ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

.......... 11 11 11

C341.25 A-537

V/x- XY

P3 8004

3934/2-74

В.П.Алфименков, В.А.Вагов, В.Н.Замрий, Л.Ласонь, Ю.Д.Мареев, О.Н.Овчинников, Л.Б.Пикельнер, Ш.Салаи, Э.И.Шарапов

МАГНИТНЫЕ МОМЕНТЫ КОМПАУНД-СОСТОЯНИЙ ДИСПРОЗИЯ

ЛАБОРАТОРИЯ НЕЙТРОННОЙ ФИЗИНИ

P3 - 8004

В.П.Алфименков, В.А.Вагов, В.Н.Замрий, Л.Ласонь, Ю.Д.Мареев, О.Н.Овчинников, Л.Б.Пикельнер, Ш.Салаи, Э.И.Шарапов

МАГНИТНЫЕ МОМЕНТЫ КОМПАУНД-СОСТОЯНИЙ ДИСПРОЗИЯ

Направлено в Physics Letters

Несколько лет назад Ф.Л.Шапиро ^{/1,2/} был предложен метод измерения магнитных моментов компаундсостояний ядер, возбуждаемых при захвате резонансных нейтронов. Было показано, что магнитные, моменты компаунд-состояний ядер можно определить, измеряя в экспериментах с поляризованными нейтронами или поляризованными ядрами энергетические сдвиги нейтронных резонансов, возникающие за счет сверхтонкого взаимодействия. В случае поляризованных ядер сдвиг ΛE -рет зонанса по отношению к резонансу, наблюдаемому при отсутствии поляризации, составляет

n han diring di Calendari da ana dina 1994 tanàn dia dia tanàn dia mandri amin'ny kaodim-paositra dia kaominina Ny INSEE dia mampiasa mpikambana amin'ny kaodim-paositra dia mampiasa dia kaominina dia kaominina dia kaominina Ny faritr'ora dia kaominina dia kaominina dia kaominina dia mandri amin'ny faritra dia kaominina dia kaominina d

and the second secon

n de la companya de En esta de la companya de la company La companya de la com

 $\Delta E = -f_N H \{ [1 - \frac{1}{(2I+1)(I+1)}] m_J - m_I \} (J = I'+1/2)$ $A E = -f_N H (m_J - m_I) (J = I - 1/2).$

Здесь Н.- магнитное поле на ядре, f_N - ядерная поляризация, І. и J.- спины ядра-мишени и компаунд-ядра, m_I и m_J - магнитные моменты соответствующих состояний. Ожидаемый сдвиг для $f_N=1$, $m_J-m_I=1$ nm. / nm ядерный магнетон/даже при использовании сверхтонкого магнитного поля на ядре $H=10^7$ Э составляет всего ЗО мк эВ. Это предъявляет очень высокие требования к точности эксперимента, поскольку ширины резонансов обычно имеют порядок O,1 эВ.

Первые экспериментальные данные о m ј были получены для двух резонансов ¹⁶⁷ Er в Брукхейвенской лаборатории ^(3,) и в Дубне ^(4,) В настоящей работе в качестве объекта исследований был выбран Dy, имеющий иесколько удобных для исследований резонансов и большую величину сверхтонкого поля. При температуре ниже 87К металлический Dy ферромагнитен с H = 5.2 · 10⁶ Э. ^{/5/} что

©1974 Объединенный институт ядерных исследований Дубна

and the contract of the first of the second s

精緻的調整 网络拉达 化合金管理合金管理合金

아이들 산 문제 표근

一下方的过去的拍子放气 化自己的过去式

And the second state of th

3

позволяет получать ядерную поляризацию внутри доменов путем охлаждения образца без приложения внешнего магнитного поля. Отсутствие средней по всей мишени поляризации упрощает наблюдение сдвига резонансов, так как при этом не меняется форма кривой пропускания. По метолу времени пролета измерялось пропускание нейтронов через поляризованную и неполяризованную диспрозиевые мишени на импульсном реакторе ИБР-30 в бустерном режиме работы с. линейным электронным ускорителем ЛУЭ-40 /6/. Измерения проводились в следующих условнях: длительность нейтронного импульса - 4 мксек, частота импульсов - 100 Ги. средняя мошность реактора -4 кВт.пролетное расстояние - 58,5 м. В качестве мишени использовалась пластинка из естественного металлического Dv 200 x 60 x 0.6 мм³ . Охлажление мишени в коностате с растворением ³ Не в ⁴ Не и контроль за ее температурой осуществлялись так же, как в работе /4/ . Минимальная температура на мишени во время измерений составляла О,ОЗК. При величине магнитных моментов изотопов 161 Dy и 163 Dy , равных, соответственно-0,47 nm н + 0,66 nm, ядерная поляризация f_N в доменах составляла-0,84 и 0,92. Для разрушения поляризации температура мишени повышалась до О,5 К, что приводило к уменьшению поляризации до-0.09 и 0,12 для указанных изотопов. Учет возможного аппаратурного сдвига осуществлялся по резонансу 5.4 эВ ¹⁶² Dy и по резонансам 1.3: 6.24: 15.4: и 21.6 эВ контрольных образцов Ir и Sb. постоянно нахолившихся в пучке нейтронов. Нейтроны, прошедшие через образцы, регистрировались жидкостным сцинтилляционным детектором. Временной анализ импульсов детектора проводился анализирующей системой /7/, созданной на основе малой вычислительной машины ТРА-1001.

Измерения проводились следующим образом. В течение шести часов в памяти ЭВМ ТРА накапливался спектр нейтронов при температуре диспрозиевой мишени О,ОЗК, после чего информация из ТРА передавалась на ЭВМ БЭСМ-4. Затем мишень нагревалась до О,5К, и измерение повторялось. На *рис. 1* представлен участок одного из экспериментальных спектров. Полученные таким путем

5

Рис. 2. Распределения экспериментальных значений т для резонансов ¹⁶³ Dy /1,71 эВ/ и ¹²¹ Sb /15,4 эВ/. Сплошные кривые - нормальные распределения с дисперсиями, обусловленными статистическими ошибками.

спектры составляли пару для совместной обработки. Всего было получено 48 пар спектров.

Обработка каждой пары проводилась независимо. Это несколько удлиняло обработку, однако позволило избежать возможных аппаратурных ошибок; была также получена объективная оценка ошибок измеренных сдвигов. При обработке, проводившейся на ЭВМ БЭСМ-4, каждый резонанс одного спектра пары совмещался с соответствующим резонансом другого спектра. Подробное описание процедуры совмещения при использовании метода наименьших квадратов приведено в работе ⁴. Систематический сдвиг одного спектра относительно другого, связанный с изменением временного интервала между синхронизующим импульсом и вспышкой реактора, возможными задержками в измерительной аппаратуре и т.д., определялся как среднее значение $\langle \Delta t \rangle$ по контрольным резонансам. Разность $\tau = \Delta t - \langle \Delta t \rangle$ характеризовала сдвиг резонанса, обусловленный поляризацией ядер. В результате обработки каждого из исследуемых резонансов был получен набор значений τ , которые при отсутствии систематических ошибок должны быть нормально распределены вокруг соответствующих средних значений. Среднеквадратичные отклонения полученных экспериментальных значений τ оказываются в хорошем согласии с полученными по МНК и обусловленными статистическими ошибками в измерении спектров. Это проиллюстрировано на *рис.* 2 для резонансов ¹⁶³ Dy / 1,71 *эB*/ и Sb /15,4 *эB*/.

Энергетический и временной сдвнги резонанса связаны соотношением $\Delta E = -2E_0 r/t$ где t и E_0 - время пролета нейтронов н энергия резонанса. Окончательная величина сдвига $\langle \Delta E \rangle$ и его ошибка определялись из экспериментального распределения ΔE ; полученного для отдельных пар. Магнитные моменты m _ј вычислялись из ΔE по формуле /1/, куда вместо f_N подставлялась разность $f_N(0,03) - f_N(0,5)$. Ошибка m _ј определялась через ошнбку $\langle \Delta E \rangle$ Все экспериментальные результаты сведены в *табл. 1* и 2.

Имеются теоретические оценки магнитных моментов возбужденных состояний ядер с энергиями возбуждения, близкими к. энергии связи нейтрона. В работе Воронова и Соловьева '8' на основании полумикроскопического подхода сделан вывод о том, что эти магнитные моменты по порядку величины равны одночастичным. К аналогичному выводу приходит Куклин '9', использовавший статистическое рассмотрение. Для среднего значения g фактора им получена величина $\overline{g}=Z/A$ при среднеквадратичном отклонении $\sqrt{(1-Z/A)Z/A}$,

где Z и A - заряд и массовое число ядра. Для Dy эти величины равны, соответственно, O,4 и O,5. Как видно из *табл. 2*, экспериментальные результаты согласуются с теоретическими оценками.

7

6

Гаолица 1 Экспериментальные результаты для сдвигов контрольных резонансов						
Изотоп	¹⁹³ Ir	¹⁶² Dy u ¹²¹ SB	¹²¹ SB	¹²³ SB		
Eo 3B	I,303	5,45 U 6,24	15,4	21,6		
<7 > нсек	9,2 ± 14,1	2,5 ± 2,4	-2,5 ± 1,4	0,6 ± 1,6		

Таблица 2

Экспериментальные результаты для сдвигов нейтронных резонансов и магнитных моментов компаунд-состояний диспрозия

and the second		773.511		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Изотоп	^{- 163} Dy	¹⁶¹ Dy	161 Dy	161 DY	
<i>Е</i> , эв	1,71	2,72	3,69	4,35	
<t> нсек</t>	26,6 ± 5,5	-0,6 ± 4,2	4,8 ± 3,2	-2,7 ± 3,4	
<i>{∆Е}</i> мкэв	-28,3 ± 5,9	I,3 ± 8,9	-I6,I ± 10,7	11,4 ± 14,8	
m _y nm	2,8 ± 0,5	-0,4 ± 0,7	-I,8 ± 0,9	0,5 ± 1,2	
g	I,4	- 0,13	- 0,9	0,25	
	· 제시에 이 제가 가지 않는	とう 打合し 招募		in a flann flanker.	

В заключение мы выражаем глубокую благодарность академику И.М.Франку за интерес к работе и Б.И.Аполлонову, Т.С.Афанасьевой, Б.А.Родионову, А.И.Иваненко и Н.Т.Хатько за помощь в подготовке аппаратуры и проведении измерений.

a constitue de la seconda de la constitue de la seconda de la seconda de la seconda de la seconda de la second

New Stranger Stranger

and the second second second second

Литература

- 1. F.L.Shapiro. "Research Applications of Nuclear Pulsed Systems", p. 176, Vienna, IAEA, 1967.
- 2. F.L.Shapiro. "Polarized Targets and Ion Sources", p. 339, Saclay, CEA, 1967.
- 3. K.H.Beckurts and G.Brunhart. Phys.Rev., C1, 726 (1970).
- 4. В.П.Алфименков, Г.П.Жуков, Г.Н.Зимин и др. ЯФ, 17, вып. 1, 13 /1973/.
- 5. G.Brunhart, H.Postma, D.Rorrer, V.Saolir, L.Vanneste, Z.Natruforsch. 26a, 3, p. 334 (1971).
- 6. В.В.Голиков, Ж.А.Козлов, Л.К.Кулькин и др. Препринт ОИЯИ, 3-5736, Дубна, 1971.
- 7. В.А.Вагов, В.Н.Замрий, Ш.Салаи. VII Международный симпозиум по ядерной электронике. Будапешт-73, ОИЯИ, Д13-7616, Дубна, 1974, стр. 358.
- 8. В.В.Воронов, В.Г.Соловьев. ЯФ, 16, вып. 6, 1188 /1972/.
- 9. Р.Н.Куклин. ЯФ, 6, вып. 5, 969 /1967/.

Рукопись поступила в издательский отдел 6 июня 1974 года.

ar ar e.

and a second second second second