

Объединенный институт ядерных исследований дубна

-

8/12-80 P3-80-550

В.П.Алфименков, С.Б.Борзаков, Во Ван Тхуан, А.М.Говоров, Л.Ласонь, Л.Б.Пикельнер, Э.И.Шарапов

ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ ПРОМЕЖУТОЧНЫХ ЭНЕРГИЙ С ГЕЛИЕМ-3

Направлено в ЯФ

1. ВВЕДЕНИЕ

Взаимодействие нейтронов с ядрами гелия-3 представляет интерес как в физическом плане, ввиду того, что четырехнуклонная система еще достаточно проста для описания ее свойств на основе нуклон-нуклонных потенциалов, так и в прикладном отношении, поскольку сечения взаимодействия нейтронов с ⁸Не относятся к числу стандартов.

Между тем имеющиеся данные для нейтронов промежуточных энергий бедны. Полные сечения в диапазоне 0,25÷150 кэВ неизвестны. Не проводились и измерения сечения рассеяния. Вне этого энергетического интервала имеются результаты измерения сечения рассеяния $\sigma_{nn} ({}^{3}\text{He})^{/1/}$ и полного сечения $\sigma_{+} ({}^{3}\text{He})$ в тепловой области ^{/2/} и в интервале энергий 0,025÷250 эВ ^{/3/}, а также данные при Е >150 кэВ, приводимые в атласе нейтронных сечений $^{/4/}$. С высокой точностью / $^{1\%}/$ измерены отношения сечения ⁸ Не (n, p) Т к сечениям реакций 10 В(n, a) и 6 Li (n, a) до энергии 25 кэВ. Это сделано в работе группы Ф.Л.Шапиро ФИ АН СССР^{/5/}, обнаружившей отклонение энергетической зависимости сечения $\sigma_{np}({}^{3}\text{He})$ от закона 1/V. Отклонение было объяснено введением в рассмотрение первого возбужденного уровня в ³Не и были установлены его параметры, позволившие описать энергетическую зависимость сечения σ_{np} (⁸Не) формулой Брейта-Вигнера. Уровень оказался расположенным ниже энергии связи нейтрона. Значение его спина J = 0 позднее подтверждено в поляризационном эксперименте $^{/6/}$. Данные для $\sigma_{np}(^{3}\text{He})$ в более широком интервале /10÷300 кэВ/ получены в работе /7/ с помощью соотношения детального баланса из измерений сечения обратной реакции Т(p,n)⁸Не. Однако, ввиду их меньшей точности /~10%/, они не дали новой информации о характере отклонения сечения от закона 1/V.

 $\sigma_{\rm np}$ от закона 1/V. Прямым измерениям сечений взаимодействия нейтронов с $^{8}{\rm He}$ в области энергий 1-200 кэВ посвящена данная работа. В ней измерены полное сечение, сечение рассеяния и проведено сравнение их с теорией эффективного радиуса $^{/6/}$, с фазовым анализом данных для четырехнуклонных систем $^{/9/}$ и с микроскопическими расчетами на основе R -матричного формализма $^{/10/}$.

Изучение рассеяния промежуточных нейтронов на гелии-3 представляет и самостоятельный интерес, так как может служить одним из источников информации о дпинах n-³Не рассеяния. Теоретически этот вопрос исследовался в рамках задачи четырех тел в ряде работ, обзор которых содержится в $^{11/}$, а экспериментально – в измерениях полного $^{1/}$ и когерентного $^{12/}$ сечений рассеяния тепловых нейтронов гелием-3. В работе $^{13/}$ дана первая экспериментальная оценка сечения σ_{nn} (³He) из разности сечений $\sigma_t - \sigma_{np}$ в широком интервале энергий и применено описание сечения σ_{nn} (³He) формулой Брейта-Вигнера в развитие подхода работы $^{5/}$ к описанию сечения σ_{np} . В настоящей работе длины $n - {}^{3}$ Не рассеяния получены из величины и энергетической зависимости измеренного сечения σ_{nn} (³He) в рамках теории эффективного радиуса.

2. ВЗАИМОДЕЙСТВИЕ n-³He HA OCHOBE ТЕОРИИ Эффективного радиуса

При взаимодействии нейтронов с гелием-3 в области промежуточных энергий открыты каналы рассеяния и поглощения / n, p реакция и радиационный захват/. Последним в нашем рассмотрении можно пренебречь, так как сечение радиационного захвата не превышает десятков микробарн^{/14/}. Преобладающей реакцией является поглощение. К описанию ее сечения, как отмечено выше, была с успехом применена ^{/5/} одноуровневая формула Брейта-Вигнера. Возможен и другой подход, основанный на представлении эффективного радиуса.

Как известно, рассеяние нейтрона элементарными частицами и некоторыми простейшими ядрами можно описывать в рамках этого представления. Теория дает следующую связь фазы рассеяния δ с длиной рассеяния а и эффективным радиусом взаимодействия r_{0} :

$$k \operatorname{ctg} \delta = -\frac{1}{a} + \frac{1}{2} r_0 k^2,$$
 /1/

где k=√2µE/h ~ волновое число нейтрона с энергией Е в системе центра масс, µ - приведенная масса. В формуле /1/ опущен несущественный здесь малый член, учитывающий влияние формы потен~ циала взаимодействия. Эта формула ведет, в одноканальном случае, к энергетической зависимости сечения рассеяния в виде

$$\sigma_{nn} = \frac{4\pi}{\left(-\frac{1}{a} + \frac{1}{2}r_0k^2\right)^2 + k^2} \cdot \frac{1}{2}$$

При наличии неупругих каналов длина рассеяния становится комплексной: a = A - iB. Обобщение формулы /2/ на этот случай выполнено Россом и Шоу в работе ^{/8/}.Полученные ими формулы для сечений рассеяния и поглощения имеют вид:

$$\sigma_{nn} = 4\pi \left\{ \left(-\frac{\text{Res}}{|a|^2} + \frac{r_0}{2} k^2 \right)^2 + \left(\text{Im} \frac{1}{a} + k \right)^2 \right\}^{-1} , \qquad /3/$$

$$\sigma_{\rm np} = 4\pi k^{-1} \operatorname{Im} \frac{1}{a} \left\{ \left(-\frac{\operatorname{Re} a}{|a|^2} + \frac{t_0}{2} k^2 \right)^2 + \left(\operatorname{Im} \frac{1}{a} + k \right)^2 \right\}^{-1} \cdot \frac{1}{4}$$

Необходимо отметить, что, хотя знаменатели выражений /3/ и /4/ имеют энергетическую зависимость резонансного характера, сама теория не содержит предположений о полюсах амплитуды рассеяния, то есть не является резонансной. В основе ее лежат рассмотренные А.И.Базем ^{/15/}околопороговые эффекты, возникающие из-за связи каналов при открытии нового канала взаимодействия.

Следуя предложению Росса и Шоу, применим их подход к взаимодействию нейтронов промежуточных энергий с гелием-3. До энергий около 300 кэВ можно ограничиться, в соответствии с результатами фазового анализа ^{/9/}, только в -волной. Так как спин гелия-3 равен 1/2, сечение $\sigma(^{8}\text{He})$ можно записать в виде суммы со статистическими весами сечений по синглетному (J = 0) и триплетному (J=1) спиновым каналам:

$$\sigma = \frac{1}{4}\sigma_{J=0} + \frac{3}{4}\sigma_{J=1}$$

Используя далее результаты поляризационного эксперимента ⁷⁶⁷, примем, что поглощение имеется только в синглетном канале. Кроме того, будем использовать приближение нулевого радиуса взаимодействия. Последнее вполне оправдано до энергий ~100 кэВ, ввиду небольших величин длик рассеяния нейтрона на ⁸Не.

При этих допущениях выражения /3/ и /4/ после несложных преобразований можно свести к виду:

$$\sigma_{nn} = \pi \left\{ \frac{A_0^2 + B_0^2}{(1 + \mathbf{k}B)^2 + \mathbf{k}^2 A_0^2} + \frac{3A_1^2}{1 + \mathbf{k}^2 A_1^2} \right\}, \qquad (5/$$

$$\sigma_{\rm np} = \frac{\pi}{k} \frac{B}{(1+kB)^2 + k^2 A_0^2} .$$
 /6/

Здесь A_0 и A_1 - действительные части длин рассеяния в синглетном и триплетном каналах ($a_8 = A_0 - iB$, $a_1 = A_1$), k - волновое число в системе центра масс. Формула /6/ в применении к медленным нейтронам сводится к известному в квантовой механике /16/ выражению

$$\sigma_{\rm np} (k \to 0) = \frac{\pi}{k} \cdot B(1 - 2kB), \qquad /7/$$

связывающему мнимую часть длины рассеяния с сечением в тепловой точке.

Представляет интерес проверить применимость изложенного подхода к описанию взаимодействия нейтронов с ³ Не, т.к. эти формулы позволяют описывать отклонение сечения $\sigma_{\rm np}$ от закона 1/V и получать длины п ³ Не -рассеяния из величины и энер-гетической зависимости сечений $\sigma_{\rm nn}({}^{\rm 3}{\rm He})$ и $\sigma_{\rm t}({}^{\rm 3}{\rm He})$ в широком диапазоне энергий.

3. ЭКСПЕРИМЕНТЫ

Измерения проводились методом времени пролета на импульсном реакторе ИБР-30, работавшем совместно с инжектором-ускорителем электронов ЛУЭ-40. Были использованы газовые образцы гелия-3 различной толщины.

<u>Измерения полных сечений</u> выполнялись на пролетной базе 115,5 м при коэффициенте размножения бустера $K = 100^{/17'}$ и разрешении $\frac{\Delta t}{L} \approx 30$ нс/м. Нейтроны регистрировались жидкостным сцинтилляционным детектором объемом 200 л.с пу-конвертором ^{/18'}. Измерялось пропускание образца толщиной 2,11.10²² ядєр/см². Циклы измерений с образцом и с пустым контейнером чередовались через 2 ч. Мониторирование нейтронного пучка велось двумя мониторами. Фон измерялся методом резонансных фильтров /резонансы Mn и Al при энергиях 337 эВ, 2,4 кэВ, 36 кэВ/, постоянно находившихся в пучке. Участок экспериментального спектра открытого пучка показан на <u>рис.1</u>. Спектр с образцом подобен показанному, но имеет более низкий уровень отсчетов в соответствии с величиной пропускания T = 0,50-0,92 в исследованном интервале энергий. Экспериментальная погрешность измеренного пропускания составила /0,3-0,5/%.

Сечение рассеяния измерялось с помощью сцинтилляционного детектора нейтронов на пролетных базах 118 и 500 м. В последнем случае разрешение спектрометра по времени пролета равнялось 10 нс/м, что соответствует энергетическому разрешению 1% при 1 кэВ и 10% при 100 кзВ. Прототип детектора описан в работе $^{19/}$.Схематический вид детектора показан на <u>рис.2</u>. Сцинтиллятором служили слои порошка $Z_{IIS}(Ag)$, содержавшего 10 В. Порошок засыпался в пазы между пластинами плексигласа, который являлся замедлителем и световодом одновременно. Время жизни нейтронов в таком детекторе было измерено и найдено равным 5±1 мкс. Эффективность регистрации нейтронов зависела от порога дискриминации, в рабочих измерениях она составила 3% при 10 кэВ и падала с увеличением энергии до 1,5% при 100 кэВ.

Рис.1. Участок экспериментального спектра открытого пучка в измерениях пропускания гелия-3: N - номер канала анализатора шириной 1 мкс, n - число отсчетов на канал. Цифрами указана энергия нейтронов в кэВ.

Измерение сечения рассеяния нейтронов гелием-3 проводилось путем сравнения с рассеянием нейтронов в образцах-стандартах. В качестве последних были выбраны H₂,CO₂и ⁴He. Фоновым образцом служил контейнер, откачанный на вакуум. Поскольку рассеяние на заглушках контейнеров являлось одним из источников фона, контейнеры были сделаны значительно длиннее детектора. Образцы чередовались каждые 3 часа. Стабильность работы детектора периодически контролировалась с помощью Ро-Ве источника нейтронов. Нейтронный пучок мониторировался. Полученные экспериментальные спектры показаны на рис.3, где по оси абсцисс отложена энергия в кэВ для удобства сравнения с результатами для σ_{nn} (E).

Рис.2. Схематический вид детектора нейтронов, примененного для измерения сечений рассеяния: 1 - направление нейтронного пучка, 2 - фотоумножители, 3 - слои сцинтиллятора между пластинами плексигласа, 4 - газовый контейнер.

5

<u>Рис.3</u>. Участки экспериментальных спектров, полученных в измерениях рассеяния нейтронов газовыми мишенями гелия-3. Нижняя кривая - фон, пунктир - постоянная компонента фона. Точки: О - CO_2 , • - ${}^3\mathrm{He}$, + - вакуум.

Газовые образцы. В качестве мишеней использовались газовые образцы в цилиндрических контейнерах из нержавеющей стали, оснащенных надежными вентилями с уплотнениями "металл по металлу", выдерживающими нагрев до 450 °C. В измерениях пропускания были применены цельносварные контейнеры длиной 1000+1 мм и внутренним диаметром 30 мм. Рабочее давление гелия-3 при температуре 20 °C составляло 8,42+0,05 кгс/см². Для достижения такого давления контейнер заполнялся ³Не при температуре жидкого азота и затем отогревался. Пропускание стенок газового и фонового контейнеров было одинаковым в пределах статистической точности измерений 0,2%.

В измерениях рассеяния использовались контейнеры длиной 1600 мм и диаметром 200 мм. Торцевые заглушки были выполнены из алюминия толщиной 1 мм и уплотнялись с помощью индиевых колец. Рабочее давление газов ³He, CO₂, H₂ при 20,0 °C составляло 1,203+0,003; 0,3068+0,0007; 0,1067+0,0007 кгс/см², соответственно. Гелий-3 для мишеней очищался с помощью криогенно-сорбционных ловушек. При определении приведенных выше толщин образцов /в ядрах на см²/ учитывалась примесь ⁴He, которая определялась путем масс-анализа использовавшегося гелия-3 на электростатическом ускорителе ЭГ-5. В газе, примененном для измерений рассеяния, она равнялась /0,7+0,1/%. Контейнеры перед наполнением газовыми образцами очищались с помощью многочасовой высоковакуумной откачки при нагреве примерно до 80°С. Натекание во всех контейнерах было не более 6.10⁻⁴ Торр/ч, что обеспечивало достаточно хорошую сохранность состава газовых образцов во время эксперимента. В значительной степени это было обусловлено применением только металлических уплотнений и отказом от применения резины, фторопласта и других уплотняющих материалов с большой упругостью паров.

Обработка измерений, состоявшая в суммировании однотипных измерений, вычитании фона и вычислении пропускания и соответствующих сечений, проводилась на ЭВМ БЭСМ-4. Энергетические интервалы, в которых определялось сечение, выбирались преимущественно вне сильных резонансов на спектре открытого пучка. Ширина выбранного энергетического интервала для обработки пропускания достигала при высоких энергиях ширины функции разрешения и втрое превосходила ее для случая рассеяния. Эффективная средняя энергия нейтронов в высокоэнергетических интервалах определялась с учетом формы экспериментального спектра.

Значения сечений рассеяния, полученные с использованием в качестве стандартов H_2 и CO₂, совпали в пределах статистической точности во всем исследованном интервале. До энергии 100 кэВ совпали и результаты, полученные из измерений на базе 500 м и нормировкой на ⁴ Не. Однако в случае использования ⁴ Не проявилось различие при более высоких энергиях, сбусловленное влиянием известного резонанса ⁴ Не с энергией 1 МэВ и ухудшением разрешения.

При обработке измерений рассеяния была сделана поправка на поглощение нейтронов в ³Не в соответствии с ходом сечения $\sigma_{\rm np}$. Ее величина составила 7% при энергии 1 кэВ и менее 2% при энергии выше 16 кэВ. Различие фонов в измерениях с ³Не и образцом-стандартом, обусловленное ослаблением потока на задней стенке контейнера, давало максимальную поправку 3%. Максимальное различие результатов в разных сериях измерений не превышало 7%, что дало среднюю систематическую ошибку сечения 3% за счет дрейфа аппаратуры.

4. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ И ОБСУЖДЕНИЕ

Полученные значения сечений σ_t (³He) и σ_{nn} (⁸He) в зависимости от энергии нейтронов в области энергий 1-200 кэВ представлены на <u>рис.4</u> и 5 сплошными кружками. В тех случаях, когда

7

для наших данных ошибка не приведена, ее величина менее размера точек. Более полное представление о сечениях σ_t дает таблица.

Полные сечения σ_t (³ He)			
E, ĸəB	6 _t , он	Е, кэВ	6_t , oh
0,82	.32,5 ± 0,5	II,0	9 ,4 <u>+</u> 0,2
0 .9 6	30,3 ± 0,4	I4,4	9,0 ±0,2
1,02	29,0 ± 0,4	17,0	7,9 ±0,2
1,13	27,5 ± 0,3	23,0	7,5 ± 0,2
1,30	26,3 ± 0,3	26,0	7,2 ± 0,2
I,64	23,4 <u>+</u> 0,3	39,0	6,I ± 0.2
3,30	16,6 ± 0,2	44,0	5,5 ± 0,2
4,0	$16,0 \pm 0,3$	70,0	4,8 ± 0,2
6,I	13,0 ± 0.2	85,0	4,2 ± 0,2
7,8	II,4 ± 0,2	103,0	4,2 ±0,2
IO,3	10,3 ± 0,2	I40,0	3,4 ± 0,2

Результаты других работ также приведены на рисунках. Они совпадают в пределах точности измерений с данными настоящей работы в интервале их перекрытия при E = 150-250 кэВ. Большинство приводимых на <u>рис.5</u> точек σ_{nn} (⁸He) при E > 140 кзВ получены из результатов работ ^{/20,21/} для полных сечечий с использованием сечения поглощения из работы ^{/22/}.Согласие их с открытыми точками прямых измерений сечения рассеяния ^{/23/} удовлетворительное.

<u>Длины рассеяния</u>. Для сопоставления с теорией и получения значений параметров, входящих в выражения /5/ и /6/, проведены расчеты по методу наименьших квадратов. Программа подгонки составлена таким образом, чтобы одновременно можно было описывать сечения σ_{nn} (⁸Не) и σ_t (⁸Не) по формулам /5/ и /6/. При этом использовались как данные настоящей работы в интервале энергий 1-200 кзВ, так и результат для сечения рассеяния тепловых нейтронов / σ_{nn} /0,025 эВ/= 3,16+0,2 бн ^{/1/} / и данные о полных сечениях в интервале 0,025-250 зВ ^{/3/}. Полученные

8

ż۷.

Рис.4. Сечения σ_t (^SHe) и σ_{np} (^SHe) в зависимости от энергии нейтронов. Черные кружки - данные настоящей работы. Гладкая линия - расчет для σ_t , пунктир - расчет для σ_{np} , по результатам настоящей работы. Треугольники - работа ^{/20/}, квадраты - работа ^{/21/}.

ø

в такой процедуре экспериментальные значения длин n – ⁸Не рассеяния равны:

A₀ = 6,53<u>+</u>0,32 Фм, A₁=3,62<u>+</u>0,15 Фм, B=4,450<u>+</u>0,003 Фм./8/ Их можно сравнить с величинами:

 $A_0 = 6,6+1,1 \ \Phi M$, $A_1 = 3,55+0,38 \ \Phi M$, $A_0 = 7,0+0,7 \ \Phi M$, $A_1 = 3,2+0,5 \ \Phi M$,

определенными ранее в работах ^{/12/}и ^{/13/} соответственно. Все величины согласуются в пределах ошибок, при этом точность результата настоящей работы заметно выше.

Действительная часть синглетной длины и триллетная длина рассеяния рассчитывались Харченко и Левашевым /см.^{/11/}/, применившими интегральную формулировку уравнений движения типа Фаддеева-Якубовского. Они получили значения:

 $A_0 = 8,05 / 9,42 / \Phi M$, $A_1 = 3,08 / 3,15 / \Phi M$

для простейших, сепарабельных нуклон-нуклонных потенциалов без учета кулоновского взаимодействия. Цифры без скобок соответствуют формфактору Юкавы, в скобках - экспоненциальному формфактору. Эксперимент свидетельствует в пользу применения формфактора Юкавы в подобных расчетах. Остакщееся при этом примерно двадцатипроцентное различие дзя A₀ вряд ли является серьезным, если иметь в виду допущения теории.

Сечение рассеяния. Сплошная кривая на рис.5 построена по формуле /5/ с использованием длин рассеяния /8/, полученных из всей совокупности экспериментальных данных по взаимодействию нейтронов с гелием-3. Она проходит несколько выше большинства точек, но в пределах их ошибок. Ступенька, образованная точками в районе 25 кэВ, по-видимому, обусловлена совместным влиянием энергетической структуры пучка и функции разрешения.

Пунктиром на рисунке показана кривая, рассчитанная в соответствии с фазовым анализом работы $^{\prime9\prime}$. Фазы рассеяния и модули $|\rm S_{pn}|$ матричных элементов реакции $T(\rm p,n)$ ³Не, полученные в работе $^{\prime9\prime}$, позволяют рассчитать сечение σ_{nn} и для энергий ниже 100 кэВ. Оценки показали, что для удовлетворительного согласия с экспериментальными данными в этом случае необходимо использовать модули элементов S -матрицы, значение которых на 10-20% больше приводимых в $^{\prime9\prime}$.

Экспериментальное сечение рассеяния σ_{nn} (³He), по-видимому, может быть описано и феноменологической моделью потенциального взаимодействия между нуклоном и трехнуклонным ядром ²⁸⁴ при надлежащей подгонке параметров потенциальной ямы. В этой модели получено близкое к эксперименту относительное возрастание сечения σ_{nn} (³He) с уменьшением энергии. Расчетные величины сечений, однако, выше: 2,67 и 3,67 б для энергий 150 кэ8 и 0,025 эВ соответственно.

Недавно появились расчеты сечений взаимодействия нейтронов с ⁸Не в рамках R -матричного формализма ^{/10/} с применением реалистических нуклон-нуклонных потенциалов, включающих тензорные и спин-орбитальные компоненты. Показано, что рост сечения σ_{nn} примерно до 3 б /при k \rightarrow 0 / обусловлен эффектом связи nn- и np- каналов взаимодействия. Согласие этих расчетов с экспериментальными данными менее удовлетворительное, чем в работе ^{/9/}.

Сечение поглощения. На рис.4 пунктирной линией показано расчетное сечение поглощения, полученное по формуле /6/ с параметрами /8/. До энергии 25 кэВ имеются экспериментальные данные работ ^{/5/} и^{/25/} для отношения сечений $\sigma_{\rm np}$ (⁸He)/ $\sigma_{\rm na}$ (⁶Li) и сечения $\sigma_{\rm na}$ (⁸Li) соответственно. Из этих данных можно получить $\sigma_{\rm np}$ (⁸He) до энергии 25 кэВ с точностью около 2%. Теоретическая кривая <u>рис.4</u> согласуется с ними в пределах 2%. В этой области энергий отклонение от закона 1/V достигает 15%. Поэтому можно констатировать, что теория эффективного радиуса описывает это отклонение в такой же мере, что и опирающийся на формулу Брейта-Вигнера подход в работе ^{/5/}.

Представляет интерес сопоставление теории и эксперимента при более высоких энергиях. Экспериментальные данные для E > > 25 кэВ имеют, однако, невысокую точность /около 10%/; кроме того, наблюдаются систематические различия результатов работ ^{/22/} и^{/7/}. Необходимы, следовательно, новые, более прецизионные измерения сечения поглощения нейтронов гелием-3 в интервале энергий 10-200 кэВ.

В заключение следует отметить, что в общие выражения теории эффективного радиуса входят, помимо длин рассеяния, синглетный и триплетный радиусы взаимодействия. Однако для извлечения из эксперимента величины эффективных радиусов необходимо существенно /до уровня 1%/ увеличить точность сечений в области энергий 50-300 кзВ, где зависимость от эффективных радиусов начинает проявляться.

Авторы выражают благодарность Я.Вежбицкому за помощь на начальном этапе работы и Г.С.Самосвату за полезные замечания. Приятно поблагодарить И.М.Франка за постоянную поддержку и интерес к работе.

ЛИТЕРАТУРА

- 1. Алфименков В.П. и др. ЯФ, 1977, т.25, с.1145.
- 2. Als-Nielsen J., Dietrich O.Phys.Rev., 1964, v.133B,p.925.
- 3. Алфименков В.П. и др. ОИЯИ, РЗ-80-394, Дубна, 1980.

- 4. Neutron Cross Sections. BNL-325, 1976, vol.2, 3rd ed.
- 5. Бергман А.А. и др. В кн.: Ядерные реакции при малых и средних энергиях. Изд-во АН СССР, М., 1957, с.17.
- 6. Passel L., Schermer R.I. Phys.Rev., 1966, v.150, p.146.
- Gibbons J.H., Macklin R.L. Phys.Rev., 1959, v.114, p.571; Macklin R.L., Gibbons J.H. In: Int.Conf. on Study Nucl. Struct. with Neutrons. North Holland Publishing Company, Amsterdam, 1966, p.498.
- Ross M.H., Show G.L. Ann. of Phys., 1960, v.9, p.361, ibid. v.13, p.147.
- 9. Барит И.Я., Сергеев В.А. ЯФ, 1971, т.13, с.1230.
- 10. Bevelacqua J.J. Can.J.Phys., 1980, v.58, p.306.
- 11. Харченко В.Ф. ЭЧАЯ, 1979, т.10, с.884.

4

Ļ

- 12. Kaiser H. et al. Z.für Phys., 1979, v.A291, p.231.
- Шарапов Э.И. В кн.: ||| Международная школа по нейтронной физике. ОИЯИ, ДЗ-11787, Дубна, 1978, с.437.
- 14. Алфименков В.П. и др. Письма в ЖЭТФ, 1979, т.29, с.100.
- 15. Baz A.I. Adv. in Phys. (Suppl. to Phil.Mag.), 1959, v.8, p.349.
- 16. Ландау Л.Д. Квантовая механика. Гос.изд. ФМЛ., М., 1963, с.631.
- 17. Голиков В.В. и др. ОИЯИ, 3-5736, Дубна, 1971.
- 18. Малецки Х. и др. ОИЯИ, 13-6609, Дубна, 1972.
- 19. Пикельнер Л.Б. и др. ПТЭ, 1963, №2, с.51.
- Los Alamos Physics and Cryogenics Groups. Nucl.Phys., 1959, v.12, p.291.
- 21. Goulding C.A., Stoler P. Nucl. Phys., 1973, v.A215, p.253.
- Batchelor R., Aves R., Skyrme T.H.R. Rev.Sci.Instr., 1955, v.26, p.1037.
- 23. Seagrave J.D., Granberg L., Simmons J.E. Phys.Rev., 1960, v.119, p.1981.
- 24. Заикин Д.А., Сергеев В.А. Изв. АН СССР, сер.физ., 1966, т.30, с.148.
- 25. Gaytner D.B. Ann. of Nucl.Energy, 1977, v.4, p.515.

Рукопись поступила в издательский отдел 7 августа 1980 года.