

Объединенный институт ядерных исследований

дубна

20/11-81

P3-81-276

Н.П.Балабанов, Ю.М.Гледенов

О ВЛИЯНИИ РЕЗОНАНСНЫХ И ПРОМЕЖУТОЧНЫХ НЕЙТРОНОВ НА НАКОПЛЕНИЕ ГЕЛИЯ В КОНСТРУКЦИОННЫХ МАТЕРИАЛАХ ЯДЕРНЫХ РЕАКТОРОВ

Направлено в АЭ

ВВЕДЕНИЕ

Длительное нейтронное облучение многих конструкционных материалов, перспективных для ядерной энергетики, приводит к накоплению в них большого количества газообразных продуктов ядерных реакций. Однако, если криптон и ксенон в реакции деления образуются только в ядерном горючем, то накопление гелия и водорода за счет реакций (n, a) и (n, p) происходит практически во всех конструкциях реактора. Образование и накопление гелия в реакторных материалах можно считать одной из главных причин нежелательного изменения их физико-механических свойств и эксплуатационных характеристик /явления радиационного распухания /1/ и высокотемпературного "охрупчивания" /2.3//. Критическое значение концентрации гелия установить трудно, однако есть указания на то, что даже концентрация 10-9 достаточна для наблюдения эффекта высокотемпературного охрупчивания сплавов /2/.

Реакторные данные обычно представляют в двухгрупповой форме, учитывающей процессы на тепловых /основной вклад здесь дает на ¹⁰В, входящем в качестве примеси в сплавы/ и быстрых /пороговые (n, α) -реакции на спектре деления/ нейтронах/4-6/, пренебрегая, как правило, вкладом нейтронов промежуточных энергий. Тем не менее оценка их вклада представляется полезной, так как, несмотря на малые сечения $\sigma_{
m na}$ при энергиях нейтронов ${
m E}_n$ до 1 МэВ /вылет глубокоподбарьерных a-частиц/ в зависимости от типа нейтронного спектра, суммарный эффект может определяться именно нейтронами промежуточных энергий.

Ранее в работе 77 было показано, что в ряде случаев вклад нейтронов промежуточных энергий в накопление гелия может быть существенным.

Создание реакторов с большой плотностью энерговыделения и длительной кампанией их активных зон /плотность потока нейтронов ~10¹⁶ см⁻² с⁻¹, флюенс нейтронов ~10²⁸ см⁻² /8/ / делает особенно актуальными исследования по реакторному материаловедению. Прогресс в экспериментальном изучении реакции (n,a) на резонансных нейтронах /9-14/ и ее теоретическом описании/15/позволяет более точно оценить вклад нейтронов промежуточных энергий в накопление гелия в конструкционных материалах за счет реакции (n, α) . Результаты этих расчетов приводятся в настоящей работе. 1

РАСЧЕТЫ СЕЧЕНИЙ РЕАКЦИИ (п,а) ДЛЯ РЕАКТОРНЫХ МАТЕРИАЛОВ НА РЕЗОНАНСНЫХ И ПРОМЕЖУТОЧНЫХ НЕЙТРОНАХ

Расчеты сечений $\sigma_{\rm ba}$ Для ряда реакторных материалов мы проводили до энергии ${\rm E_b}\sim 1$ МэВ, используя как непосредственные результаты наших измерений, так и некоторые закономерности для с-ширин, полученные на основании этих измерений. В энергетической области, где характеристики резонансов известны, $\sigma_{\rm na}$ ческой области, где характеристики резонансов известны, $\sigma_{\rm na}$ гиях ниже первого уровня – экстраполяцией теплового сечения. При более высоких энергиях /начиная с 1÷20 кэВ для различных изотопов/ рассчитано усредненное по резонансам сечение, которое для нейтронов с угловым моментом ℓ и для уровней со спином Л можно записать как $^{(17)}$.

где

- Флуктуационный фактор; сумма по ј есть сумма по спиновым каналам для данных Ј и ℓ ; k - волновое число нейтрона; g_J статистический спиновый фактор; $< D^J > -$ среднее расстояние между уровнями со спином J; $<\Gamma>=<\Gamma_n>+<\Gamma_n<>+<\Gamma_y>$; $<\Gamma_n>$, $<\Gamma_n>$, $<\Gamma_y>$, $<\Gamma_q>$, $<\Gamma_a>$ и $<\Gamma>=$ средние нейтронная, неупруственно.

Средние нейтронные ширины определялись через нейтронные силовые функции S_l:

$$<\Gamma_n > = S_\ell E_n^{1/2} v_\ell \in \ell_{JI}$$
, (2/

где ${f E}_n$ - энергия нейтрона; V ℓ - фактор проницаемости для нейтронов с угловым моментом ℓ ; ℓ зации данного состояния

$$\epsilon_{JI}^{\ell}$$
 =
 $\begin{cases}
2, если |J-I| \le \ell \pm 1/2 \le J + I, \\
1, если выполняется только одно из условий |J-I| \le \ell + 1/2 \le J + I, \\
|J-I| \le \ell - 1/2 \le J + I, \\
0 - в остальных случаях.
\end{cases}$

Расчеты сделаны при следующих упрощающих допущениях: а/ нейтронные силовые Функции не зависят от j; б/ Γ_{γ} не зависит от J, ℓ и E_n ; в/ D_J^{σ} не зависит от четности для данного J;

 $\Gamma/\Gamma_{\overline{p}}\Gamma_{n}+\Gamma_{y}$, т.е. пренебрегаем учетом неупругого канала;

д/ $F^{I'}(\alpha) = 1$, Величины $\Gamma_{\alpha}(E_{R})$ рассчитаны по кластерной модели ^{/15/}, результаты которой хорошо согласуются с величинами средних α ширин и усредненных сечений в резонансной области ^{/9-14/}.

В качестве параметров S°, S¹, <D_H> и<Г_y> использовались имеющиеся в литературе экспериментальные /или расчетные/ значения ¹⁷,18,19/. При расчете сечений учитывались вклады s-, p- и d-волн в предположении равенства силовых функций для s- и d-нейтронов.

Рассчитанные по формуле /1/ $\sigma_{n\alpha}$ для основных составляющих нержавеющих сталей приведены на <u>рис.1</u>. Более детальное рассмотрение $\sigma_{n\alpha}$ (E_n) с использованием данных из работ '11.16,20.21' проведено для наиболее важных, на наш взгляд, изотопов ⁹⁵ Мо /<u>рис.2</u>/ и ⁵⁹ Ni, образующегося в заметных количествах в реакции ⁵⁸ Ni(n, y) и играющего существенную роль в накоплении гелия при высоких флюенсах нейтронов '22-24' /<u>рис.3</u>/. Если в случае ⁵⁹ Ni сечение при низких энергиях определяется в основном резонансом 203 эВ, то для ⁹⁵ Мо самый низкий резонанс 44,7 эВ (J=3) имеет, видимо, из-за портер-томасовской флуктуации, очень малую α -ширину $\Gamma_{\alpha} = 0,025$ мкэВ '11'/ $\langle \Gamma_{\alpha} \geq J=2$ = 25 мкэВ; $\langle \Gamma_{\alpha} >_{J=3} = 0,20$ мкэВ/. В результате этого при $E_n <$ <1 кэВ наблюдается значительный спад $\sigma_{n\alpha}$: тепловое же сечение $\sigma_{n\alpha}^{T} = 32$ мкб'21' определяется, вероятно, отрицательным уровнем.

Среди редкоземельных элементов, используемых в системах контроля и регулирования реакторов представляется интересным рассмотрение самария, для окиси которого наблюдается относительно большое изменение механических свойств при нейтронном облучении ²⁵⁷, а для изотопа ¹⁴⁷Sm имеются наиболее полные экспериментальные сведения о $\sigma_{\rm hg}$ в резонансной области ^{(10,13,14/} На <u>рис.4</u> расчетные величины $\sigma_{\rm hg}$. для ¹⁴⁷Sm сравнены с имеющимися экспериментальными данными. Можно отметить их хорошее согласие, тем более, что дополнительная подгонка параметров в расчетах не проводилась.

С целью проверки влияния неупругих процессов на величину $\sigma_{\rm nz}$ были проведены более детальные расчеты для изотопов $^{47}{\rm Ti}$ и $^{57}{\rm Fe}$, существенно отличающихся по структуре уровней /рис.5/. Средние неупругие ширины $<\Gamma_{\rm n}\,>$ определялись аналогично $<\Gamma_{\rm n}>$:

$$<\Gamma_n, >= \sum_{q,\ell'} S_{\ell'} E_q^{1/2} v_{\ell'} \epsilon_{JI} ,$$
 (3)

где $E_q = E_n - E_p^*$ – энергия нейтрона в неупругом канале, характеризуемом орбитальным моментом ℓ' и возбуждением уровня с энергией E_n^* .

<u>Рис.1.</u> (n, α) -сечение для некоторых составляющих нержавеющих сталей. Кривые: 1 – 61 Ni, 2 –⁵⁸ Ni, 3 – ⁵⁷ Fe, 4 – ⁵³ Cr. E_n в эВ, $\sigma_{n\alpha}$, в мкб.

Рис.3. Сечение реакции $\frac{59}{Ni(n, a)}^{56}$ Fe. E_n в эВ, σ_{na} в б.

Рис.2. Сечение реакции $95 Mo(n, \alpha) 92 Zr$. Пунктирные линии соответствуют усредненным по резонансам величинам $\langle \sigma | n \alpha \rangle$ в интервалах 100 $\langle E_n \rangle < 500$ и 500 $\langle E_n \rangle < 2000$ эВ. E_n В эВ, $\sigma_{n\alpha}$ в мкб.

<u>Рис.4</u>. Сечение реакции $\frac{147}{\text{Sm}(n, \alpha)}^{144}$ Nd, $E_n \rightarrow B$, $\sigma_{n\alpha}$, В мкб.

ОЦЕНКА НАКОПЛЕНИЯ ГЕЛИЯ В РЕАКТОРНЫХ МАТЕРИАЛАХ ЗА СЧЕТ РЕАКЦИИ (n, a) НА ПРОМЕЖУТОЧНЫХ НЕЙТРОНАХ

Нейтронные спектры сильно различаются в разных типах реакторов и в различных конструкциях одного реактора. Поэтому рассмотрено несколько типичных спектров нейтронов 4,26/

I. Спектр деления ²³⁵U тепловыми нейтронами / <E>=2 МэВ/.

II. Спектр реактора DFR, активная зона.

III. Спектр реактора DFR,отражатель.

IV. Спектр реактора на окисном топливе PFR,активная зона.

V. Спектр I/E.

Все спектры рассматривались в многогрупповом представлении, использованном в работе 4, интересующие нас части нормированных интегральных спектров приведены в табл.1.

Таблица 1

Найтлонные спектры

	11071	i pomini -				
E, KaB	I	П	Ш	IÀ	УУ	
<u>1350</u>	0,575	0,170 0,250	0,100 0,158	0,084 0,II3	0,149 0,165	
820	0.759	0,284	0,186	0,128	0,178	
500	0,864	0,469	0,338	0,240	0,205	
300	0,928	0,630	0,475	0,341	0,236	
II0	0,976	0,866	0,707	0,574	0,292	
40.9	0,998	0,964	0,837	0,759	0,344	
9.0	0,9996	0,996	0,909	0,914	0,438	
3.36	I,	0,999	0,932	0,950	0,493	
1,23	I. :	0,9998	0,963	0,976	0,542	
0.275	I,	0,9999	0,986	0,998	0,630	
-7 37 pB	I.	I,	0,992	I,	0,760	
5 əB	I.	I,	0,997	I,	0,870	
0,4 3B	: I ,	I.	I, ¹	Ι,	Ι,	

Число атомов гелия, накопившегося в единице объема элемента в результате реакции (n, α) на рассматриваемом изотопе, подсчитывалось как сумма по группам

$$N_{He} = n \cdot \sum_{i} \langle \sigma_{n\alpha} \rangle_{(E_{i})}^{<\Phi} \langle \Phi_{(E_{i})} \rangle, \qquad (4)$$

где n - плотность ядер рассматриваемого изотопа, $\Phi({
m E}_i)$ нейтронный флюенс в і-й группе.

5

11. 1

Таблица 2

Элемент	130- 1000	Вид нейтронного стат					
<u>-</u>	10116	I	П	E E	nekrpa Tv		
Титан	47	I.5.TO-3	T 5 TO-3			<u> </u>	
Хром	53	4.2. TO ⁻⁵		1,2.10-5	0,82.10 ⁻³	I,05.IO ⁻³	
Железо	57	0.85.10-3	0,00,10 -	2,6.10-3	I,5.10 ⁻⁵	1,0.10 ⁻⁵	
Никель 5	8,59,61	0.76 TO ⁻¹	0,70.10 °	0,63.10	0,41.10 ⁻³	0,52.10 ⁻³	
Медь	63	3.2. 10-7	2 2 70-7	I,4I5.I0 ⁻¹	I,65	5,73.IO ³	
Цинк	64.67	2.75	2,3.10	I,8.I0 ⁻⁷	0,96,10 ⁻⁷	6,6.I0 ⁻⁶	
Германий	70,73	I.44 TO-3	3,84 Т.Ст. то т 3	4,8	3,8	6,7	
елен	74.77	0.32 IOTI	1,01.10	I, 3 9.10 ⁻³	I,02.10 ⁻³	I,9,10 ⁻³	
прконий	91.92	0.24 TO~I	0,40.10 -	0,53.10-1	0,42.10 ⁻¹	0,18	
пооли	93	0 2T TO~I	0,38.10	0,8I.10 ⁻¹	0,67.10 ⁻¹	0,46	
олибден	94.95.96	0.85	U,22.10 ⁻¹	0,19.10-1	0,14.10 ⁻¹	0,18.10 ⁻¹	
марий	147	0,00 0 TA	1,60	2,31	2,41	I,80	
		V,14	0,27	0,71	0,58	0,44	

Количество гелия в материалах (appm)

Данные о накоплении гелия в наиболее интересных элементах при условном Флюенсе Ф = 10²³ н•см⁻² приведены в табл.2 /в единицах appm - ат. частей на миллион/.

Выход гелия в результате двухступенчатого процесса 58 Ni(n, γ) 59 Ni(n, α) 56 Fe можно описать формулой

$$N_{He} = \frac{\gamma_{Ni}}{2} \sum_{i} \langle \sigma_{\gamma}(E_{i}) \rangle \langle \sigma_{\alpha}(E_{i}) \rangle \langle \Phi(E_{i}) \rangle^{2} , \qquad /5/$$

где n_{Ni} - плотность ядер изотопа ⁵⁸Ni. В рассматриваемой задаче удобно пользоваться выражением

$$N_{\text{He}} (appm) = 3.4 \cdot 10^3 \sum_{i} \langle \sigma_{y}(E_i) \rangle \langle \sigma_{\alpha}(E_i) \rangle \langle \Phi(E_i) \rangle^2,$$
 /6/

где σ_{γ} - сечение реакции ${}^{58}\text{Ni}(\mathbf{n},\gamma)$, 10^{-24} см^2 ; σ_{α} - сечение реакции ${}^{59}\text{Ni}(\mathbf{n},\alpha)$, 10^{-24} см^2 ; Φ - нейтронный флюенс

Результаты табл.2 показывают, что исследование двухступенчатой реакции 58 Ni(n, y) 59 Ni(n, α) представляется весьма

Т	аблица	3
_		

Тип стали	<u>I</u>	<u>Эмд нейтронного</u> П	о спектра Ш	IY	у
204	8.6.10 ⁻³	1.06.10-2	I,37	0,164	550
316	3.27.10 ⁻²	5,22.10-2	I,77	0,262	688
17_APH	3.7.10 ⁻³	3,43.10 ⁻³	0,567	0,066	229
OXTEHT5M3E	3,76,10 ⁻²	5,93.10 ⁻²	2,22	0,323	870
XI8H9	1,72.10 ⁻²	2,34.10 ⁻²	I,69	0,217	677
Инкопель	5,86.I0 ⁻²	5,47.IO ⁻²	10,9	I,27	4420

Количество гелия в сталях (appm)

1 - 0X16H15M3E, 2 - 304, 3 - 17-4PH; б/ для стали 0X16H15M3E, нейтронные спектры I ÷ V. Φ - н·с⁻¹, N_{He} в единицах аррт.

Нами рассчитано накопление гелия в сталях различных марок, имеющих применение в реакторостроении^{/27/}. Итоговые данные приведены в табл.3. Результаты показывают, что спектр нейтронов оказывает существенное влияние на накопление гелия.

На рис.6 приведена зависимость концентрации гелия в сталях типа 0X16H15M35, 304 и 17-4PH от флюенса нейтронов для различных спектров нейтронов. Пунктиром отмечено "критическое" значение концентрации гелия из работы ^{/28/}.

Таким образом, проведенный анализ показал, что в зависимости от энергетического спектра падающих нейтронов относительный вклад нейтронов промежуточных энергий в накопление гелия может быть существенным. Учет этого вклада желателен при расчетах мощных энергетических реакторов. В связи с этим дальнейшее изучение реакции (п,α) на резонансных и промежуточных нейтронах представляется актуальной задачей.

ЛИТЕРАТУРА

- 1. Proc. of the Symposium "Radiation Damage in Reactor Materials", IAEA, Vienna, 1969.
- 2. Barnes R. Nature, 1965, v.206, p.1307.
- 3. Агапова Н.П. и др. АЭ, 1976, т.41, с.314.
- 4. Birss I.R. J.Nucl.Mat., 1970, v.34, p.241, v.16, p.68.
- 5. Alter H., Weber C.E. J.Nucl.Mat., 1965, v.16, p.68. 6. Шиляев Б.А. и др. В сб.: Вопросы атомной науки и техники, сер. Физика радиационных повреждений и радиационное материаловедение. Изд-во ХФТИ, Харьков, 1979, вып.2/10/, с.43.
- 7. Балабанов Н.П. и др. В сб.: Нейтронная физика. Изд~во ФЭИ, Обнинск, 1974, ч.3, с.126.
- 8. Быков В.Н., Конобеев Ю.В. АЭ, 1977, т.43, вып.1, с.20. 9. Гледенов Ю.М. и др. Бюллетень центра данных ЛИЯФ, Изд-во
- ЛИЯФ, Л., 1977, вып.4, с.3. 10. Balabanov N.P. et al. Nucl. Phys., 1976, v.A261, p.35.
- 11. Антонов А. ЯФ, 1978, т.27, с.18.
- 12. Балабанов Н.П. и др. ЯФ, 1978, т.28, с.1148.
- 13. Втюрин В.А. и др. ОИЯИ, РЗ-10733, Дубна, 1977.
- 14. Во Ким Тхань и др. ОИЯИ, РЗ-12756, Дубна, 1979.
- 15. Кадменский С.Г., Фурман В.И. ЭЧАЯ, 1975, т.6, с.469.
- 16. Neutron Cross Sections. BNL-325, v.1, 3rd ed., 1973.
- 17. Lane A.M., Lynn J.E. Proc.Phys.Soc., 1957, v.A70, p.557. 18. Захарова С.М. и др. Ядерные константы. ЦНИИатоминформ, М., 1971, вып.7.
- 19. Dilg W. et al. Nucl.Phys., 1973, v.A217, p.269.
- 20. Harvey J.A. In: Proc. Int. Conf. on Interaction of Neutrons with Nuclei. Lowell, July 6-9, 1976, p.143.
- 21. Emsallem A., Asghar M. Z.Phys., 1975, v.A275, p.157.
- 22. Bauer A.A., Kangilaski M. J.Nucl.Mat., 1972, v.42, p.91. 23. Goel B. KFK 2473, Karlsruhe, 1977.
- 24. Kirouac G.J. Nucl.Sci.Eng., 1971, v.46, p.477.

- 25. Гольцев В.П. Действие облучения на поглощающие материалы. ''Наука и техника'', Минск, 1975.
- 26. Васильев Р.Д. и др. В сб.: Метрология нейтронных измерений на ядерно-физических установках. ЦНИИатоминформ, М., 1976, т.1, с.226.
- 27. Мельников Н.П. Конструкционные формы и методы расчета ядерных реакторов. Атомиздат, М., 1972.
- 28. Higgins P.R., Roberts A.C. Nature, 1965, c.206, p.1249.

Рукопись поступила в издательский отдел 23 апреля 1981 года.