

Объединенный институт ядерных исследований дубна

5122 / 9-81

19/4-81 P3-81-601

Т.Бакалов, Г.Ильчев, С.Тошков, В.Ф.Украинцев, Чан Хань Май, Н.Янева

МНОГОУРОВНЕВАЯ ПАРАМЕТРИЗАЦИЯ ПОЛНОГО СЕЧЕНИЯ **Ри-239** В РЕЗОНАНСНОЙ ОБЛАСТИ НА ОСНОВЕ АНАЛИЗА ПРОПУСКАНИЯ НЕЙТРОНОВ

Направлено в АЭ

ВВЕДЕНИЕ

Задача многоуровневой параметризации резонансных сечений рассматривалась многими авторами в связи с необходимостью анализа не только резонансных, но и интерференционных особенностей энергетической зависимости сечений ^{/1/}. Особый интерес проявляется здесь к взаимодействию резонансных нейтронов с делящимися ядрами, которое характеризуется заметными эффектами интерференции между резонансами, причем наиболее сильны эти эффекты в полных сечениях и сечениях деления.

Для параметризации энергетической зависимости сечений используются две основные схемы: схема Райха-Мура $^{/2/}$ в R -матричной теории и схема Адлеров $^{/3/}$ в S -матричной теории.

Преимуществом схемы Райха-Мура является то, что параметры имеют простой физический смысл, прямую связь с ядерными моделями и их можно экстраполировать на область неразрешенных резонансов с использованием известных распределений. Однако в этой схеме сложен учет доплер-эффекта, а применение метода наименьших квадратов для получения параметров является трудоемкой задачей. Кроме того, учет интерференции более чем двух уровней и введение более чем трех каналов реакции также приводит к большим объемам вычислений.

Схема Адлеров более удобна для воспроизведения сечений в расчетах реакторов. В этом формализме легко учитывается доплер-эффект, возможно описание сечений с любым числом каналов реакций и интерферирующих уровней, введение поправки на экспериментальное разрешение и получение параметров методом наименьших квадратов сравнительно просто.

В настоящее время трудности анализа связаны, в основном, с недостаточной точностью и полнотой экспериментальных данных, что приводит к неоднозначности результатов анализа. Кроме того, принципиальной трудностью, возникающей при использовании набора параметров, оцененных исходя из данных по сечениям. реакторах, является неудовлетворительное описание в эффекрезонансного самоэкранирования сечений, TOB играющих большую роль в формировании спектров в реакторах. Действительно, так называемые факторы резонансного самоэкранирования, содержащиеся в системах констант для расчетов реакторов, чувствительны к интерференционным провалам в энергетическом ходе сечения. Информация о реальной интерференционной картине

проявляется именно при измерениях пропускания на больших толщинах исследуемых образцов.

Несомненно, что привлечение к анализу данных по полному сечению совместно с результатами экспериментов по пропусканию нейтронов через толстые образцы позволяет более надежно определять параметры резонансов и, соответственно, воспроизводить детальную энергетическую зависимость сечений, а через нее факторы резонансной самоэкранировки ⁽¹⁾.

В данной работе на основе методики, разработанной в ^{/8/}, представлены результаты многоуровневого анализа данных по пропусканиям нейтронов через различные толщины образцов Ри-239 в интервале энергий от 4 до 50 эВ.

МЕТОДИКА И ОСНОВНЫЕ ФОРМУЛЫ

Парциальное сечение типа "а", а также полное сечение, за вычетом сечения потенциального рассеяния, представляется в схеме Адлеров в виде суммы по резонансам "k":

$$\sigma_{\alpha}(E) = \pi \lambda^{2} \sum_{k} \left[\frac{G_{k}^{\alpha} \nu_{k} + H_{k}^{\alpha}(E - \mu_{k})}{(E - \mu_{k})^{2} + \nu_{k}^{2}} \right], \qquad /1/$$

где X – длина волны нейтрона, Е – энергия нейтрона, μ_k – положение уровня, ν_k – половина ширины уровня, G_k – параметр, характеризующий площадь уровня, H_k – параметр, характеризующий межрезонансную интерференцию.

Учет теплового движения ядер приводит к формуле

$$\sigma_{\alpha}(E) = \pi \lambda^{2} \sum_{k} \left\{ \frac{1}{\nu_{k}} \left[G_{k}^{\alpha} \psi(x_{k}, \xi_{k}) + H_{k}^{\alpha} \chi(x_{k}, \xi_{k}) \right] \right\},$$
 /2/

где функции ψ и χ - известные доплеровские функции от x_k и ξ_k . Здесь $x_k = (E - \mu_k)/\nu_k$; $\xi_k = \nu_k/\Delta$, Δ - доплеровская ширина.

Наблюдаемое пропускание связано с полным сечением соотношением:

$$T_{t}(E, n) = \int R(E', E) \exp[-\sigma_{t}(E') \cdot n] dE',$$

$$\Delta E$$
/3/

где $R(E\,;E)$ - нормированная функция разрешения, n - толщина ис~следуемых образцов в ядрах/б, ΔE - интервал усреднения по энергии.

Функция R(E',E) для спектрометра по времени пролета обычно близка к форме Гаусса. Отметим, что при анализе сечений приходится иметь дело с произведением R(E', E) σ (E'), что позволяет проводить одновременную свертку по спектру теплового движения типа распределения Максвелла и функции разрешения Гаусса с суммированием дисперсий $\Delta^2 = \Delta_R^2 + \Delta_D^2$. Однако при анализе функции пропускания этого сделать нельзя, т.к. сечение входит в качестве сомножителя в показатель экспоненты. Таким образом, решение задачи потребовало двойного численного интегрирования, что усложнило алгоритм.

После воспроизведения детальной энергетической зависимости полного сечения с помощью полученных S -матричных параметров можно получить среднее сечение и факторы его резонанской самоэкранировки в зависимости от температуры и сечения разбавления /4/

$$\langle \sigma_{t}(\mathbf{T}) \rangle = \frac{\underbrace{\mathbf{u}_{2}}{\int \sigma(\mathbf{T}, \mathbf{u}) d\mathbf{u}}}{\underbrace{\mathbf{u}_{2} - \mathbf{u}_{1}}},$$

$$\langle f_{f}(\sigma_{0}, T) \rangle = \frac{1}{\langle \sigma_{t}(T) \rangle} \left[\frac{\langle 1/(\sigma_{t}(T) + \sigma_{0}) \rangle}{\langle 1/(\sigma_{t}(T) + \sigma_{0})^{2} \rangle} - \sigma_{0} \right],$$
 /5/

где σ_0 - сечение разбавления, T - температура образца.

АНАЛИЗ ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ

Значения пропусканий T_t (E, n) были получены для толщин образцов Ръ-239 в интервале 0,0165-0,1084 ядер/б на нейтронном спектрометре по времени пролета реактора ИБР-30. Пролетная база равнялась 1000 м, разрешение составляло 70 нс/м, ширина канала анализатора – 32 мкс. Детектором служила батарея ³Не -счетчиков с низким собственным фоном. Переменный во времени фон реактора измерялся методом резонансных фильтров и вычитался.

Разработанная нами программа многоуровневого анализа предназначена для определения резонансных параметров на основе экспериментальных данных по пропусканиям через различные толщины исследуемых образцов. Параметры, их ошибки и корреляции получаются методом наименьших квадратов с помощью программы FUMILI⁹⁹ из библиотеки программ БЭСМ-6.

Ошибки экспериментальных точек, используемых в анализе, обусловлены, в основном, статистикой отсчетов и погрешностью в учете переменного фона.

На <u>рис.1</u> показаны значения экспериментальных точек пропускания /треугольники/ с ошибками при толщине исследуемого образца 0,0165 ядер/б и результат многоуровневой подгонки пропускания в области 4-50 эВ. Среднее значение критерия χ^2 на одну точку после подгонки находится в пределах 0,5-1,5 для разных групп резонансов.

3

/4/

Рис.1. Результат многоуровневой параметризации пропускания при толщине образца 0,0165 ядер/б. — экспериментальные значения с ошибками, непрерывная кривая восстановление величины пропускания по полученным параметрам.

В табл.1 приведены параметры шестнадцати резонансов в рассматриваемой области энергий. Эти параметры были получены при одновременной подгонке на четырех толщинах образцов: 0,0165, 0,0379, 0,0658 и 0,1084 ядер/б.

Таблица l

Резонансные параметры полного сечения 239 Ра

, M _к (эВ)	<i>V</i> _к (мәВ)	G _k (мәв)	Н _{қ (мәВ)}	
7.86±0.004	44.5 [±] 0.1	0,4400 <u>+</u> 0,0020	-0.0129±0.0012	
I0.944±0.009	87.5±I.5	0.870I±0.0I00	0.0207±0.0071	
II.902±0.009	33.9±0.I	0.4551±0.0100	-0.0I34 ⁺ 0.005I	
14.328±0.021	57.I±I.0	0.2694 [±] 0.0027	0,0069±0,0230	
I4.655±0.024	35.6±0.4	0.771 2 0.0021	-0,0067±0,0320	
15.467±0.022	427.2±1.0	0,2898±0,0023	-0.0092±0.0220	
17.674±0.007	39.7±0.I	0 .6843±0.002 I	-0,0063 ⁺ 0,0040	
22.240±0.021	51.3±0.2	0.8318±0.0031	-0.0081±0.0066	
23.891±0.031	44.2±0.5	0.0276±0.0011	0.0035±0.0032	
26.233±0.022	41.2±0.2	0.4512±0.0030	0.0011±0.0063	
27.255±0.040	24.3±0.2	0.0396±0.0024	0.0003±0.0052	
32.285±0.031	88.2±0.5	0.0900±0.0025	-0.0007±0.0060	
35.415±0.043	19.4±0.2	0.0655±0.0030	-0.0002±0.0063	
4I.378±0.060	I6.3±0.I	0.8806±0.0012	0,0193±0,0580	
44.424±0.052	26.0±0.1	I.3622±0.0500	-0.0158±0.0168	
47.481±0.089	I36.3±0.7	0 .3710±0.001 0	0.0146±0.0298	

Полученные параметры μ_k , G_k , H_k находятся в хорошем согласии с результатами работ $^{\prime\,3,\,5\prime}$, расхождения не выходят за рамки ошибок, хотя в большинстве находятся на верхней их границе. Оценка параметра H_k , получаемая при анализе детального хода сечений авторами $^{\prime\,3,\,5\prime}$, отличается в отдельных резонансах от настоящей даже по знаку.

На рис.2 показано полное сечение Ри-239, восстановленное с помощью полученных нами параметров.

На <u>рис.3</u> показана температурная зависимость /доплеровское уширение/ резонансов полного сечения при температурах 300, 900, 2100 К.

Рис.3. Зависимость формы резонансов полного сечения от температуры: непрерывная кривая -T = 300 K, треугольники - T = = 900 K, окружности - T = 2100 K /сечение в барнах, энергия в эВ/.

В табл.2 приведены среднегрупповые полные сечения и факторы их резонансной самоэкранировки в зависимости от сечения разбавления и температуры в интервалах системы констант БНАБ⁷⁴. Сравнение с результатами работ^{76,77} показывает, что использование многоуровневых па-

раметров полного сечения Ръ-239, полученных из анализа пропусканий, позволяет получить более точные оценки ядерных констант при различных температурах.

	Групповые полные сечения и факторы резонансной самоэкранировки, рассчитанные по многоуровневым параметрам									
₩ групп Е (эВ)	T.	$f_{t}(6_{o})$				<6,>				
	(K)	0	10	10 ²	103	104	(б)			
46.5- 19 21.5	300	0.217	0.231	0.297	0,565	0,904	63.9± 2.3			
	900	0.217	0,233	0,314	0.631	0.927				
	2100	0.220	0,240	0.345	0,704	0.946				
20 21.5- 10.0	300	0.123	0.140	0.222	0.506	0.881	172.3± 6.5			
	900	0,123	0.139	0.226	0.550	0,905				
	2100	0.123	0.139	0.237	0,603	0.925				
2I I0 4.65	300	0.247	0.258	0,309	0.527	0.883	75.2 <u>+</u> 2.1			
	900	0.247	0.258	0.311	0.561	0,905				
	2100	0,247	0,258	0.316	0.607	0.924				

Таблица 2

ЗАКЛЮЧЕНИЕ

На основе модифицированной методики получены многоуровневые резонансные параметры полного сечения плутония-239 в области энергий нейтронов 4-50 эВ. Использование методики анализа пропусканий на широком интервале толщин образцов позволяет получить более надежную информацию об эффектах межрезонансной интерференции, что ведет к уточнению факторов резонансного самоэкранирования и их зависимости от температуры, которые необходимы при расчетах реакторов. Получение наиболее полной информации о характеристиках резонансной структуры сечений в рамках данной методики возможно путем совместного анализа совокупности данных по сечениям, пропусканиям и самоиндикациям.

В заключение авторы выражают благодарность Л.Б.Пикельнеру, А.А.Лукьянову и А.А.Ванькову за полезные обсуждения и постоянный интерес к работе.

ЛИТЕРАТУРА

- Лукьянов А.А. Структура нейтронных сечений. Атомиздат, М., 1978.
- 2. Reich C.W., Moore M.S. Phys.Rev., 1958, 111, p.929.
- Adler F.I., Adler D.B. In: Proc.Conf. Neutron Cross Sections and Tech., Washington, March 4-7, 1968, p.967.
- 4. Абагян Л.П. и др. Групповые константы для расчета ядерных реакторов. Атомиздат, М., 1964.
- Колесов В.В., Лукьянов А.А. Нейтронная физика. /Материалы
 V Всесоюзной конференции по нейтронной физике, Киев, 1980/.
 ЦНИИАтоминформ, М., 1980, ч.2, с.187.
- Monapace E., Motta M., Panini G.C. A 26-Group Library with Self-Shielding Factors for Fast Reactor Calculations from the UK Nuclear Data File, CNEN-RT/FI(73)15, 1973.
- Bakalov T. et al. Proc. of Int.Conf. Nucl.Cross Sections for Techn., 22-26 October, Knoxville, 1979, pp.642-698.
- 8. Бакалов Т. и др. ОИЯИ, РЗ-81-32, Дубна, 1981.
- 9. Соколов С.Н., Силин И.Н. ОИЯИ, Д-810, Дубна, 1963.

Рукопись поступила в издательский отдел 15 сентября 1981 года.