены параметры p-волнового резонанса лантана: $E_p = /0,75\pm0,01/$ эB, $g\Gamma_p^n = /3,6\pm0,3/\cdot10^{-8}$ эB, $\Gamma_p =$ = /0,045±0,005/ эB, оказавшиеся в хорошем согласии с данными работы/4/Энергетическая ширина функции разрешения нейтронного спектрометра в нашем случае составляла R = 25 мэB, a допплеров-

W

Б

Д

Рис.1. Аппаратурный спектр нейтронов после прохождения лантановой мишени толщиной 4,7 см, полученный методом времени пролета. <u>Рис.2</u>. Зависимость эффекта нарушения пространственной четности от энергии нейтронов в эВ в области р -волнового резонанса лантана 0,75 эВ. Для точек, у которых не указана ошибка, последняя не превосходит размера точки.

ская ширина уровня $\Delta = 23$ мэВ. Очевидно, что такие параметры должны привести к некоторому уширению экспериментальной резонансной кривой <u>рис.2</u> в сравнении с ее формой без учета влияния R и Δ .Поэтому в данном случае целесообразно использовать эффект относительного изменения площади A над резонансным провалом при изменении знака поляризации:

$$\epsilon_{\mathbf{A}} = \frac{\mathbf{A}^{+} - \mathbf{A}^{-}}{\mathbf{f}_{\mathbf{n}} \left(\mathbf{A}^{+} + \mathbf{A}^{-}\right)}, \qquad (1)$$

Используя выражение работы $^{/2/}$ для резонансной части р-волнового сечения σ_n

$$\sigma_{\rm p}^{\pm} = \sigma_{\rm p} \left(\mathbf{E} \right) \left[\mathbf{1} \pm \mathcal{P} \right] , \qquad /2/$$

в случае тонкого образца получим

$$\epsilon_{A^{=}} \mathcal{P}$$
. (3)

Пересчет є и є дал значение $\mathscr{P} = /7, 3+0, 5/\cdot 10^{-2}$. Отсутствие заметного эффекта вне резонанса 0,75 эВ позволяет считать, что наблюденный эффект несохранения четности содержится лишь в резонансной части сечения.

Результат данной работы интересно сопоставить с эффектом несохранения четности в полном сечении лантана для тепловой области энергий $\mathscr{P}(\mathbf{E}) = /5, 6\pm0, 8/\cdot10^{-6}$, полученным в $^{/5/}$. Если эффект в тепловой области связан в основном с радиационным захватом, то для сравнения можно воспользоваться формулой

$$\frac{\mathcal{P}(E)}{\mathcal{P}} \simeq \frac{\sigma_{p}(E_{p})}{\sigma_{t}(E)} \left(\frac{\Gamma_{p}}{2E_{p}}\right)^{2}$$

$$/4/$$

/см., например, $^{/1/}$ /, в которой $\sigma_t(E)$ - полное сечение в тепловой области и $\sigma_p(E_p)$ - резонансная часть сечения в максимуме p -резонанса. Экспериментальное значение $\mathcal{P}(E)/\mathcal{P}$ согласуется с рассчитанным по формуле /4/ с точностью до фактора 1,5-2, что следует считать весьма удовлетворительным, учитывая, что $\mathcal{P}(E)$ и \mathcal{P} отличаются на 4 порядка.

Согласно теоретическим представлениям, несохраняющее четность слабое нуклон-нуклонное взаимодействие ведет к появлению в p-уровне примеси компаунд-состояния противоположной четности. Коэффициент смешивания α был рассчитан по формуле $\mathscr{G} = 2a (\Gamma_s^n / \Gamma_p^n)^{1/2}$ с нейтронной шириной $\Gamma_s^n = 0,1$ эВ для ближайшего сильного s-волнового резонанса при $\mathbf{E}_s = -37$ эВ $^{/4/}$. Матричный элемент нарушающего четность взаимодействия был оценен на основании соотношения $\leq \mathbf{s} |\mathbf{H}_{\mathbf{w}}| \mathbf{p} \geq a |\mathbf{E}_s|^{/2}$. Результаты для изученных нами лантана и олова/1/даны в таблице:

Компаунд-ядро	Е _s , эВ	a	≤s H _₩ p>, ϶B
Олово-118	10	4 • 10 ⁻⁵	0,4.10 ⁻³
Лантан-140	37	$3 \cdot 10^{-5}$	1,1·10 ⁻³ *

Следует отметить, что ввиду неопределенностей параметров отрицательных резонансов и ряда использованных допущений величины α и <s $|H_{W}|$ p> являются лишь оценками. В этом смысле результаты свидетельствуют о примерно одинаковой силе слабого нуклон-нуклонного взаимодействия в компаунд-состояниях ядер олова-118 и лантана-140. Очень большая величина экспериментального эффекта ϵ для лантана объясняется в основном аномально большим значением приведенной нейтронной ширины суровня.

Авторы благодарны И.М.Франку, И.С.Шапиро и В.И.Лущикову за внимание к работе, М.Б.Бунину, С.И.Неговелову, Б.А.Родионову и Д.Рубину за помощь в измерениях.

ЛИТЕРАТУРА

^{1.} Алфименков В.П. и др. Письма в ЖЭТФ, 1981, т.34, вып.5, с.308.

- 2. Сушков О.П., Фламбаум В.В. Письма в ЖЭТФ, 1980, т.32, с.377; препринт ИЯФ СО АН СССР, №81-37, Новосибирск, 1981.
- 3. Бунаков В.Е., Гудков В.П. Препринт ЛИЯФ, №661, Л., 1981. 4. Shwe H., Cote R.E., Prestwich W.V. Phys.Rev., 1967, vol.159, p.1050.
- 5. Kolomensky E.A. et al. Nucl. Phys. Inst. Preprint No.662, Leningrad, 1981.

Рукопись поступила в издательский отдел 17 ноября 1981 года.