

объединенный NHCTNTYT ядерных исследований дубна

F

11/5-81

2292,

P3-80-880

Во Дак Банг, Ю.П.Гангрский, М.Б.Миллер, Л.В.Михайлов, Фам Зуи Хиен, И.Ф.Харисов

ЭМИССИЯ НЕЙТРОНОВ ИЗ ЯДРА ⁹Ве ПОД ДЕЙСТВИЕМ **В**⁺И у-ИЗЛУЧЕНИЯ, ИСПУСКАЕМОГО ПРИ РАДИОАКТИВНОМ РАСПАДЕ

Направлено на V конференцию по нейтронной физике, Киев, 1980 г.

Ядро ⁹Ве имеет наименьшую среди стабильных ядер энергию связи нейтрона /1,667 МэВ/. Поэтому ядерные реакции ⁹Вес различными бомбардирующими частицами, как искусственно ускорен~ ными, так и испускаемыми при радиоактивном распаде, харак~ теризуются наибольшим выходом нейтронов. Эти реакции широко используются в качестве источников нейтронов. В последнее время получили распространение источники, которые основаны на реакции ⁹Ве(у, n), вызываемой у-излучением, испускаемым при радиоактивном распаде изотопов /чаще всего используется радиоактивный изотоп ¹²⁴ Sb/. Такие источники просты в изготовлении, удобны в обращении и могут успешно применяться для нейтронно-активационного анализа /1-3/, Поэтому расширение круга используемых изотопов и выяснение механизма образования нейтронов представляет определенный интерес. Целью данной работы было измерение выхода нейтронов под действием β^+ – и *у*-излучения, испускаемого при радиоактивном распаде целого ряда изотопов, и определение вклада в этот выход от позитронов и у-квантов различных энергий. В опытах использовались изотопы ¹¹С, ⁶²Сu, ⁶⁶Ga, ^{74g} Вr и ^{74m} Br. Характеристики распада этих изотопов: период полураспада Ті, : максималь~ ная энергия Е8; выход позитронов Ув и у-квантов с энергией выше 1,667 МэВ У_V /Е≥1,667 МэВ/ на один акт распада изоа также реакции их получения, представлены в табл. 1. Укатопа. занные изотопы были получены при облучении соответствующих мишеней /а виде тонких фольг/ на изохронном циклотроне У-200 и микротроне Лаборатории ядерных реакций СИЯИ. Активности изотопов составляли несколько мКи.

Схема экспериментальной установки представлена на <u>рис. 1.</u> Используемые изотопы размещались непосредственно на бруске бериллия размером 10х5х1 см³, который располагался на блоке из парафина. Этот блок служил замедлителем испускаемых из бериллия нейтронов; внутри него находился нейтронный счетчик типа СНМ-14, с помощью которого измерялся выход нейтронов в зависимости от времени. Представленные на <u>рис. 2</u> зависимости соответствуют периодам полураспада используемых изотопов и указывают на то, что регистрируемые нейтроны возникают в результате взаимодействия β^+ - и у -излучения, испускаемого при радиоактивном распаде. В случае активности, полученной в реакции ⁶⁵ Сц+1² С, четко видны два периода, соответствующие основному и изомерному состояниям изотопа ⁷⁴ Вх.

ŧ

1

Таблица 1

Изотоп	Реакция получения	т _{1/2}	Е _β , МэВ	۲ _β %	Υ _γ ,% /E≥1,667M∋B/
¹¹ C	${}^{12}_{63}C(y,n)$ ${}^{63}_{65}Cu(y,n)$ ${}^{65}_{64}Cu(z,n)$ ${}^{65}_{64}Cu(z,n)$ ${}^{65}_{64}Cu(z,n)$	20,3 мин.	0,930	100	/4/
⁶² Cu		9,7 мин.	2,949	97	0,06/5/
⁶⁶ Ga		9,4 ч.	4,175	57	48/6/
^{74g} Br		25,3 мин.	5,918	90	88/7/
^{74sn} Br		41,5 мин.	6,110	92	53/7/

Характеристики распада используемых изотопов и реакции их получения

Результаты измерений - выход нейтронов, отнесенный на один акт распада используемого изотопа,- представлены в табл. 2. Известно, что эмиссия нейтронов при взаимодействии β^+ -и γ излучения с ядрами вызывается следующими процессами:

<u>Рис.1.</u> Схема экспериментальной установки.

Рис.2. Зависимость выхода нейтронов от времени: вверху изотоп ⁶² Cu: внизу - изотоп ⁷⁴ Вг.

 поглощением дискретных у-квантов, испускаемых при радиоактивном распаде используемых изотопов;

2/ поглощением у -квантов непрерывного спектра, возникающих при торможении позитронов в веществе /при этом происходят излучение тормозное и излучение вследствие аннигиляции позитронов на лету/;

3/ неупругим рассеянием позитронов, приводящим к возбуждению уровней ⁹Ве;

4/ безрадиационной аннигиляцией позитронов на К-оболочке атомов ⁹ Ве.

Вклад каждого из этих процессов определяется энергетическим спектром $\beta^+ - \mu_{\gamma}$ -излучения и свойствами уровней ядра ⁹Ве. Схема нижних уровней ⁹Ве, их характеристики /энергия E; спин и четность 1^{*π*}; полная Γ_0 и радиационная Γ_{γ} ширины/ и способы разрядки/4/ представлены на <u>рис. 3</u>. Основной особенностью уровней ядра ⁹Ве является то, что все они расположены выше энергии связи нейтрона. Поэтому нейтронная ширина составляет преобладающую долю полной, и возбуждение любого из уровней приводит к эмиссии нейтрона.

Эти данные об уровнях ⁹Ве позволяют вычислить сечения указанных выше процессов и зависимость сечений от энергии позитронов и у-квантов. Такие вычисления были выполнены с помощью выражений для сечений, призеденных в работах ^{/8/} - для фото-поглощения, в^{/9/} - для неупругого рассеяния позитронов и в работе ^{/10/} - для безрадиационной аннигиляции позитронов. Один из примеров расчета - зависимость сечения реакций ⁹ Ве(у, п) от энергии у-квантов - представлен на <u>рис. 4.</u> Для сравнения

Таблица 2

~		E, M,	· /"	1. NO 8	FF, 38
	E2	0,70	72	1240	<i>0,08</i>
	IE1	, 4,70	4 (12) 743	2,4
1	Hir	3,04	9 55	282	C,30
/	L F	7 278	5	1080	•
1	44-	2.42	, <u>\$</u>	077	000
1		1.68	% +	200	0.30
2		EI			900
n 77	20	hhn 0	老		
	-86	4			

<u>Рис.3.</u> Скема нижних уровней ядра ⁹ Ве. Выход нейтронов из различных изотопов под действием β⁺ – и γ -излучения

Изотоп	Выход, 1		
<u> </u>	расп.		
110	<10 ⁻⁶		
62 Cu	5.10-6		
⁶⁶ Ga	$2 \cdot 10^{-4}$		
^{74g} Br	3.10-4		
^{74m} Br	2 • 10 • 4		

приведена аналогичная зависимость, измеренная на опыте/11/Видно хорошее согласие обеих зависимостей. Узкий и высокий резонанс при энергии 2,429 МэВ оказался на экспериментальной кривой значительно ниже и шире из-за конечного энергетического разрешения пучка У-квантов /несколько десятков кэВ/.

Использование рассчитанных зависимостей сечений от энергии. известных спектров β^+ -и у-излучения /4-7/ позволяет а также определить вклады от указанных выше процессов в наблюдаемый выход нейтронов. С другой стороны. эти же величины вкладов можно получить из представленных в табл. 2 экспериментальных данных. Спектры и интенсивности В - и у -излучения используемых в опытах изотопов, как видно из табл. 1, существенно различаются, поэтому для каждого из изотопов преобладает вклад одного из указанных процессов. Например, в случае изотопа ¹¹С знергия позитронов такова. Что эмиссия нейтронов может иметь место лишь при безрадиационной аннигиляции позитронов. С ростом энергии позитронов /изотоп ⁶² Си /эмиссия нейтронов оказывается возможной при неупругом рассеянии позитронов и при фотопоглощении У-квантов, возникающих при торможении позитронов. Для разделения вкладов от этих процессов между облучен-

Рис.4. Зависимость сечения реакции Ве(у,п) от энергии у-квантов: — - расчетные; --- экспериментальные данные /11/.

Рис.5. Спектры у-излучения изотопа ⁶⁶ Ga: вверху - дискретные У-линии; внизу - непрерывный спектр, возникающий вследствие торможения позитронов.

ной медной фольгой и бруском бериллия помещались поглотители из различных материалов (AI, Cu, Pb), толщина которых превышала длину пробега позитронов. В результате наблюдалось повышение выхода нейтронов, связанное с ростом атомного номера поглотителя. Это означало, что выход нейтронов обусловлен γ -излучением, возникающим при торможении позитронов. Из <u>табл. 2</u> видно, что наибольший выход нейтронов происходит у изотопов, при распаде которых испускается большое число γ квантов с энергией выше 1,667 МэВ (66 Ga, 74 Br). Один из примеров такого спектра представлен на <u>рис. 5</u>. Использование в этих случаях поглотителя для позитронов не уменьшало выхода нейтронов; это свидетельствует о том, что источником нейтронов являются жесткие γ -кванты, а непрерывный спектр от торможения позитронов играет малую роль.

Таким образом, проведенные эксперименты и расчеты позволяют достаточно определенно судить о вкладе различных процессов в эмиссию нейтронов из ядра ⁹ Ве под действием β^+ и у-излучения.

1. Основной вклад в эмиссию нейтронов вносит жесткое γ излучение /с энергией выше 1,667 МэВ/. Выход нейтронов из толстой бериллиевой мишени достигает 5-10⁻⁴ на один γ -квант /то есть того же порядка, что и в случае широко используемого изотопа ¹²⁴Sb/ и сравнительно слабо зависит от спектра γ излучения.

2. Выход нейтронов под действием позитронов почти на два порядка ниже; он связан с У-излучением, возникающим при взаимодействии позитронов с веществом.

3. Другие процессы взаимодействия позитронов с ядром ⁹Ве /неупругое рассеяние и безрадиационная аннигиляция/ практически не вносят вклада в наблюдаемый выход нейтронов.

В заключение авторы выражают благодарность Г.Н.Флерову и Ю.Ц.Оганесяну за постоянный интерес к работе, а также А.Г.Белову и Н.В.Пронину за помощь при облучениях образцов.

ЛИТЕРАТУРА

- 1. Tolmie R.W., Thompson C.J. Nuclear Techniqus and Mineral Resources, IAEA, Vienna, 1969, p. 489.
- Выропаев В.Я., Бурмистенко Ю.Н. ОИЯИ, 18-80-584, Дубна, 1980.
- 3. Тетерев Ю.Т., Замятнин Ю.С., Кучер А.М. ОИЯИ, 18-80-599, Дубна, 1980.
- 4. Ajzenberg-Selove F. Nucl. Phys., 1979, A320, p. 1.
- 5. Auble R.L. Nucl.Data Sheets, 1979, 26, p. 5.
- 6. Haubert M.L. Nucl.Data Sheets, 1975, 16, p. 383.

- 7. Kocher D.S. Nucl.Data Sheets, 1976, 17, р. 519. 8. Ишханов Б.С., Капитонов И.М. Взаимодействие электромагнитного излучения с ядрами. Изд-во МГУ, М., 1979.
- 9. Berber W.C. Ann.Rev.Nucl.Sci., 1962, 12, p. 1.
- 10. Present R.D., Chen S.C. Phys.Rev., 1952, 85, p. 447.
- 11. Jacobson M.J. Phys.Rev., 1961, 123, p. 229.

Рукопись поступила в издательский отдел 30 декабря 1980 года.